FCC TEST REPORT

for

Wrist Transmitter

Model No.: T20F2

of

Applicant: CLIMAX TECHNOLOGY CO., LTD. Address: No. 258, Sinhu 2nd Rd., Neihu District 114, Taipei City. Taiwan (R.O.C.)

Tested and Prepared by

ETS DR. GENZ TAIWAN PS CO., LTD

FCC Registration No.: 930600

Industry Canada filed test laboratory Reg. No. IC 5679

A2LA Cert.No.: 2300.01

PTCRB Accredited Type Certification Test House

FCC ID:GX9T20F2

Report No.: W6M20705-8084-C-1

6F, NO. 58, LANE 188, RUEY-KUANG RD., NEIHU TAIPEI 114, TAIWAN, R.O.C. TEL: 886-2-66068877 FAX: 886-2-66068879 E-mail: ets@ets-bzt.com.tw

TABLE OF CONTENTS

1	GENERAL INFORMATION	2				
1.1	NOTES	2				
1.2	TESTING LABORATORY	3				
	1.2.1 LOCATION1.2.2 DETAILS OF ACCREDITATION STATUS	3 3				
1.3	DETAILS OF APPROVAL HOLDER	3				
1.4	APPLICATION DETAILS	4				
1.5	TEST ITEM	4				
1.6	TEST STANDARDS	5				
2	TECHNICAL TEST	5				
2.1	SUMMARY OF TEST RESULTS	5				
2.2	TEST ENVIRONMENT	5				
2.3	TEST MODE	5				
2.4	TEST EQUIPMENT UTILIZED	6				
2.5	GENERAL TEST PROCEDURE	8				
3	TEST RESULTS (ENCLOSURE)	9				
3.1	TRANSMISSION REQUIREMENTS	10				
	3.1.1 LIMIT OF TRANSMISSION TIME3.1.2 ACTIVE TIME	10 10				
3.2	OUTPUT POWER (FIELD STRENGTH)	11				
3.3	OUT OF BAND RADIATED EMISSIONS	12				
3.4	TRANSMITTER RADIATED EMISSIONS IN RESTRICTED BANDS	13				
3.5	Spurious Emission radiated, Transmitter	14				
3.6	CHANNEL BANDWIDTH	20				
3.7	ANTENNA REQUIREMENT	21				
3.8	DUTY CYCLE	22				
3.9	CONDUCTED MEASUREMENT AT (AC) POWER LINE	23				
Арр	APPENDIX 2					

1 General Information

1.1 Notes

The purpose of conformity testing is to increase the probability of adherence to the essential requirements or conformity specifications, as appropriate.

The complexity of the technical specifications, however, means that full and thorough testing is impractical for both technical and economic reasons.

Furthermore, there is no guarantee that a test sample which has Passed all the relevant tests conforms to a specification.

Neither is there any guarantee that such a test sample will interwork with other genuinely open systems.

The existence of the tests nevertheless provides the confidence that the test sample possesses the qualities as maintained and that is performance generally conforms to representative cases of communications equipment.

The test results of this test report relate exclusively to the item tested as specified in 1.5.

The test report may only be reproduced or published in full.

Reproduction or publication of extracts from the report requires the prior written approval of the ETS DR. GENZ TAIWAN PS CO., LTD

Tester:

1ay 23, 2007		Jay Chaing	Jay Chaing
Date	ETS-Lab.	Name	Signature

Technical responsibility for area of testing:

ETS

May 23, 2007

Steven Chuang

Steven Chuang:

Date

Name

Signature

1.2 Testing laboratory

1.2.1 Location

OATS No.5-1, Shuang Sing Village, LiShuei Rd., Wanli Township, Taipei County 207, Taiwan (R.O.C.) Company ETS DR. GENZ TAIWAN PS CO., LTD. 6F, NO. 58, LANE 188, RUEY-KUANG RD. NEIHU, TAIPEI 114, TAIWAN R.O.C. Tel : 886-2-66068877 Fax : 886-2-66068879

1.2.2 Details of accreditation status

Accredited testing laboratory

A2LA-registration number: 2300.01

FCC filed test laboratory Reg. No. 930600

Industry Canada filed test laboratory Reg. No. IC 5679

PTCRB Accredited Type Certification Test House

Town:	./.
Country:	./.
Telephone:	./.
Fax:	./.

1.3 Details of approval holder

	CLIMAX TECHNOLOGY CO., LTD.
Street :	No. 258, Sinhu 2 nd Rd., Neihu District
Town :	114, Taipei City
Country :	Taiwan (R.O.C.)
Telephone :	+886-2-2794-0001
Fax :	+886-2-2794-5512

1.4 Application details

Date of receipt of application	: May 15, 2007
Date of receipt of test item	: May 15, 2007
Date of test	: from May 15, 2007 to May 21, 2007

1.5 Test item

Description of test item	: Wrist transmitter
Type identification	: T20F2
Brand name	: Climax
Multi-listing model number	: ./.
Transmitting frequency	: 418 MHz
Operation mode	: simplex
Voltage supply	: 3 VDC (battery)

(If the device is using battery, please check if the device is tested under fresh battery condition.)

