FCC PART 15 SUBPART C TEST REPORT

for

Power Switch

Model No.: PSSx-xxx Series (x=0~9, A~Z or blank)

FCC ID: GX9PS

of

Applicant: CLIMAX TECHNOLOGY CO., LTD. Address: No. 258, Sinhu 2nd Rd., Neihu District 114 Taipei City Taiwan (R.O.C.)

Tested and Prepared

by

Worldwide Testing Services (Taiwan) Co., Ltd.

FCC Registration No.: 930600

Industry Canada filed test laboratory Reg. No. IC 5679A-1, IC 5107A

A2LA Accredited No.: 2732.01

Report No.: W6M21408-14375-C-1

6F, NO. 58, LANE 188, RUEY-KUANG RD., NEIHU TAIPEI 114, TAIWAN, R.O.C. TEL: 886-2-66068877 FAX: 886-2-66068879 E-mail: <u>wts@wts-lab.com</u>

TABLE OF CONTENTS

1	GE	NERAL INFORMATION	2
	1.1	Notes	2
	1.2	TESTING LABORATORY	3
	1.2.	1 Location	3
	1.2.2	2 Details of accreditation status	3
	1.3	DETAILS OF APPROVAL HOLDER	3
	1.5	GENERAL INFORMATION OF TEST ITEM	4
	1.6	TEST STANDARDS	5
2	TEO	CHNICAL TEST	6
	2.1	SUMMARY OF TEST RESULTS	6
	2.2	TEST ENVIRONMENT	6
	2.3	TEST EQUIPMENT LIST	7
	2.4	GENERAL TEST PROCEDURE	9
3	TES	ST RESULTS (ENCLOSURE)	11
	3.1	PEAK OUTPUT POWER (TRANSMITTER)	12
	3.2	EQUIVALENT ISOTROPIC RADIATED POWER	15
	3.3	RF Exposure Compliance Requirements	15
	3.4	TRANSMITTER RADIATED EMISSIONS IN RESTRICTED BANDS	16
	3.5	Spurious Emissions (TX)	17
	3.6	RADIATED EMISSION ON THE BAND EDGE	21
	3.7	MINIMUM 6 DB BANDWIDTH	23
	3.8	PEAK POWER SPECTRAL DENSITY	26
	3.9	RADIATED EMISSION FROM DIGITAL PART	29
	3.10	Power Line Conducted Emission	30
A	PPENI	DIX	33

1 General Information

1.1 Notes

The purpose of conformity testing is to increase the probability of adherence to the essential requirements or conformity specifications, as appropriate.

The complexity of the technical specifications, however, means that full and thorough testing is impractical for both technical and economic reasons.

Furthermore, there is no guarantee that a test sample which has passed all the relevant tests conforms to a specification.

Neither is there any guarantee that such a test sample will interwork with other genuinely open systems.

The existence of the tests nevertheless provides the confidence that the test sample possesses the qualities as maintained and that is performance generally conforms to representative cases of communications equipment.

The test results of this test report relate exclusively to the item tested as specified in 1.5.

The test report may only be reproduced or published in full.

Reproduction or publication of extracts from the report requires the prior written approval of the Worldwide Testing Services(Taiwan) Co., Ltd.

Specific Conditions:

Usage of the hereunder tested device in combination with other integrated or external antennas requires at least additional output power measurements, spurious emission measurements, conducted emission measurements (AC supply lines) and radio frequency exposure evaluations for each individual configuration performed, for certification by FCC.

Tester:

Date

Date

October 03, 2014

WTS-Lab. Name

Kent Lin

1

Signature

Technical responsibility for area of testing:

WTS

Kevin Wong

October 03, 2014

Name

Kevin Wang

Signature

1.2 Testing laboratory

1.2.1 Location

OATS

No.5-1, Lishui, Shuang Sing Village,
Wanli Dist., New Taipei City 207,
Taiwan (R.O.C.)
3 meter semi-anechoic chamber
No.35, Aly. 21, Ln. 228, Ankang Rd., Neihu Dist., Taipei City 114, Taiwan (R.O.C.)
TEL:886-2-6613-0228
FAX:886-2-2791-5046
Company
Worldwide Testing Services(Taiwan) Co., Ltd.
6F, NO. 58, LANE 188, RUEY-KUANG RD.
NEIHU, TAIPEI 114, TAIWAN R.O.C.
Tel : 886-2-66068877
Fax : 886-2-66068879

1.2.2 Details of accreditation status

Accredited testing laboratory A2LA accredited number: 2732.01 FCC filed test laboratory Reg. No. 930600 Industry Canada filed test laboratory Reg. No. IC 5679A-1, IC 5107A

Test location, where different from Worldwide Testing Services (Taiwan) Co., Ltd. :

Name:	./.
Accredited number:	./.
Street:	./.
Town:	./.
Country:	./.
Telephone:	./.
Fax:	./.

1.3 Details of approval holder

Name:	CLIMAX TECHNOLOGY CO., LTD.
Street:	No. 258, Sinhu 2nd Rd., Neihu District
City:	114 Taipei City
Country:	Taiwan (R.O.C.)
Telephone:	+886-2-2794-0001
Fax:	+886-2-2792-6618

1.4 Application details

Date of receipt of test item: Date of test: August 06, 2014 from August 07, 2014 to October 02, 2014

1.5 General information of Test item

Type of test item:	Power Switch
Model Number:	PSSx-xxx Series (x=0~9, A~Z or blank)
Brand Name:	Swann (for model number: SWO-SMP1PA)
Multi-listing model number:	PSMx-xxx Series (x=0~9, A~Z or blank),
	PSDx-xxx Series(x=0~9, A~Z or blank),
	PRxx-xxx Series (x=0~9, A~Z or blank),
	SWO-SMP1PA
Photos:	see Appendix

Technical data

Frequency band:	2.4 GHz – 2.4835 GHz
Frequency (ch 1 or A):	2.405 GHz
Frequency (ch 8 or B):	2.440 GHz
Frequency (ch 16 or C):	2.480 GHz
Number of Channels:	16
Operation modes:	Half-duplex
Modulation Type:	QQPSK

Fixed point-to-point operation:	🗌 Yes / 🔀 No
Type of Antenna:	PIFA Antenna
Antenna gain:	-2.16 dBi
Power supply:	AC 100-240V
Emission designator:	2M85G1D

:

Host device:

none

Classification

Fixed Device	
Mobile Device (Human Body distance > 20 cm)	\square
Portable Device (Human Body distance < 20cm)	

Transmitter

<u>Unom</u>

Power (ch 1 or A):	Conducted: 10.16 dBm
Power (ch 8 or B):	Conducted: 10.17 dBm
Power (ch 16 or C):	Conducted: 9.62 dBm

Manufacturer: (if applicable)

Name:	./.
Street:	./.
Town:	./.
Country:	./.

Additional information: ./.

1.6 Test standards

Technical standard : FCC RULES PART 15 SUBPART C § 15.247 (2013-10)

Note:

- **1.** This test report is valid in connection to the model has been tested, any modification to the product which is different from the test model will avoid the certification of the test report.
- **2.** This test report shall always be duplicated in full pages unless the written approval of the testing laboratory is obtained.
- 3. The x in model number is representing different customer's number, enclosure color and printing.

2 Technical test

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course of the tests performed.	×
or	
The deviations as specified in 2.5 were ascertained in the course of the tests performed.	

2.2 Test environment

Temperature:	23 °C
Relative humidity content:	20 75 %
Air pressure:	86 103 kPa
Power supply:	AC 100-240V
Extreme conditions parameters:	./.

Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M21408-14375-C-1 FCC ID: GX9PS