Highest clock frequency	: 418 M	Hz
Antenna type	: PCB a	intenna
Photos	: see Ai	nnex
Manufacturer (if applicable)		
Name	:	./.
Street	:	./.
Town	:	./.
Country	:	./.
Additional information	:	./.

1.6 Test standards

Technical standard : FCC RULES PART 15 SUBPART B / SUBPART C § 15.231 (a) : August, 2006

2 Technical test

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course of the tests performed.	×
or	
The deviations as specified in 3 were ascertained in the course of the tests performed.	

2.2 Test environment

Temperature	:23 °C
Relative humidity content	: 20 75 %
Air pressure	: 86 103 kPa
Details of power supply	: 3 VDC (battery)

2.3 Test Mode

This EUT is the portable device. So the EUT was tested on three different axes. Please see assessment test results as section 3 of this test report.

2.4 Test equipment utilized

No.	Test equipment	Туре	Serial No.	Manufacturer	Cal. Date	Next Cal. Date
ETSTW-CE 001	EMI TEST RECEIVER	ESHS10	842121/013	R&S	2006/10/16	2007/10/15
ETSTW-CE 002	PREREULATOR MODE DC POWER SUPPLY	None	None		Functi	on Test
ETSTW-CE 003	AC POWER SOURCE	APS-9102	D161137	GW	Function Test	
ETSTW-CE 004	ZWEILEITER-V- NETZNACHBILDUNG TWO- LINE V-NETWORK	ESH3-Z5	840731/011	R&S	2006/10/16	2007/10/15
ETSTW-CE 005	Line-Impedance Stabilisation Network	NNBM 8126D	137	Schwarzbeck	2006/10/16	2007/10/15
ETSTW-CE 006	IMPULSBEGRENZER PULSE LIMITER	ESH3-Z2	100226	R&S	In House	Certificate
ETSTW-CE 008	ABSORBING CLAMP	MDS 21	3469	Schwarzbeck	2005/10/24	2007/10/23
ETSTW-CE 009	TEMP.&HUMIDITY CHAMBER	GTH-225-40-1P-U	MAA0305-009	GIANT FORCE	2006/8/17	2007/8/16
ETSTW-CE 013	CISPR 22 TWO BALANCED TELECOM PAIRS IMPEDANCE STABILIZATION NETWORK	FCC-TLISN-T4-02	20242	FCC	2005/12/8	2007/12/7
ETSTW-CE 014	CISPR 22 TWO BALANCED TELECOM PAIRS IMPEDANCE STABILIZATION NETWORK	FCC-TLISN-T2-02	20241	FCC	2005/12/7	2007/12/6
ETSTW-CE 015	CISPR 22 TWO BALANCED TELECOM PAIRS IMPEDANCE STABILIZATION NETWORK	FCC-TLISN-T8-02	20307	FCC	2006/11/7	2008/11/6
ETSTW-CE 016	TWO-LINE V-NETWORK	ENV216	100050	R&S	2006/11/21	2007/11/20
ETSTW-RE 002	Function Generator	33220A	MY43004982	Agilent	2005/10/14	2007/10/13
ETSTW-RE 003	EMI TEST RECEIVER	ESI 26	831438/001	R&S	2006/10/20	2007/10/19
ETSTW-RE 004	EMI TEST RECEIVER	ESI 40	832427/004	R&S	2006/10/30	2007/10/29
ETSTW-RE 005	EMI TEST RECEIVER	ESVS10	843207/020	R&S	2006/10/12	2007/10/11
ETSTW-RE 010	PROGRAMMABLE LINEAR POWER SUPPLY	LPS-305	30503070181	MOTECH	Functi	on Test
ETSTW-RE 011	PROGRAMMABLE LINEAR POWER SUPPLY	LPS-305	30503070165	MOTECH	Functi	on Test
ETSTW-RE 017	Log-Periodic Antenna	HL025	352886/001	R&S	2006/5/4	2008/5/3
ETSTW-RE 018	MICROWAVE HORN ANTENNA	AT4560	27212	AR	2004/11/8	2007/11/7
ETSTW-RE 020	MICROWAVE HORN ANTENNA	AT4002A	306915	AR	Functi	on Test
ETSTW-RE 021	SWEEP GENERATOR	SWM05	835130/010	R&S	2006/10/11	2007/10/10
ETSTW-RE 027	Passive Loop Antenna	6512	00034563	EMCO	2004/6/30	2007/6/29
ETSTW-RE 028	Log-Periodic DipoleArray Antenna	3148	34429	EMCO	2006/5/26	2008/5/25
ETSTW-RE 029	Biconical Antenna	3109	33524	EMCO	2006/5/26	2008/5/25
ETSTW-RE 030	Double-Ridged Guide Horn Antenna	3117	00035224	EMCO	2006/5/3	2008/5/2
ETSTW-RE 032	Millivoltmeter	URV 55	849086/013	R&S	2006/10/11	2007/10/10
ETSTW-RE 033	WaveRunner 6000A Serise Oscilloscope	WAVERUNNER 6100A	LCRY0604P14508	LeCroy	2006/7/27	2007/7/26
ETSTW-RE 034	Power Sensor	URV5-Z4	839313/006	R&S	2005/10/17	2007/10/16
ETSTW-RE 042	Biconical Antenna	HK116	100172	R&S	2007/1/11	2009/1/10
ETSTW-RE 043	Log-Periodic Dipole Antenna	HL223	100166	R&S	2006/5/8	2008/5/7
ETSTW-RE 044	Log-Periodic Antenna	HL050	100094	R&S	2006/5/29	2008/5/28
ETSTW-RE 048	Triple Loop Antenna	HXYZ 9170	HXYZ 9170-134	Schwarzbeck	2005/3/22	2008/3/21

ETS DR.GENZ TAIWAN PS CO., LTD.

Registration number: W6M20705-8084-C-1

ETSTW-RE 049	TRILOG Super Broadband test Antenna	VULB 9160	9160-3185	Schwarzbeck	2007/5/02	2009/5/01
ETSTW-RE 055	SPECTRUM ANALYZER	FSU-26	200074	R&S	2006/7/28	2007/7/27
ETSTW-RE 064	Bluetooth Test Set	MT8852B-042	6K00005709	Anritsu	Function Test	

2.5 General Test Procedure

POWER LINE CONDUCTED INTERFERENCE: The procedure used was ANSI STANDARD C63.4-2003 5.2 using a 50μ H LISN (if necessary). Both lines were observed. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed.

RADIATION INTERFERENCE: The test procedure used was according to ANSI STANDARD C63.4-2003 6.4 using a spectrum analyzer. The bandwidth of the spectrum analyzer was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was the 100 kHz and the video bandwidth was 300 kHz. The ambient. temperature of the UUT was 23°C with a humidity of 40 %.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of $dB\mu V$) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB.

Example:

Freq (MHz)METER READING + ACF + CABLE LOSS (to the receiver) = FS33 $20 \text{ dB}\mu\text{V} + 10.36 \text{ dB}/\text{m} + 6 \text{ dB} = 36.36 \text{ dB}\mu\text{V/m} @3m$

ANSI STANDARD C63.4-2003 6.2.1 MEASUREMENT PROCEDURES: The UUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m (non metallic table). The UUT was placed in the center of the table. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to 10th harmonic of the fundamental.

Peak readings were taken in three (3) orthogonal planes and the highest readings. Measurements were made by ETS Dr. Genz Taiwan PS Co., Ltd. at the registered open field test site located at. The Registration Number: **930600**

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

ANTENNA & GROUND: This unit uses PCB antenna. (see photo).

EIS

Registration number: W6M20705-8084-C-1 FCC ID: GX9T20F2

3 Test results (enclosure)

☑ 1st test

 $\hfill\square$ test after modification

 \Box production test

TEST CASE	Para. Number	Required	Test passed	Test failed
Transmission Requirements	FCC 15.231(a)	X	×	
Radiated Emission	FCC 15.231(b)	X	×	
Bandwidth of Emission	FCC 15.231(c)	X	×	
Frequency Tolerance	FCC 15.231(d)			
Period Alternate Field Strength Requirements	FCC 15.231(e)			
Antenna Requirement	FCC 15.203	×	X	
Radiated Emission from Receiver	FCC 15.209			
Radiated Emission from Digital Part	FCC 15.209			
Conducted Measurement at (AC) Power Line	FCC 15.207			

The follows is intended to leave blank.

3.1 Transmission Requirements

FCC 15.231(a)

3.1.1 Limit of Transmission Time

 \blacksquare According to 15.231(a)(1), a manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

 \Box According to 15.231(a)(2), a transmitter activated automatically shall cease transmission within 5 seconds after activation.

3.1.2 Active Time

 \blacksquare This manually operated transmitter employs a switch that automatically deactivate the transmitter within <u>2.908654</u> s of being released.

 \Box This transmitter is operated by automatic activation and active will cease transmission in _ ms after activation.