2.3 Test Equipment List

No.	Test equipment	Туре	Serial No.	Manufacturer	Cal. Date	Next Cal. Date
ETSTW-CE 001	EMI TEST RECEIVER	ESHS10	842121/013	R&S	2014/9/2	2015/9/1
ETSTW-CE 003	AC POWER SOURCE	APS-9102	D161137	GW	Function	on Test
ETSTW-CE 008	HF-EICHLEITUNG RF STEP ATTENUATOR 139dB DPSP	334.6010.02	844581/024	R&S	Function	on Test
ETSTW-CE 009	TEMP.&HUMIDITY CHAMBER	GTH-225-40-1P-U	MAA0305-009	GIANT FORCE	2014/7/8	2015/7/7
ETSTW-CE 016	TWO-LINE V-NETWORK	ENV216	100050	R&S	2013/10/28	2014/10/27
ETSTW-RE 004	EMI TEST RECEIVER	ESI 40	832427/004	R&S	2014/9/2	2015/9/1
ETSTW-RE 005	EMI TEST RECEIVER	ESVS10	843207/020	R&S	2014/9/2	2015/9/1
ETSTW-RE 012	TUNABLE BANDREJECT FILTER	D.C 0309	146	K&L	Function	on Test
ETSTW-RE 013	TUNABLE BANDREJECT FILTER	D.C 0336	397	K&L	Function	on Test
ETSTW-RE 018	MICROWAVE HORN ANTENNA	AT4560	27212	AR	2014/9/26	2015/9/25
ETSTW-RE 027	Passive Loop Antenna	6512	00034563	ETS-Lindgren	2014/7/01	2015/6/30
ETSTW-RE 030	Double-Ridged Guide Horn Antenna	3117	00035224	EMCO	2014/2/25	2015/2/24
ETSTW-RE 045	ESA-E SERIES SPECTRUM ANALYZER	E4404B	MY45111242	Agilent	Pre-te	st Use
ETSTW-RE 049	TRILOG Super Broadband test Antenna	VULB 9160	9160-3185	Schwarzbeck	2014/2/18	2015/2/17
ETSTW-RE 050	Attenuator 10dB	50HF-010-1	None	JFW	2014/3/3	2015/3/2
ETSTW-RE 051	Attenuator 6dB	50HF-006-1	None	JFW	2014/3/3	2015/3/2
ETSTW-RE 053	Attenuator 3dB	50HF-003-1	None	JFW	2014/3/3	2015/3/2
ETSTW-RE 055	SPECTRUM ANALYZER	FSU 26	200074	R&S	2014/6/05	2015/6/04
ETSTW-RE 060	Attenuator 30dB	5015-30	F651012z-01	ATM	2014/3/3	2015/3/2
ETSTW-RE 062	Amplifier Module	CHC 2	None	KMIC	2013/11/27	2014/11/26
ETSTW-RE 064	Bluetooth Test Set	MT8852B-042	6K00005709	Anritsu	Function	on Test
ETSTW-RE 069	Double-Ridged Guide Horn Antenna	3117	00069377	EMCO	Function Test	
ETSTW-RE 072	CELL SITE TEST SET	8921A	3339A00375	HP	2014/9/26	2015/9/25
ETSTW-RE 088	SOLID STATE AMPLIFIER	KMA180265A01	99057	KMIC	2014/9/26	2015/9/25
ETSTW-RE 099	DC Block	50DB-007-1	None	JFW	2014/3/3	2015/3/2
ETSTW-RE 106	Humidity Temperature Meter	TES-1366	091011113	TES	2013/12/04	2014/12/03
ETSTW-RE 111	TRILOG Super Broadband test Antenna	VULB 9160	9160-3309	Schwarz beck	2013/12/27	2014/12/26
ETSTW-RE 112	AC POWER SOURCE	TFC-1005	None	T-Power	Functi	on test
ETSTW-RE 115	2.4GHz Notch Filter	N0124411	473874	MICROWAVE CIRCUITS	2014/1/10	2015/1/09
ETSTW-RE 120	RF Player	MP9200	MP9210-111022	ADIVIC	Functi	on test
ETSTW-RE 122	SIGNAL GENERATOR	SMF100A	102149	R&S	2014/6/11	2015/6/10
ETSTW-RE 125	5GHz Notch filter	5NSL11- 5200/E221.3-O/O	1	K&L Microwave	2014/8/12	2015/8/11

ETSTW-RE 126	5GHz Notch filter	5NSL11- 5800/E221.3-O/O	1	K&L Microwave	2014/8/12	2015/8/11	
ETSTW-RE 127	RF Switch Box	RFS-01	None	WTS	2014/3/3	2015/3/2	
ETSTW-RE 128	5.3GHz Notch filter	N0153001	SN487233	Microwave Circits	2014/8/12	2015/8/11	
ETSTW-RE 129	5.5GHz Notch filter	N0555984	SN487234	Microwave Circits	2014/8/12	2015/8/11	
ETSTW-RE 130	Handheld RF Spectrum Analyzer	N9340A	CN0147000204	Agilent	Pre-te	st Use	
ETSTW-GSM 002	Universal Radio Communication Tester	CMU 200	109439	R&S	2014/9/26	2015/9/25	
ETSTW-GSM 019	Band Reject Filter	WRCTF824/849- 822/851-40 /12+9SS	3	WI	2014/1/10	2015/1/09	
ETSTW-GSM 020	Band Reject Filter	WRCD1747/1748- 1743/1752-32/5SS	1	WI	2014/1/10	2015/1/09	
ETSTW-GSM 021	Band Reject Filter	WRCD1879.5/1880.5 -1875.5/1884.5- 32/5SS	3	WI	2014/1/10	2015/1/09	
ETSTW-GSM 022	Band Reject Filter	WRCT901.9/903.1- 904.25-50/8SS	1	WI	2014/1/10	2015/1/09	
ETSTW-GSM 023	Power Divider	4901.19.A	None	SUHNER	2014/9/17	2015/9/16	
ETSTW-Cable 010	BNC Cable	5 M BNC Cable	None	JYE BAO CO.,LTD.	2014/2/27	2015/2/26	
ETSTW-Cable 011	BNC Cable	BNC Cable 1	None	JYE BAO CO.,LTD.	Pre-test Use NCR		
ETSTW-Cable 012	N TYPE To SMA Cable	Cable 012	None	JYE BAO CO.,LTD.	2014/2/27	2015/2/26	
ETSTW-Cable 016	BNC Cable	Switch Box	B Cable 1	Schwarz beck	2014/2/27	2015/2/26	
ETSTW-Cable 017	BNC Cable	X Cable	B Cable 2	Schwarz beck	2014/2/27	2015/2/26	
ETSTW-Cable 018	BNC Cable	Y Cable	B Cable 3	Schwarz beck	2014/2/27	2015/2/26	
ETSTW-Cable 019	BNC Cable	Z Cable	B Cable 4	Schwarz beck	2014/2/27	2015/2/26	
ETSTW-Cable 022	N TYPE Cable	5006	0002	JYE BAO CO.,LTD.	2014/2/19	2015/2/18	
ETSTW-Cable 026	Microwave Cable	SUCOFLEX 104	279075	HUBER+SUHNER	2014/3/3	2015/3/2	
ETSTW-Cable 027	Microwave Cable	SUCOFLEX 104	279083	HUBER+SUHNER	2014/3/3	2015/3/2	
ETSTW-Cable 028	Microwave Cable	FA147A0015M2020	30064-2	UTIFLEX	2014/9/26	2015/9/25	
ETSTW-Cable 029	Microwave Cable	FA147A0015M2020	30064-3	UTIFLEX	2014/9/26	2015/9/25	
ETSTW-Cable 030	Microwave Cable	SUCOFLEX 104 (S_Cable 9)	279067	HUBER+SUHNER	2014/3/3	2015/3/2	
ETSTW-Cable 031	Microwave Cable	SUCOFLEX 104 (S_Cable 10)	238092	HUBER+SUHNER	2013/11/27	2014/11/26	
ETSTW-Cable 043	Microwave Cable	SUCOFLEX 104	317576	HUBER+SUHNER	2013/11/27	2014/11/26	
ETSTW-Cable 047	Microwave Cable	SUCOFLEX 104	325518	HUBER+SUHNER	2013/11/27	2014/11/26	
ETSTW-Cable 053	N TYPE To SMA Cable	RG142	None	JYE BAO CO.,LTD.	2014/2/19	2015/2/18	
ETSTW-Cable 058	Microwave Cable	SUCOFLEX 104	none	HUBER+SUHNER	2014/2/19	2015/2/18	
WTSTW-SW 002	EMI TEST SOFTWARE	EZ_EMC	None	Farad	Version I	ETS-03A1	

2.4 General Test Procedure

POWER LINE CONDUCTED INTERFERENCE: The procedure used was ANSI STANDARD C63.4-2014 5.2 using a 50µH LISN (if necessary). Both lines were observed. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed.

RADIATION INTERFERENCE: The test procedure used was according to ANSI STANDARD C63.4-2014 6.4 employing a spectrum analyzer. For investigated frequency is equal to or below 1GHz, the RBW and VBW of the spectrum analyzer was 100 kHz and 100kHz respectively with an appropriate sweep speed. For investigated frequency is above 1GHz, both of RBW and VBW of the spectrum analyzer were 1 MHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of $dB\mu V$) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB.

Example: Freq (MHz) METER READING + ACF + CABLE LOSS (to the receiver) = FS 33 $20 \text{ dB}\mu\text{V} + 10.36 \text{ dB} + 6 \text{ dB} = 36.36 \text{ dB}\mu\text{V/m}@3\text{m}$

The EUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m (non metallic table) and arranged according to ANSI C63.4-2014 6.3.1. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to the frequency specified as follows:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a)(1)-(a)(3) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this Section, whichever is the higher frequency range of investigation.

For hand-held devices, a exploratory test was performed with three (3) orthogonal planes to determine the highest emissions.

Measurements were made by Worldwide Testing Services(Taiwan) Co., Ltd. at the registered open field test site located at No.5-1, Lishui, Shuang Sing Village, Wanli Dist., New Taipei City 207, Taiwan (R.O.C.). The Registration Number: 930600.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

When the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

The formula is as follows: Average = Peak + Duty Factor Duty Factor = 20 log (dwell time/T) T = 100ms when the pulse train period is over 100 ms or the period of the pulse train.