Comment: See attached appendix

Test equipment used : ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 028 ETSTW-RE 029 ETSTW-RE 042 ETSTW-RE 043

3.2 Output Power (Field Strength)

Test cor	ndition	Transmitter field strength (dBµV/m)
$T_{nom}=23$ °C	$V_{nom} = 3V DC$	67.70

Limit 15.231(b)

Fundamental Frequency	Field strength of fundamental, limit
(MHz)	$\mu V/m$
40.66 - 40.70	2,250
70 - 130	1,250
130 - 174	1,250 to 3,750
174 - 260	3,750
260 - 470	3,750 to 12,500**
	$(418 \text{ MHz}: 80.28 \text{ dB}\mu\text{V/m} = 10,333 \mu\text{V/m})$
Above 470	12,500

** linear interpolation

Comments: See attached diagrams

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 028 ETSTW-RE 029 ETSTW-RE 042 ETSTW-RE 043

3.3 Out of Band Radiated Emissions

FCC Rule: 15.231(b), 15.35

For out of band emissions that are close to or that exceed the 20 dB attenuation requirement described in the specification, radiated measurements were performed at a 3 m separation distance to determine whether these emissions complied with the general radiated emission requirement.

Limits: For frequencies below 1GHz : Max permitted average Limits = Max. reading – 20 dB

 $80.28 dB\mu V/m$ - 20 dB= 60.28 dB $\mu V/m$

Guidance on Measurement of pulsed emission: 815.231 (b), §15.35(c)

"If the emission is pulsed, modify the unit for continues operation, use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation." Here the correction was added to the limit instead subtracted from the reading.

Duty Cycle correction = 20 log (dwell time/100ms)

For frequencies above 1GHz (Peak measurements). Modified Limits for peak conform 15.35 (b) = Max Permitted average Limits + 20dB (because Peak detector is used)

 $80.28 \; dB\mu V/m$

For frequencies above 1GHz (Average measurements). Correction factor conform 15.35 (c) (Average measurements) Duty cycle correction : Max. reading – 20 dB – duty cycle correction

No duty cycle correction was added to the reading:

 $80.80 \ dB\mu V/m$ - 20 dB= 60.28 $\ dB\mu V/m$

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 017 ETSTW-RE 028 ETSTW-RE 029 ETSTW-RE 030 ETSTW-RE 042 ETSTW-RE 043 ETSTW-RE 044

3.4 Transmitter Radiated Emissions in restricted Bands

FCC Rules: 15.231 (b), 15.205, 15.209, 15.35 Radiated emission measurements were performed from 30 MHz to 8000 MHz. For radiated emission tests, the analyzer setting was as followings: RES BW VID BW Frequency <1 GHz 100 kHz 100 kHz (Peak measurements) Frequency >1 GHz 1 MHz 1 MHz (Peak measurements) 1 MHz 1 MHz (Average measurements) Limits:

For frequencies below 1GHz :

Frequency of Emission (MHz)	Field strength (microvolts/meter)	Field Strength (dB microvolts/meter)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

For frequencies above 1GHz (Average measurements).

Guidance on Measurement of pulsed emission:

"If the emission is pulsed, modify the unit for continues operation, use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation.

For frequencies above 1GHz (Average measurements).

The correction factor, based on the channel dwell tine in a 100 ms period, may be mathematically applied to a measurement made with an average detector, to further reduce the value.

Duty cycle correction $= 20 \log (\text{dwell time}/100\text{ms})$ No duty cycle correction was added to the reading

Modified Limits for peak conform 15.35 (b) = Max Permitted average Limits + 20dB (because Peak detector is used)

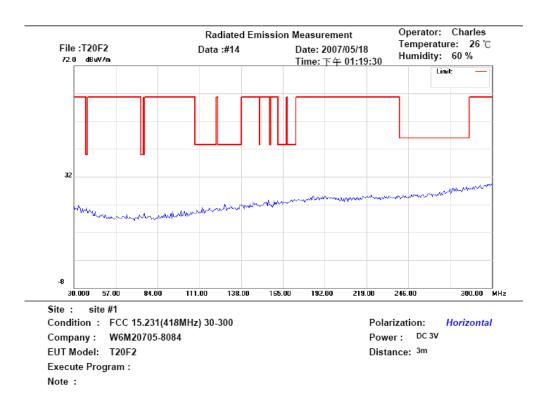
Above 960 MHz For mode DSSS CW: 54 dB μ V/m + 20 dB = 74 dB μ V/m

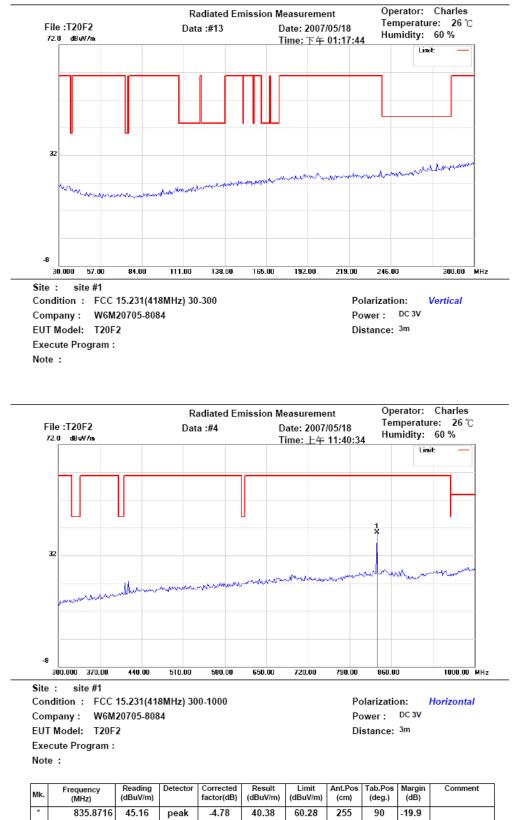
3.5 Spurious Emission radiated, Transmitter

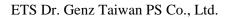
Spurious emission was measured with modulation (declared by manufacturer).

The limits on the field strength of the spurious emission in the table § 15.231(b) are based on the fundamental frequency of the intentional radiator. Spurious emission shall be attenuated to the average (or alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in § 15.209, whichever limit permits a higher field strength.

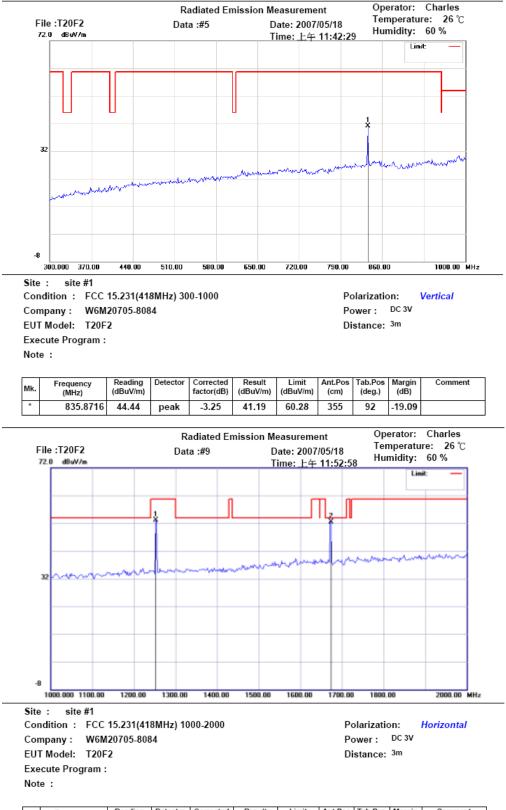
In addition, radiated emission which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

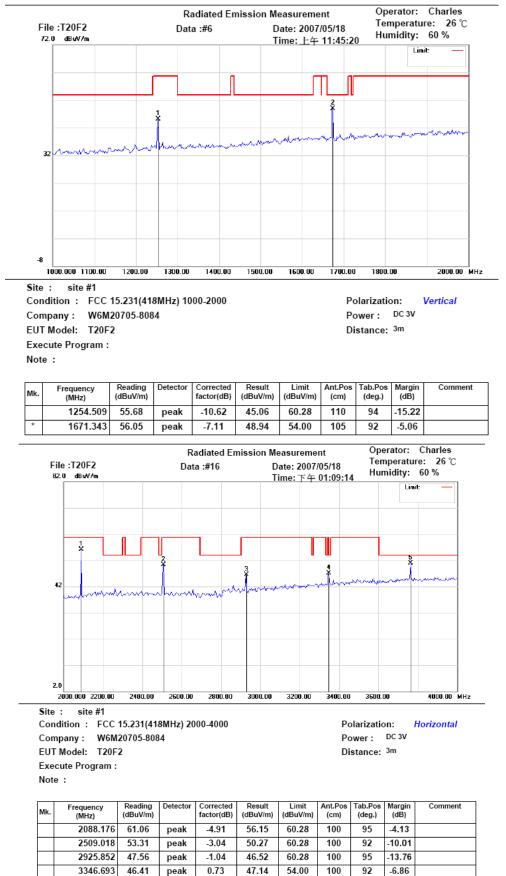

SAMPLE CALCULATION OF LIMIT. All results will be updated by an automatic measuring system in accordance to point 2.3.


Calculation of test results:


Such factors like antenna correction, cable loss, external attenuation etc. are already included in the provided measurement results. This is done by using validated test software and calibrated test system according the accreditation requirements.

The peak and average spurious emission plots was measured with the average limits.


In the Table being listed the critical peak and average value an exhibit the compliance with the above calculated Limits.