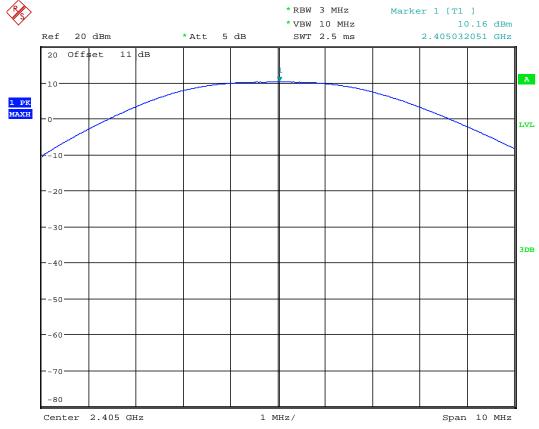
Modified Limits for peak according to 15.35 (b) = Max Permitted average Limits + 20dB

ANSI STANDARD C63.4-2014 10.2.7: Any measurements that utilize special test software shall be indicated and referenced in the test report. During testing, test software 'EZ EMC' was used for setting up different operation modes.

3 Test results (enclosure)

TEST CASE	Para. Number	Required	Test passed	Test failed
Peak Output Power	15.247(b)	×	×	
Equivalent isotropically radiated Power	15.247(b)	×	×	
Spurious Emissions radiated – Transmitter operating	15.247(c):	×	×	
	15.209			
Band Edge Measurement	15.247(d)	×	×	
Minimum 6 dB Bandwidth	15.247(a)(2)	×	×	
Peak Power Spectral Density	15.247(e)	×	×	
Radiated Emission from Digital Part	15.109			
Power Line Conducted Emission	15.207	×	×	

The following is intentionally left blank.

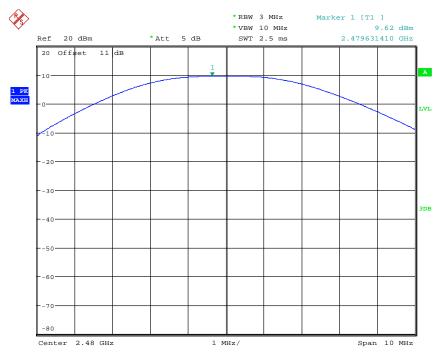


3.1 Peak Output Power (transmitter)

FCC Rule: 15.247(b)(3)


This measurement applies to equipment with an integral antenna and to equipment with an antenna connector and equipped with an antenna as declared by the applicant.

The power was measured with modulation (declared by the applicant).



MAX OUTPUT POWER 2405 MHZ Date: 15.AUG.2014 10:46:17

MAX OUTPUT POWER 2440 MHZ Date: 15.AUG.2014 10:46:57

MAX OUTPUT POWER 2480 MHZ Date: 15.AUG.2014 10:47:30

Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M21408-14375-C-1 FCC ID: GX9PS

Limits:	
Frequency	Power
MHz	dBm
902 - 928	30
2400 - 2483.5	30
5725 - 5850	30

In case of employing transmitter antennas having antenna gain > 6 dBi and using fixed point-to point operation consider 15.247 (b)(4)

Test equipment used: ETSTW-RE 055, ETSTW-RE 050

3.2 Equivalent isotropic radiated power

FCC Rule: 15.247(b)(3)

EIRP = max. conducted output power + antenna gain (Directional gain) EIRP = 10.17 dBm + (-2.16 dBi) = 8.01 dBm Limit: EIRP = +36 dBm for Antenna gain <6dBi

Test equipment used: ETSTW-RE 055

3.3 RF Exposure Compliance Requirements

FCC OET Bulletin 65 Edition 97.01 determines the equations for predicting RF fields and applicable limits.

The prediction for power density in the far-field but will over-predict power density in the near field, where it could be used for walking a "worst case" or conservative prediction.

$$\mathbf{S} = \frac{\mathbf{PG}}{4 \pi \mathbf{R}^2}$$

S – Power Density

P – Output power ERP

R – Distance

D – Cable Loss

AG – Antenna Gain

Item	Unit	Value	Remarks
Р	mW	10.3992	Peak value
D	dB		
AG	dBi	-2.16	
G		0.6081	Calculated Value
R	cm	20	Assumed value
S	mW/cm ²	0.001258	Calculated value

Limits:

Limit for General Population / Uncontrolled Exposure							
Frequency (MHz)	Power Density (mW/cm ²)						
1500 - 100.000	1.0						

3.4 Transmitter Radiated Emissions in Restricted Bands

FCC Rules: 15.247 (c), 15.205, 15.209, 15.35

Radiated emission measurements were performed from 30 MHz to 26500 MHz. For radiated emission tests, the analyzer setting was as followings:

Frequency ≤ 1 GHz, RBW:100 kHz, VBW: 100 kHz (Peak measurements) Frequency > 1 GHz, RBW: 1 MHz, VBW: 1 MHz (Peak measurements) Frequency > 1 GHz, RBW:1 MHz, VBW: 10 Hz (Average measurements)

Limits.

For frequencies below 1GHz:

Frequency of Emission	Field strength	Field Strength
(MHz)	(microvolts/meter)	(dB microvolts/meter)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above	500	54.0

For frequencies above 1GHz (Average measurements).

Guidance on Measurement of Digit Transmission Systems:

"If the emission is pulsed, modify the unit for continuous operation, use the setting shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation."

The correction factor, based on the total channel dwell time in a 100 ms period, may be mathematically applied to a measurement made with an average detector, to further reduce the value.

Duty cycle correction = 20 log (dwell time/ 100ms)

Note: No duty cycle correction was added to the reading of this EUT.

Explanation: see attached diagrams in Appendix.

3.5 Spurious Emissions (tx)

Spurious emission was measured with modulation (declared by manufacturer).

In any 100 kHz bandwidth outside the frequency band in which the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))

FCC Rule: 15.247(c), 15.35

For out of band emissions that are close to or that exceed the 20 dB attenuation requirement described in the specification, radiated measurements were performed at a 3 m separation distance to determine whether these emissions complied with the general radiated emission requirement.

Limits:

For frequencies above 1GHz (Peak measurements). Modified Limit for peak according to 15.35 (b) = Max Permitted average Limits + 20dB

For frequencies above 1GHz (Average measurements). Max. reading -20dB

Max. reading – 20 dB

Guidance on Measurement of Digit Transmission Systems:

"If the emission is pulsed, modify the unit for continuous operation, use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation."

The correction factor, based on the total channel dwell time in a 100 ms period, may be mathematically applied to a measurement made with an average detector, to further reduce the value.

Duty Cycle correction = 20 log (dwell time/100ms)

Note: No duty cycle correction was added to the reading of EUT.

SAMPLE CALCULATION OF LIMIT. All results will be updated by an automatic measuring system in accordance with point 2.3.

Calculation of test results:

Such factors like antenna correction, cable loss, external attenuation etc. are already included in the provided measurement results. This is done by using validated test software and calibrated test system according the accreditation requirements.

The peak and average spurious emission plots was measured with the average limits. In the Table being listed the critical peak and average value and exhibit the compliance with the above calculated Limits.

If in the column's correction factor states a value then the max. Field strength in the same row is corrected by a value gained from the "Correction Factor".

Model:	PSSx-xxx	x Series (x	=0~9, A~	Z or blank)	Date			
Mode:	2405MHz			Temperature:	24	°C		Leon
Polarization:	Horizontal			Humidity:	60	%		
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
171.9038	20.07	peak	14.58	34.65	43.50	-8.85	110	100
331.3026	24.52	peak	16.80	41.32	46.00	-4.68	65	100

Summary table with radiated data of the test plots

Frequency	Reading (dBuV)		ctor B)	Result @31 (dBuV/m)		Limit @3m (dBuV/m)		Margin	Table Degree	Ant. High (cm)
(MHz)	Peak	Corr.	Duty	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(•••••)
4809.6190	46.29		0.29	46.58		74.00	54.00	-27.42	155	100
7222.4450	41.53		3.81	45.34		74.00	54.00	-28.66	130	100
9620.0000	33.57		7.92	41.49		74.00	54.00	-32.51	75	100
12025.0000	33.43		12.79	46.22		74.00	54.00	-27.78	40	100

Polarization: Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
37.7756	24.56	QP	13.62	38.18	40.00	-1.82	55	100
129.1383	26.51	peak	14.07	40.58	43.50	-2.92	160	100

Polarization: Vertical

Frequency	Reading (dBuV)	Factor (dB)		Result @3m (dBuV/m)		Limit @3m (dBuV/m)		Margin	Table Degree	Ant. High (cm)
(MHz)	Peak	Corr.	Duty	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(em)
4809.6190	48.02		0.29	48.31		74.00	54.00	-25.69	65	100
7214.4290	42.78		3.83	46.61		74.00	54.00	-27.39	140	100
9620.0000	33.75		7.92	41.67		74.00	54.00	-32.33	235	100
12025.0000	33.15		12.79	45.94		74.00	54.00	-28.06	110	100

Mode: Polarization:	24 Horizontal	440MHz		-	erature: nidity:	24 60	°C %		Engineer:	Leon
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	-	esult ıV/m)	Lim (dBuV		Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
171.9038	19.19	peak	14.58	33	3.77	43.5	0	-9.73	170	100
333.2465	22.81	peak	16.85	39	9.66	46.0	0	-6.34	15	100
Frequency	Reading (dBuV)		ctor B)		t @3m V/m)		@3m V/m)	Marg	in Table Degree	Ant. High (cm)
(MHz)	Peak	Corr.	Duty	Peak	Ave.	Peak	Ave	. (dB)	•	(em)
4881.7640	45.24		0.47	45.71		74.00	54.00) -28.2	9 175	100
7326.6530	41.72		3.67	45.39		74.00	54.00) -28.6	1 80	100
9760.0000	33.83		8.29	42.12		74.00	54.00) -31.8	8 105	100
12200.0000	31.82		13.72	45.54		74.00	54.00) -28.4	6 130	100
Polarization:	Vertical	1	1	_					Table	A
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)		sult ıV/m)	Lim (dBuV		Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
47.4950	24.26	QP	14.20	38	8.46	40.0	0	-1.54	135	100
129.1383	26.76	peak	14.07	40).83	43.5	0	-2.67	220	100
Polarization:	Vertical									
Frequency	Reading (dBuV)	Fact (dB	5)	Result (dBuV	//m)	(dBu	@3m V/m)	Marg	Degree	Ant. High (cm)
(MHz)	Peak	Corr.	Duty	Peak	Ave.	Peak	Ave			100
4873.7480	45.83		0.45	46.28		74.00	54.00			100
7326.6530	42.24		3.67	45.91		74.00	54.00			100
9760.0000	33.74		8.29	42.03		74.00	54.00			100
12200.0000	31.21		13.72	44.93		74.00	54.00) -29.0	7 110	100
Mode: Polarization:	24 Horizontal	480MHz		-	erature: nidity:	24 60	°C %		Engineer:	Leon
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Re	esult IV/m)	Lim (dBuV	it 1	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
171.9038	19.86	peak	14.58	34	.44	43.5	0	-9.06	210	100
335.1904	22.39	peak	16.91		0.30	46.0		-6.70	150	100
555.1707		Peux	10.71			+0.0	~	0.70	150	100
Frequency (MHz)	Reading (dBuV) Peak		ctor B) Duty		t @3m V/m) Ave.		@3m V/m) Ave	Marg	Degree	Ant. High (cm)
4961.9240	43.19		0.89	44.08		74.00	54.00			100
7438.8780	41.10		3.93	45.03		74.00	54.00		7 175	100
9920.0000	34.66		8.50	43.16		74.00	54.00) -30.8	4 95	100
7720.0000	51.00		0.50	13.10		74.00	54.00		0 135	100

Polarization: Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
37.7756	24.91	QP	13.62	38.53	40.00	-1.47	155	100
47.4950	24.35	QP	14.20	38.55	40.00	-1.45	80	100

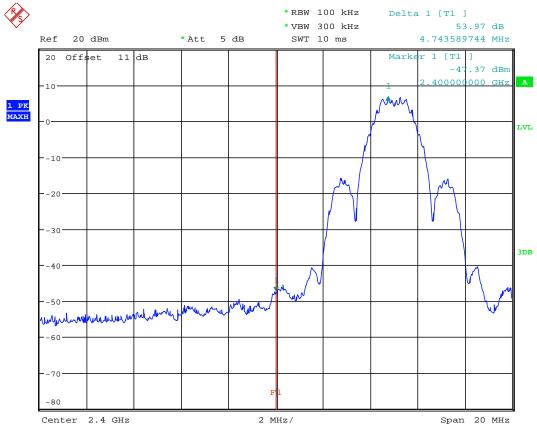
Polarization: Vertical

Frequency	Reading (dBuV)	Factor (dB)		Result @3m (dBuV/m)		Limit @3m (dBuV/m)		Margin	Table Degree	Ant. High (cm)
(MHz)	Peak	Corr.	Duty	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(em)
4961.9240	44.50		0.89	45.39		74.00	54.00	-28.61	160	100
7440.0000	40.53		3.93	44.46		74.00	54.00	-29.54	75	100
9920.0000	33.39		8.50	41.89		74.00	54.00	-32.11	165	100
12400.0000	32.71		14.46	47.17		74.00	54.00	-26.83	140	100

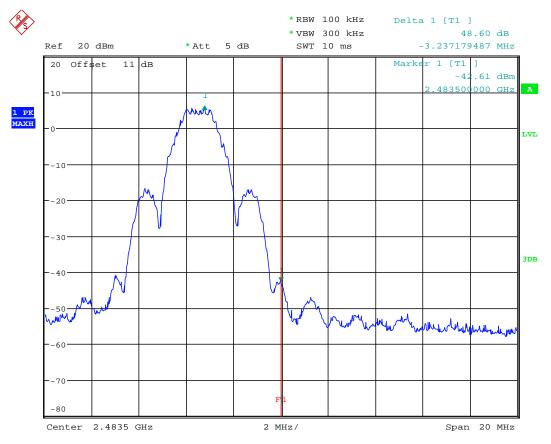
Note

- 1. Correction Factor = Antenna factor + Cable loss Preamplifier
- 2. The formula of measured value as: Test Result = Reading + Correction Factor
- 3. Detector function in the form : PK = Peak, QP = Quasi Peak, AV = Average
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.
- 5. Measurement uncertainty for 3m measurement: 30-1000 MHz = \pm 3.68 dB, 1-18 GHz = \pm 5.37 dB, 18-40 GHz= \pm 3.43 dB; Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.
- 6. See attached diagrams in appendix.

TEST RESULT (**Transmitter**): The unit DOES meet the FCC requirements.


Test equipment used: ETSTW-RE 004, ETSTW-RE 030, ETSTW-RE 111, ETSTW-RE 088, ETSTW-RE 018

3.6 Radiated Emission on the band edge


According to FCC rules part 15 subpart C §15.247(d) in any 100 kHz bandwidth outside the frequency band in which the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required.

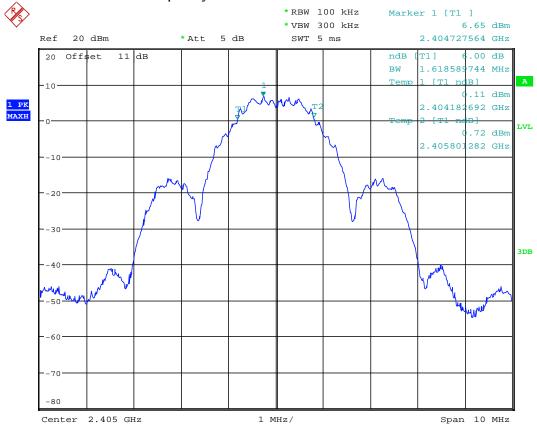
In addition radiated emission which fall in the restricted bands, as defined in section 15.205(a), must also with the radiated emission limits.

BANDEDGE 2405MHZ Date: 15.AUG.2014 10:52:29

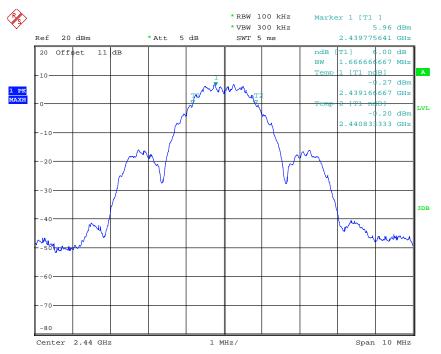
BANDEDGE 2480MHZ Date: 15.AUG.2014 10:53:14

Limit:

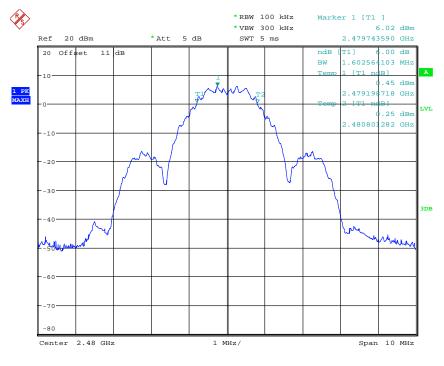
Frequency Range / MHz	Limit			
902 –928				
2400 - 2483.5	- 20 dB			
5725 - 5850				


Test equipment used: ETSTW-RE 055, ETSTW-RE 050

3.7 Minimum 6 dB Bandwidth


The analyzer ResBW was set to 100 kHz. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. A PEAK reading was taken, two markers were set 6 dB below the maximum level on the right and the left side of the emission.

The 6 dB bandwidth is the frequency difference between the two markers.