PRODUCT SERVICE

Mk.	Frequency (MHz)	Reading (dBuV/m)	Detector	Corrected factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Ant.Pos (cm)	Tab.Pos (deg.)	Margin (dB)	Comment
	1252.505	63.83	peak	-10.63	53.20	60.80	100	92	-7.60	
*	1671.343	59.56	peak	-7.11	52.45	54.00	100	95	-1.55	

3763.527

48.38

peak

2.45

50.83

54.00

100

92

-3.17

2925.852

3342.685

48.26

46.43

peak

-1.04

0.70

47.22

47.13

60.28

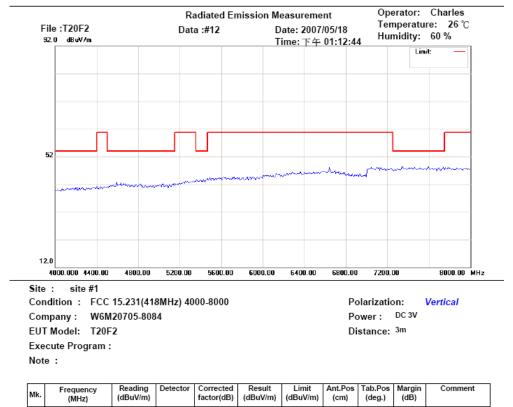
60.28

100

100

90

92


-13.06

-13.15

- Note 1. Correction Factor = Antenna factor + Cable loss Preamplifier
 - 2. The formula of measured value as: Test Result = Reading + Correction Factor
 - **3.** Detector function in the form : PK = Peak, QP = Quasi Peak, AV = Average
 - 4. All not in the table noted test results are more than 20 dB below the relevant limits.

Freq. – Frequency Range:

1:	30	-	200 MHz
2:	200	-	1000MHz
3:	1	-	4 GHz
4:	4	-	8 GHz

All other not noted test plots do not contain significant test results in relation to the limits Test results: The unit meet the FCC requirements.

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 017 ETSTW-RE 028 ETSTW-RE 029 ETSTW-RE 030 ETSTW-RE 042 ETSTW-RE 043 ETSTW-RE 044

PRODUCT

3.6 Channel Bandwidth

Measurement of Necessary Bandwidth (BN)

Used frequency	Bandwidth	Limit
418 MHz	99.038 kHz	1.045 MHz

Comments: The bandwidth fulfills the requirements of FCC § 15.231, See attached diagrams

Limits:

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 028, ETSTW-RE 029 ETSTW-RE 042 ETSTW-RE 043

3.7 Antenna requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

Comment: This PCB antenna is integral antenna which passes antenna requirement.

The equipment meets the	yes	no
requirements	×	

3.8 Duty Cycle

The correction factor, based on the channel dwell time in a 100ms period, may be mathematically applied to a measurement made with an average detector, to further reduce the measured value.

Average Reading = Peak Reading (dBuV/m) + Duty Cycle Correction

Duty Cycle Correction = 20 log (Cycle) In order to determine the Duty Cycle, the EUT is measured as:

Testing Mode	T period	T on	Duty Cycle (%)	Duty Cycle Correction
	(ms)	(ms)		20*log(Duty Cycle)
Mode	100	48.4	0.678688617	-3.367

Comments: See attached diagram.

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 028 ETSTW-RE 029 ETSTW-RE 042 ETSTW-RE 043

3.9 Conducted Measurement at (AC) Power Line

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the table bellows with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

This measurement was transact first with instrumentation using an average and peak detector and a 10 kHz bandwidth. If the peak detector achieves a calculated level, the measurement is repeated by an instrumentation using a quasi-peak detector.

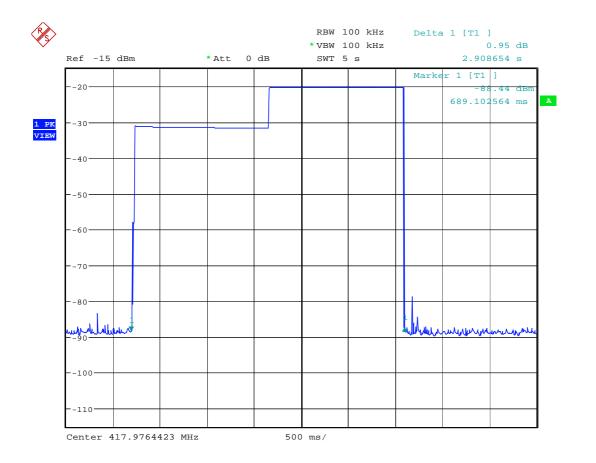
Frequency	Level				
	quasi-peak (dBµV/m)	average (dBµV/m)			
kHz					

Limits:

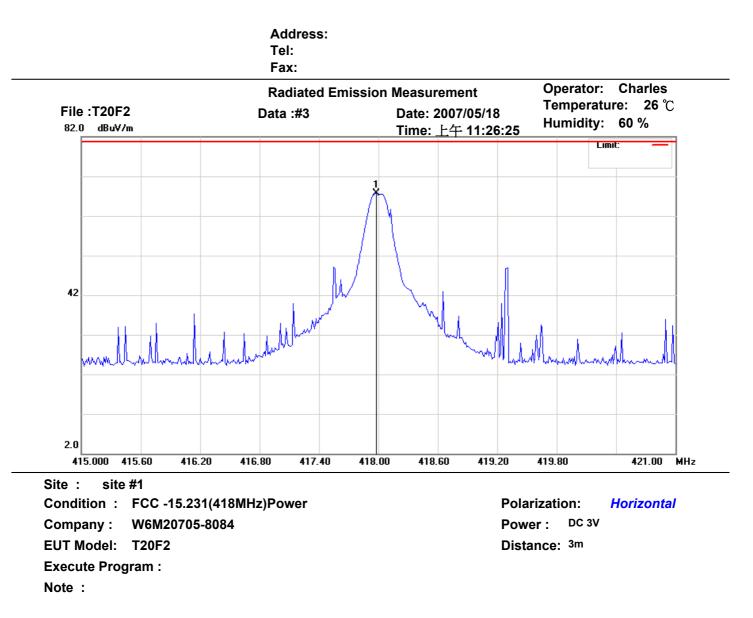
Frequency of Emission (MHz)	Frequency of Emission (MHz) Conducted Limit (dBuV)				
	Quasi Peak Average				
0.15-0.5	66 to 56	56 to 46			
0.5-5	56	46			
5-30	60	50			

Comment: Test is not required because the sample is using a battery.

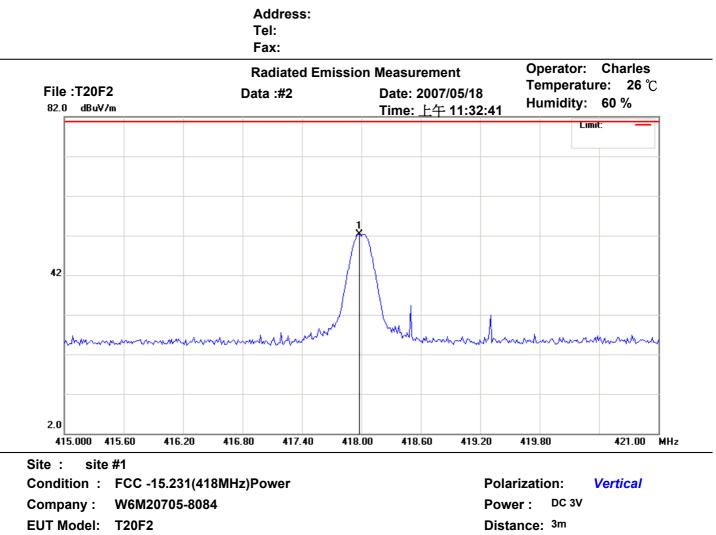
Test equipment used: ETSTW-CE 001 ETSTW-CE 003 ETSTW-CE 004 ETSTW-CE 006