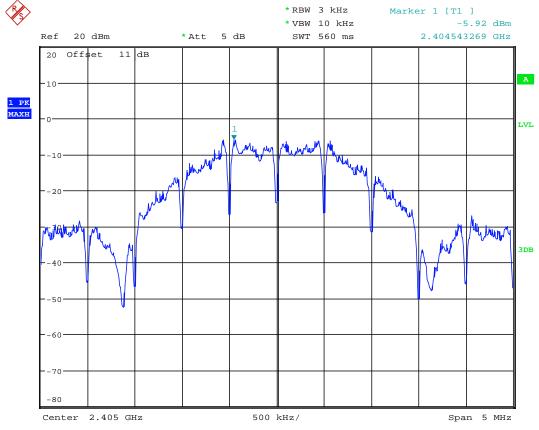
6DB BANDWIDTH 2405MHZ Date: 15.AUG.2014 10:50:32

⁶DB BANDWIDTH 2440MHZ Date: 15.AUG.2014 10:49:59

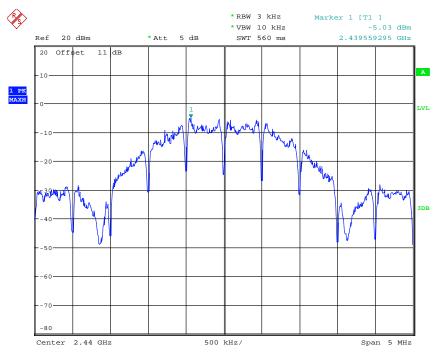
6DB BANDWIDTH 2480MHZ Date: 15.AUG.2014 10:49:24

Limits:

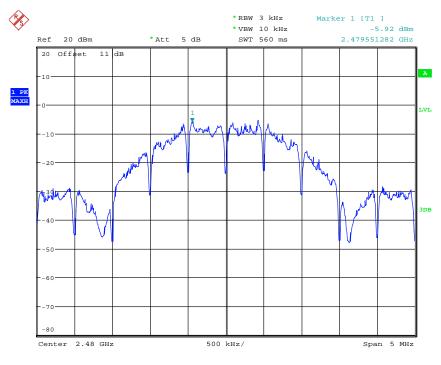
Frequency Range MHz	Limits
902-928	min 500 kHz
2400-2483.5	min 500 kHz
5725-5850	min 500 kHz


Test equipment used: ETSTW-RE 055, ETSTW-RE 050

3.8 Peak Power Spectral Density


Peak Power Spectral density is a measured at low, middle and high channel.

The peak output power is measured with a measurement bandwidth of 10 MHz and displayed on diagram together with Peak Power Spectral Density result which was measured with a bandwidth of 3 kHz, appreciate frequency span and sweep time.



POWER DENSITY 2405MHZ Date: 15.AUG.2014 10:56:51

POWER DENSITY 2440MHZ Date: 15.AUG.2014 10:56:19

POWER DENSITY 2480MHZ Date: 15.AUG.2014 10:55:33

Limits:

Frequency Range	dBm			
MHz				
902-928	8			
2400-2483.5	8			
5725-5850	8			

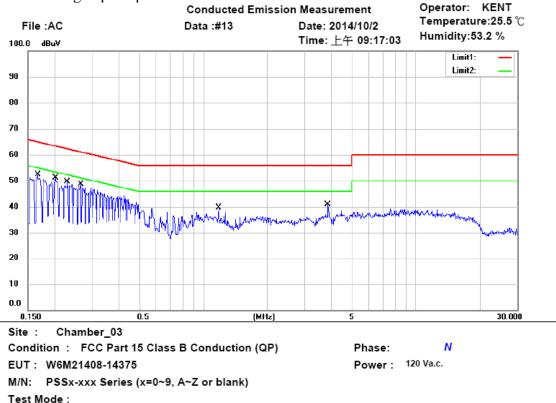
Test equipment used: ETSTW-RE 055, ETSTW-RE 050

3.9 Radiated Emission from Digital Part

Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

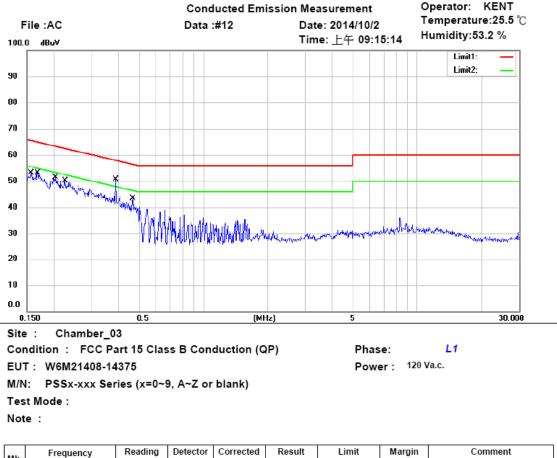
Frequency of Emission	Field Strength	Field Strength
(MHz)	(microvolts/meter)	(dBmicrovolts/meter)
30-88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

Test equipment used: ETSTW-RE 055, ETSTW-RE 064, ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 030 ETSTW-RE 111


Explanation: The test results are listed in the separated test report no.: W6M21408-14375-P-15B

3.10 Power Line Conducted Emission

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the table bellows with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.


This measurement was transact first with instrumentation using an average and peak detector and a 10 kHz bandwidth. If the peak detector achieves a calculated level, the measurement is repeated by an instrumentation using a quasi-peak detector.

Note :

Mk.	Frequency (MHz)	Reading (dBuV)	Detector	Corrected factor(dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Comment
	0.1661	33.78	QP	9.67	43.45	65.15	-21.70	
	0.1661	17.90	AVG	9.67	27.57	55.15	-27.58	
	0.2010	35.03	QP	9.67	44.70	63.57	-18.87	
	0.2010	20.22	AVG	9.67	29.89	53.57	-23.68	
	0.2296	31.89	QP	9.67	41.56	62.46	-20.90	
	0.2296	16.89	AVG	9.67	26.56	52.46	-25.90	
*	0.2646	34.29	QP	9.67	43.96	61.29	-17.33	
	0.2646	17.66	AVG	9.67	27.33	51.29	-23.96	
	1.1840	19.31	QP	9.71	29.02	56.00	-26.98	
	1.1840	14.08	AVG	9.71	23.79	46.00	-22.21	
	3.8570	21.23	QP	9.81	31.04	56.00	-24.96	
	3.8570	15.37	AVG	9.81	25.18	46.00	-20.82	

Mk.	Frequency (MHz)	Reading (dBuV)	Detector	Corrected factor(dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Comment
	0.1566	36.06	QP	9.66	45.72	65.64	-19.92	
	0.1566	16.78	AVG	9.66	26.44	55.64	-29.20	
	0.1678	34.06	QP	9.66	43.72	65.07	-21.35	
	0.1678	14.25	AVG	9.66	23.91	55.07	-31.16	
*	0.2034	35.21	QP	9.66	44.87	63.47	-18.60	
	0.2034	16.33	AVG	9.66	25.99	53.47	-27.48	
	0.2263	32.29	QP	9.66	41.95	62.58	-20.63	
	0.2263	14.32	AVG	9.66	23.98	52.58	-28.60	
	0.3893	25.62	QP	9.67	35.29	58.08	-22.79	
	0.3893	8.32	AVG	9.67	17.99	48.08	-30.09	
	0.4665	23.11	QP	9.67	32.78	56.58	-23.80	
	0.4665	4.94	AVG	9.67	14.61	46.58	-31.97	

Note: 1. The formula of measured value as: Test Result = Reading + Correction Factor

- 2. The Correction Factor = Cable Loss + LISN Insertion Loss + Pulse Limit Loss
- **3.** Detector function in the form : PK = Peak, QP = Quasi Peak, AV = Average
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.
- 5. Measurement uncertainty = ± 1.41 dB; Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.
- 6. Up Line: QP Limit Line, Down Line: Ave Limit Line.

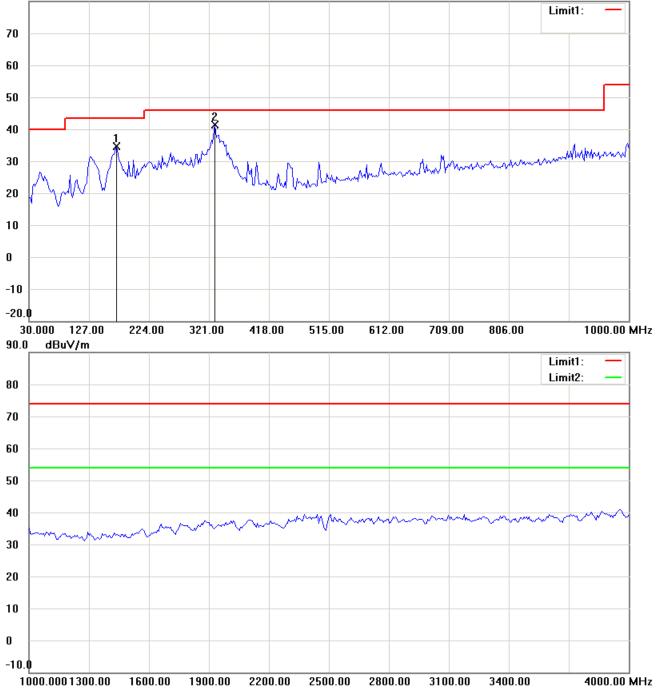
Limits:

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi Peak	Average		
0.15-0.5	66 to 56	56 to 46		
0.5-5	56	46		
5-30	60	50		

Test equipment used: ETSTW-CE 001, ETSTW-CE 016, ETSTW-CE 006, ETSTW-RE 045

Explanation: see attached diagrams in Appendix.