Appendix

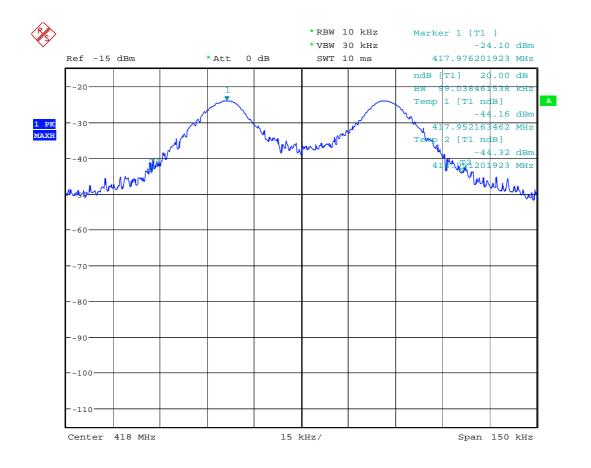
A Measurement diagrams

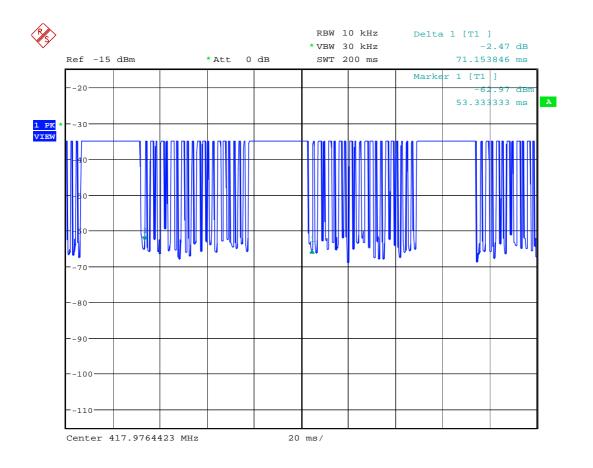

- 1. Active Time
- 2. Output Power
- 3. Bandwidth
- 4. Duty Cycle

B Photos

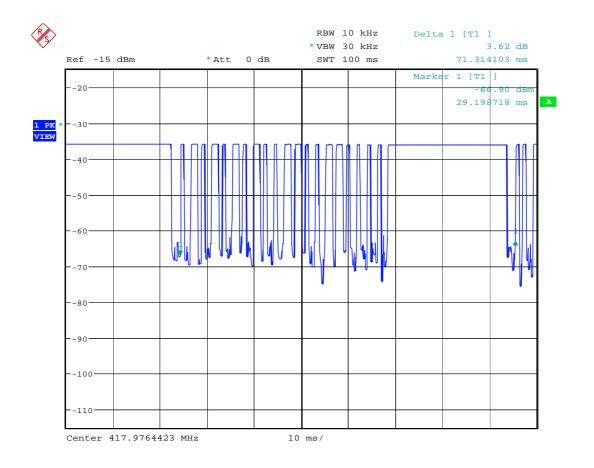

- 1. External Photos
- 2. Internal Photos
- 3. Set Up Photos

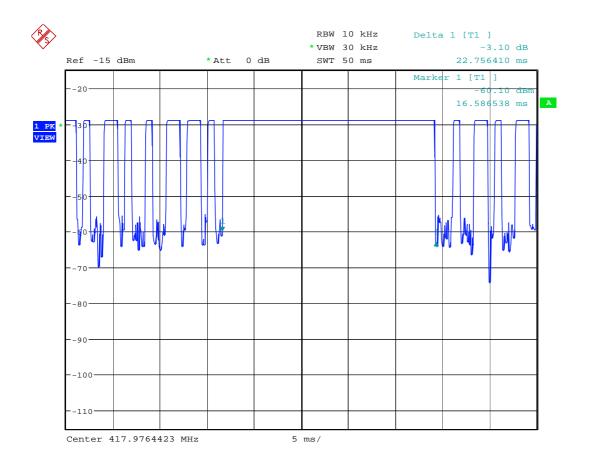
Duration time Date: 16.MAY.2007 12:35:54

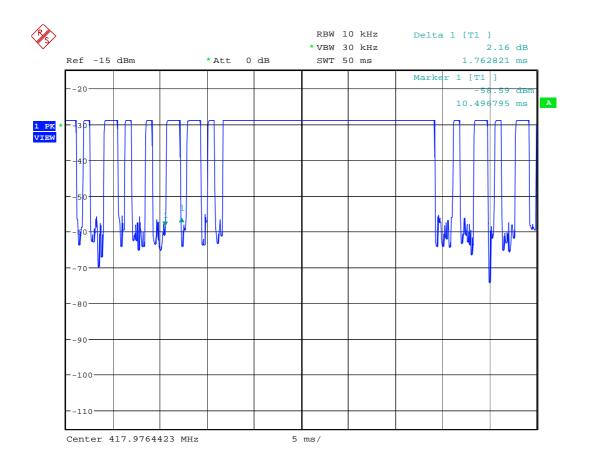

Mk.	Frequency (MHz)	Reading (dBuV/m)	Detector	Corrected factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Ant.Pos (cm)	Tab.Pos (deg.)	Margin (dB)	Comment
*	417.9820	45.93	peak	21.77	67.70	80.28	255	90	-12.58	

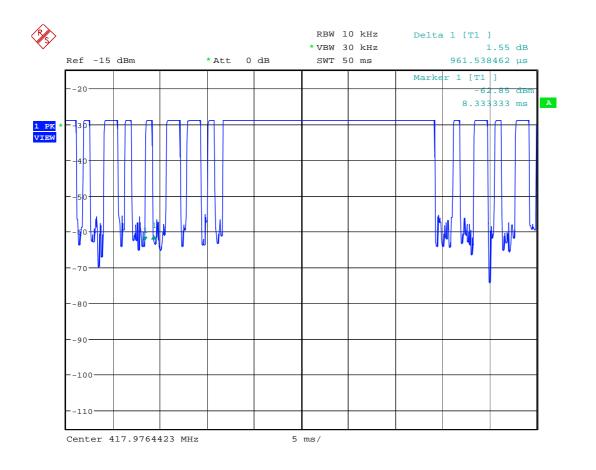

Execute Program :

Note :


Mk.	Frequency (MHz)	Reading (dBuV/m)	Detector	Corrected factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Ant.Pos (cm)	Tab.Pos (deg.)	Margin (dB)	Comment
*	417.9700	30.26	peak	22.11	52.37	80.28	355	90	-27.91	


20dB bandwidth Date: 16.MAY.2007 10:00:43


Duty cycle Date: 16.MAY.2007 12:29:17


Duty cycle Date: 16.MAY.2007 12:30:29

Duty cycle Date: 16.MAY.2007 12:32:38

Duty cycle Date: 16.MAY.2007 12:33:03

Duty cycle Date: 16.MAY.2007 12:33:30