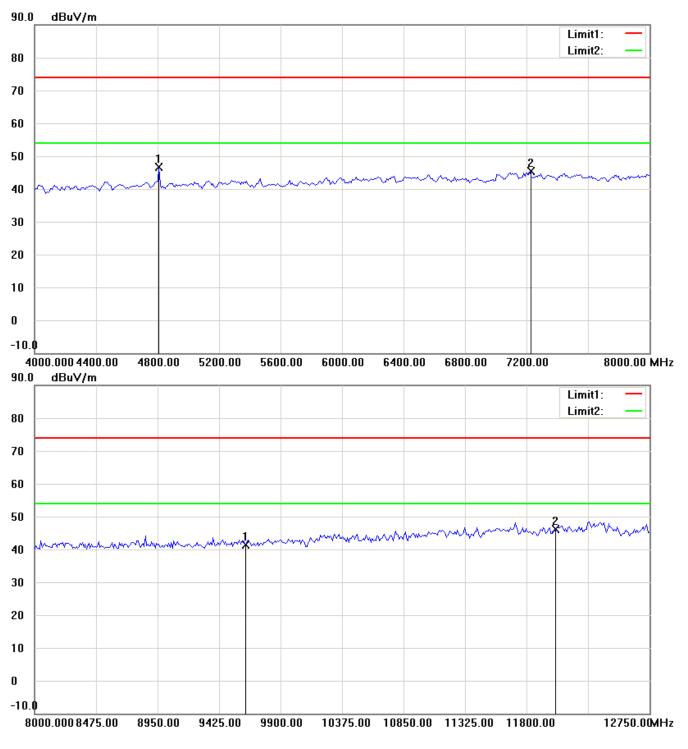
Appendix


Measurement diagrams

Spurious Emissions radiated

Spurious Emissions radiated 2405 MHz

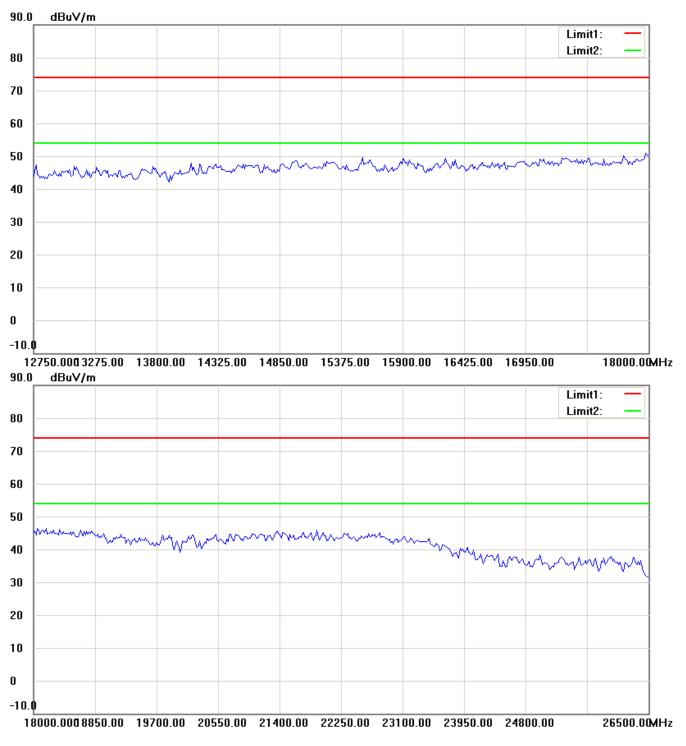
Antenna Polarization H



Up Line: Peak Limit Line Down Line: Ave Limit Line Note:

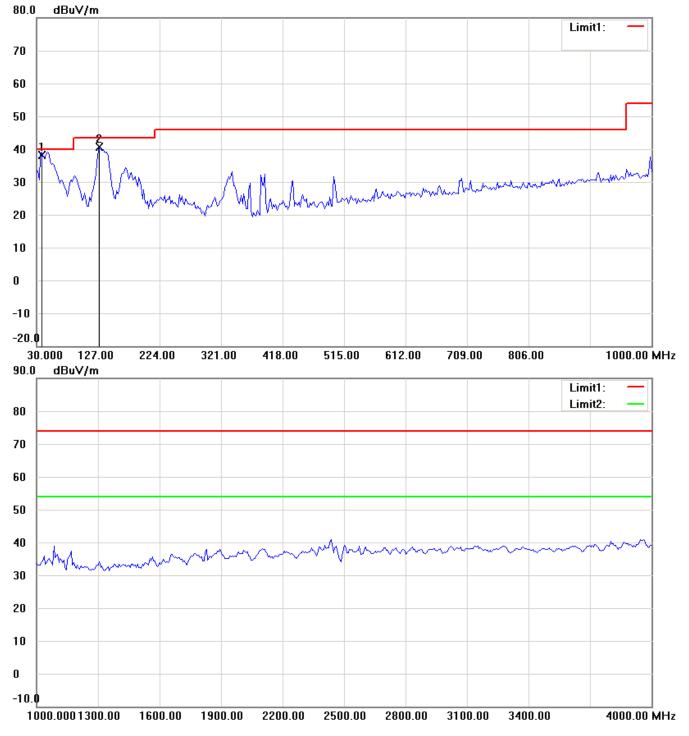
1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.

- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

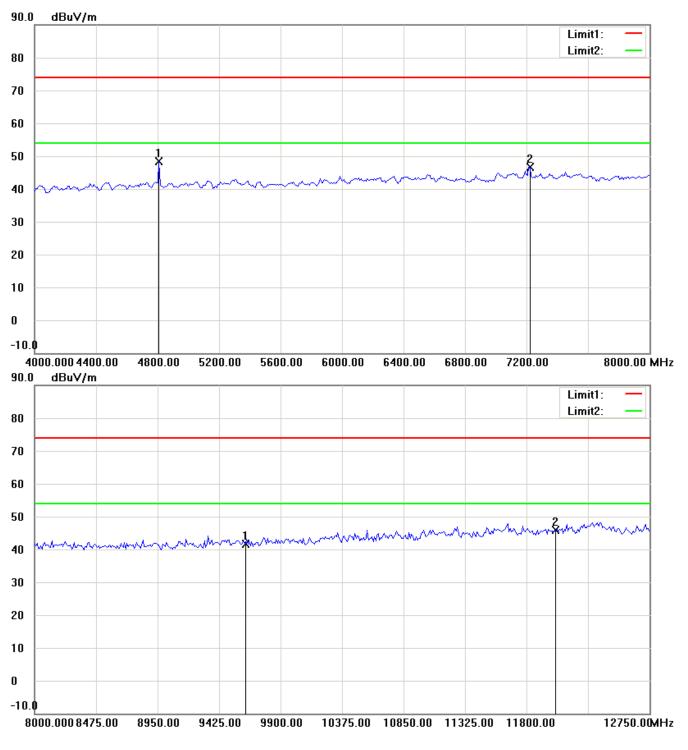


Up Line: Peak Limit Line Down Line: Ave Limit Line Note:

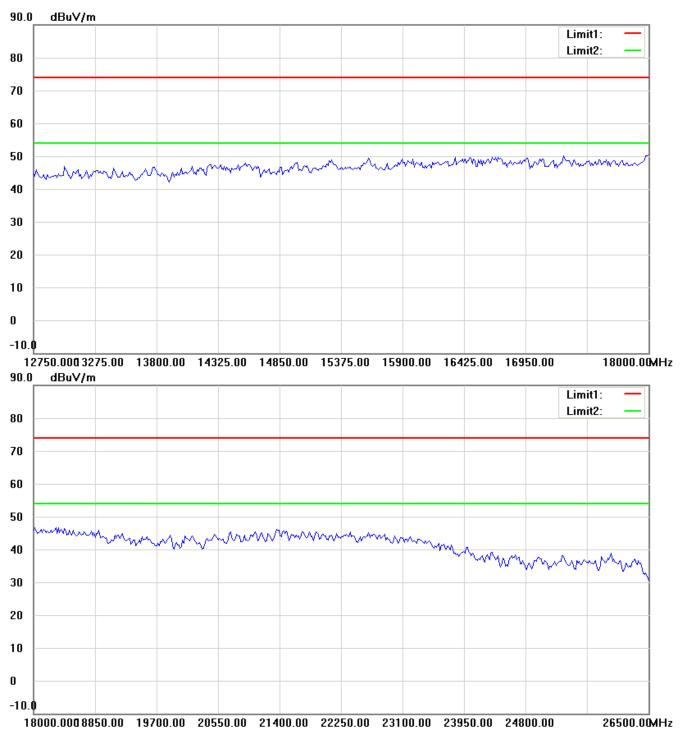
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.



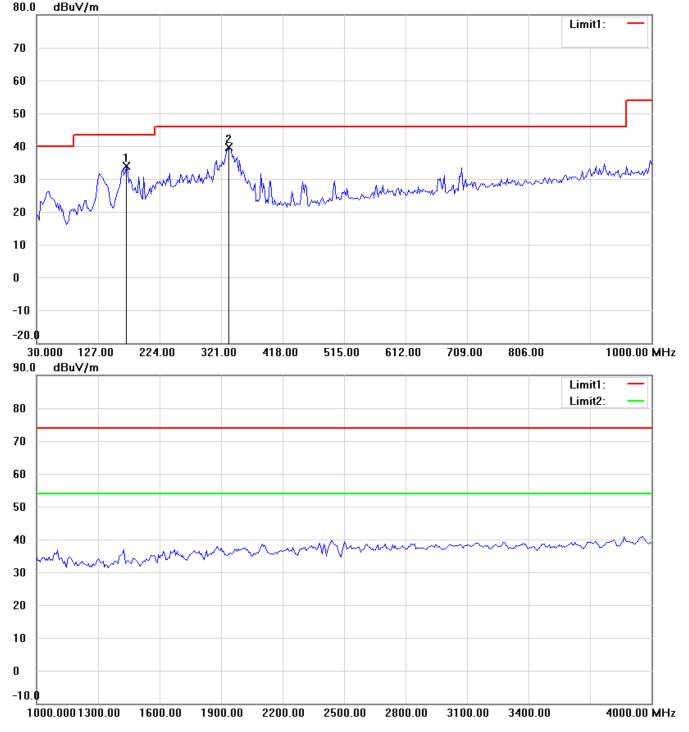
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.



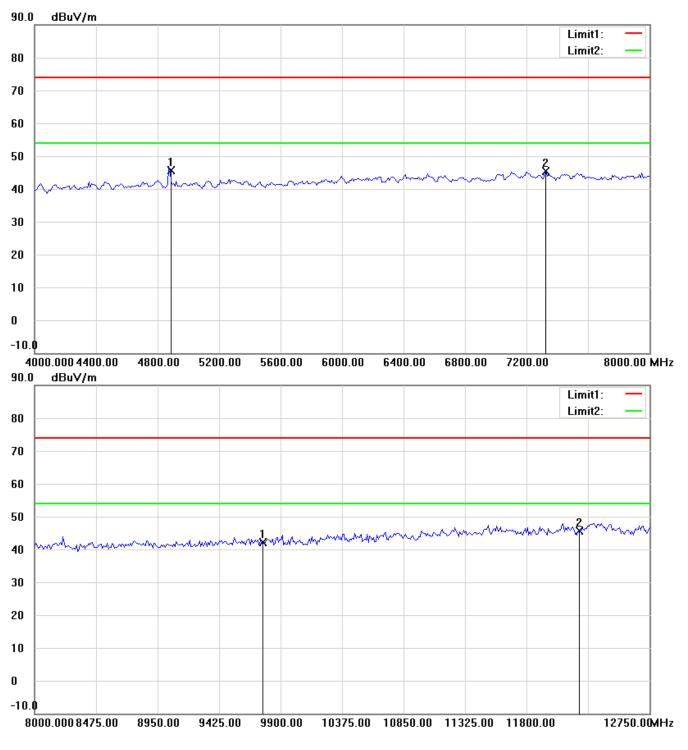
Antenna Polarization V


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

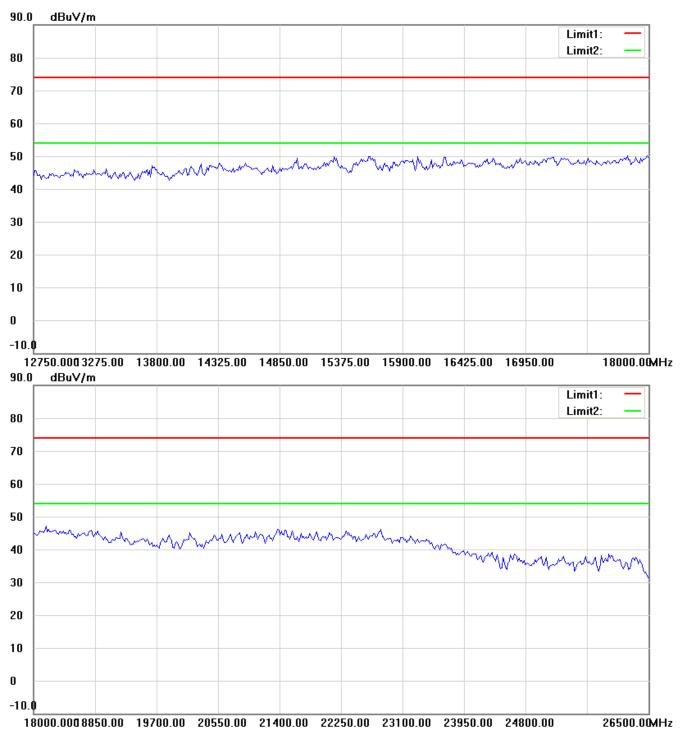
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.



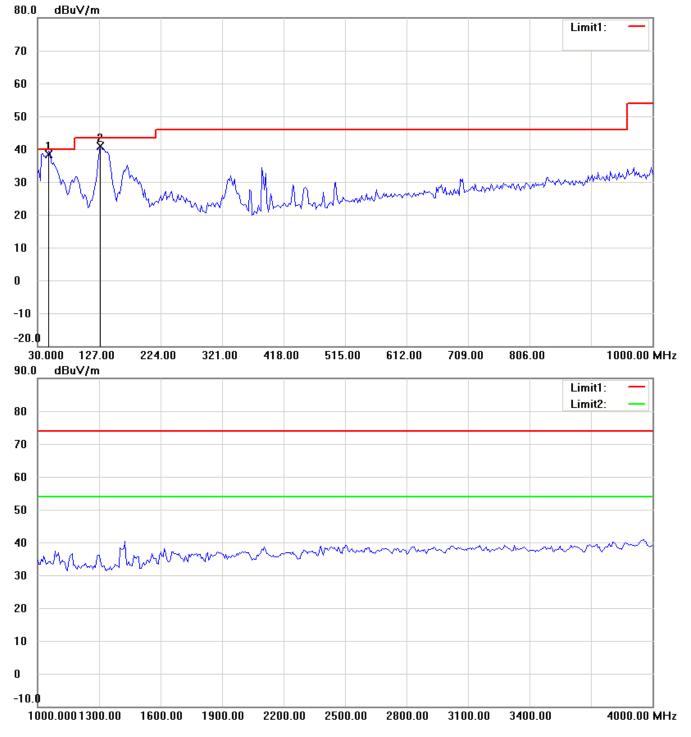
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


2440MHz

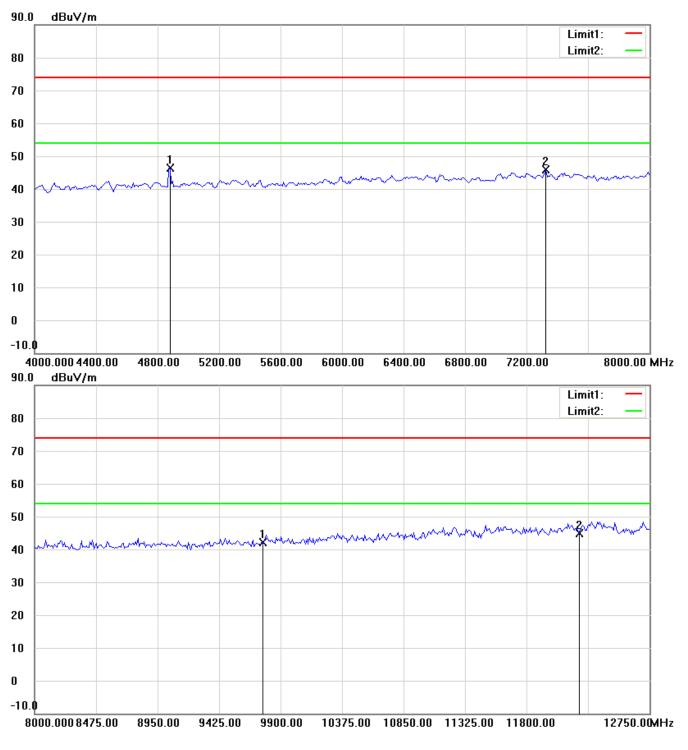
Antenna Polarization H


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

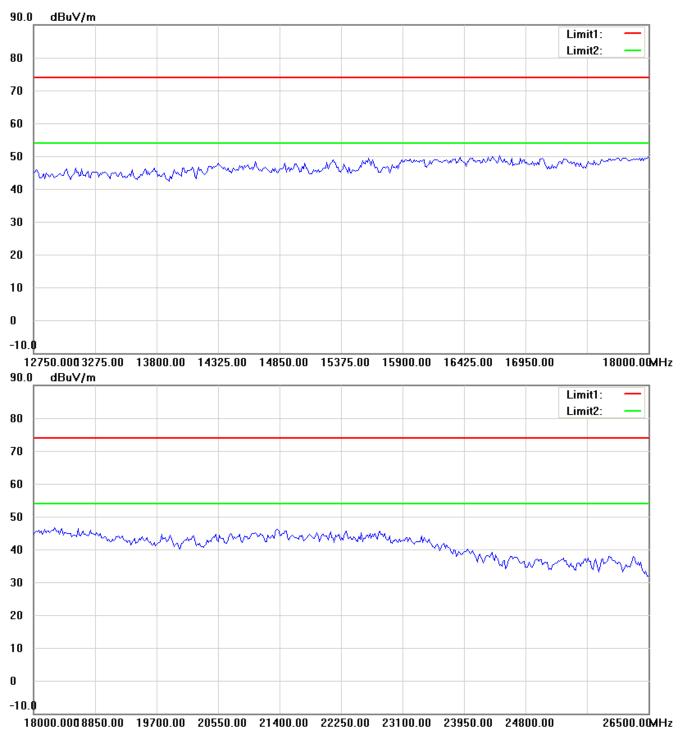
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.



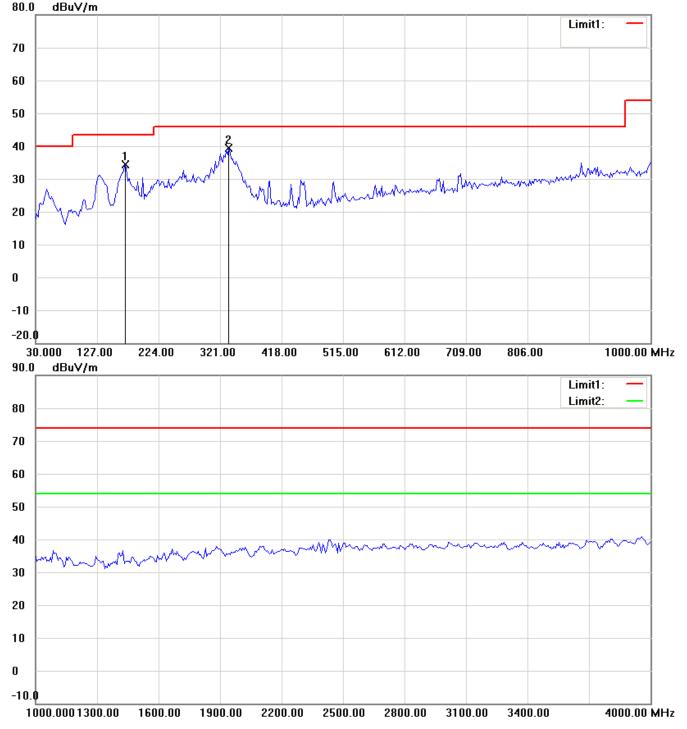
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.



Antenna Polarization V


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

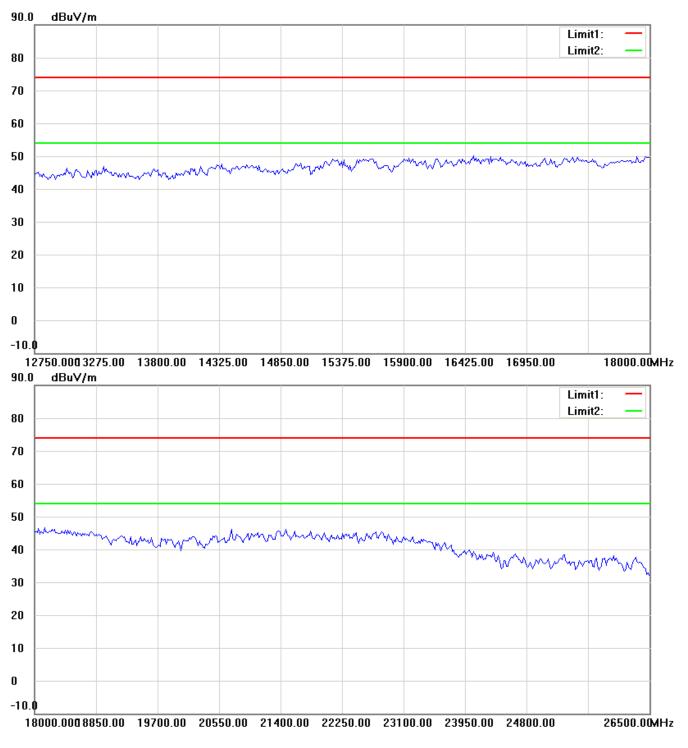
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.



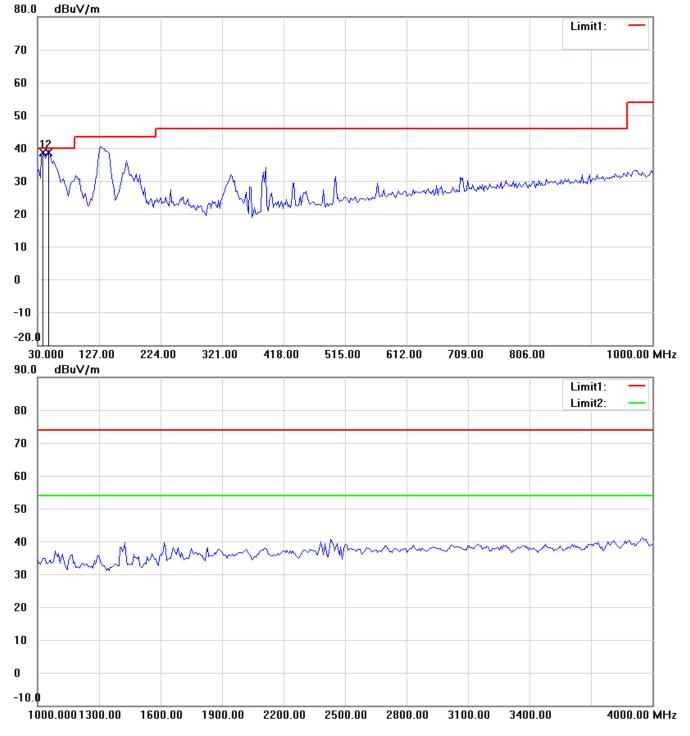
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

2480 MHz

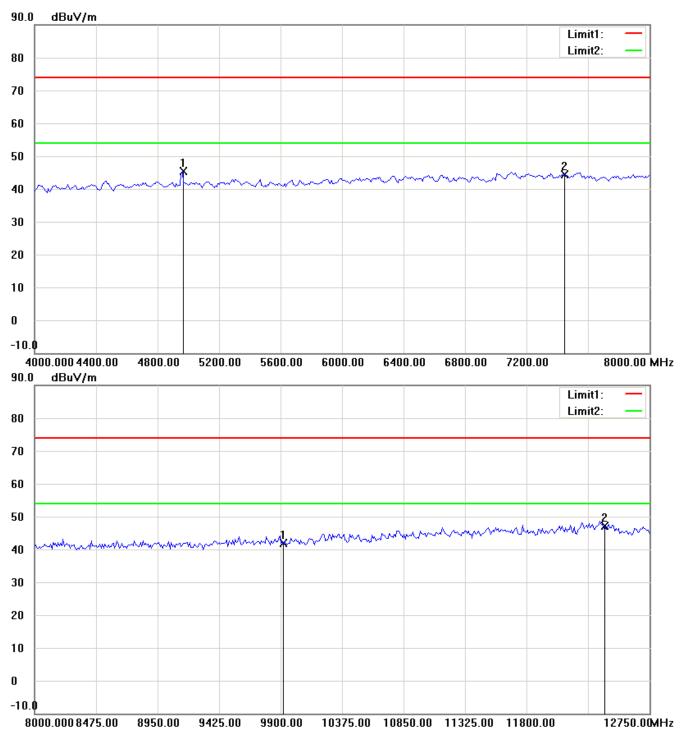
Antenna Polarization H


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

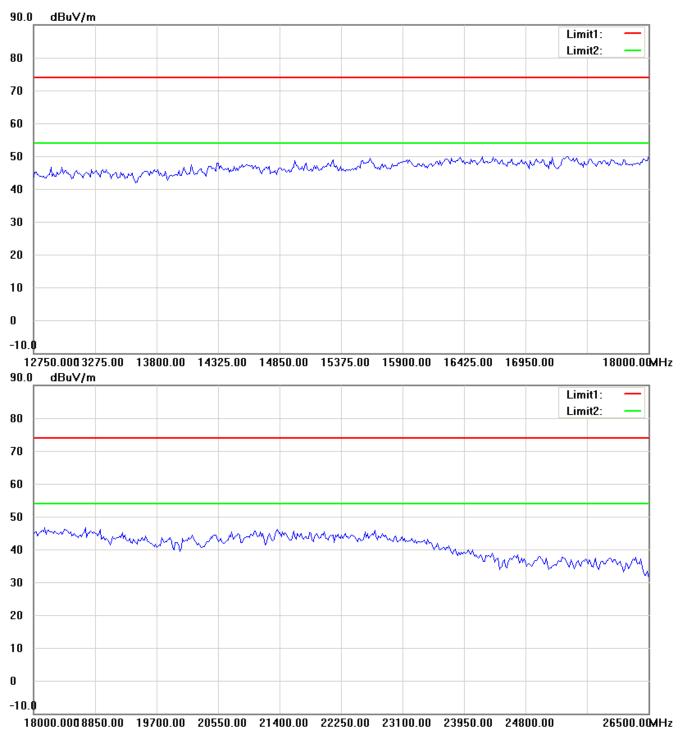
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.



- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.



Antenna Polarization V


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.