

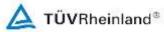
Report No.:

31955166.002

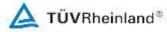
Page 1 of 54

Electromagnetic Compatibility Test Report

Description: JumpCharge


Model: JCEMDS

Hubbell Incorporated (Delaware), Wiring Device Kellems Division 40 Waterview Dr Shelton, CT, 06484


Prepared by:

TUV Rheinland of North America, Inc.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

Report No.:	Report No.: 3195516				Page 2 of 54	
Client:	Hubbell Incorporated (Delaware), Wiring Device Kellems Division 40 Waterview Dr Shelton, CT, 06484	Contact: Tel: Fax: e-mail:			id Gellis)-882-4676 lis@hubbell.com	
Identification:	JumpCharge	Seri	al No.:	JEM	I-KZ10-LK73	
Test item:	JCEMDS	Date	e Test Comple	ted:	02/24/2020	
Testing location:	TUV Rheinland of North Americ 710 Resende Road, Building 199 Webster, NY 14580 U.S.A.		Tel: (585 Fax: -	0125		
Test specification:	Emissions: FCC 15.209; FCC 15.22	15.225; RSS-210				
Test Result and/or Conclusion:	The above product was found to	be Comp	bliant to the at	oove te	est standard(s)	
Report written/updated l	by: Alexander Sowinski	reviewe	d by: Rachana	ı Khanduri		
<u>31 March 2020</u> Date	Signature	31 March 2 Date	.020		Signature	
F©		VCCI			Industry Canada ISED	
		1097 (A-0329)				

Report No.:

31955166.002

Page 3 of 54

Revisions

Date mm/dd/yy	Name	Page Number of Change	Describe Change
03/04/2020	Rev.0	N/A	Original Document
03/31/2020	Rev.1	44, 46	Removed unnecessary data

Report No.:

31955166.002

Page 4 of 54

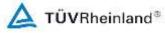
TABLE OF CONTENTS

1	GE	NERAL INFORMATION	5
	1.1	Scope	5
	1.2	PURPOSE	5
	1.3	SUMMARY OF TEST RESULTS	6
2	LA	BORATORY INFORMATION	7
	2.1	ACCREDITATIONS & ENDORSEMENTS	7
	2.2	TEST SOFTWARE	8
	2.3	Measurement Uncertainty	
	2.4	CALIBRATION TRACEABILITY	.10
	2.5	MEASUREMENT EQUIPMENT IDENTIFICATION	.11
3	PR	ODUCT INFORMATION	.12
	3.1	TEST PLAN	.12
	3.2	ЕИТ Рнотоз	.12
4	EM	ISSIONS	.13
	4.1	CARRIER FIELD STRENGTH	13
	4.2	OUT-OF-BAND EMISSIONS	
	4.3	TRANSMITTER SPURIOUS EMISSIONS	
	4.4	FREQUENCY STABILITY + VOLTAGE VARIATION	
	4.5	OCCUPIED BANDWIDTH	
	4.6	DUTY CYCLE	.44
A	PPENI	DIX A	.45
5	TES	ST PLAN	.45
	5.1	GENERAL INFORMATION	.45
	5.2	MODEL(S) NAME	.45
	5.3	TYPE OF PRODUCT	.45
	5.4	EQUIPMENT UNDER TEST (EUT) DESCRIPTION	.46
	5.5	WIRELESS	
	5.6	GENERAL PRODUCT INFORMATION	
	5.7	MODIFICATIONS	
	5.8	EUT ELECTRICAL POWER INFORMATION	
	5.9	EUT MODES OF OPERATION DURING TESTING	
	5.10	EUT CLOCK/OSCILLATOR FREQUENCIES	
	5.11	ELECTRICAL SUPPORT EQUIPMENT.	
	5.12	NON - ELECTRICAL SUPPORT EQUIPMENT	
	5.13	EUT EQUIPMENT/CABLING INFORMATION	
	5.14 5.15	EMISSIONS	
		EUT CONFIGURATION	
	5.16	BLOCK DIAGRAM	.33

Report No.:

31955166.002

Page 5 of 54


1 General Information

1.1 Scope

This report is intended to document the status of conformance based on the results of testing performed on the JumpCharge, Model Number: JCEMDS, manufactured by Hubbell Incorporated (Delaware), Wiring Device Kellems Division. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT (Equipment Under Test) in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.

Report No.:

31955166.002

Page 6 of 54

1.3		<u> </u>	f Test Results		1		1		
Applicant:	Device	Kelle	rporated (Delaware), Wiring ms Division	Tel: (475)-882-4676 Contact:		David Gellis	David Gellis		
	40 Wat Sheltor			Fax:			e-mail:	dgellis@hubbe	ell.com
Descr	iption:	Jump	Charge	Μ	odel Number:	JC	CEMDS		
Serial Nu	mber:	JEM	I-KZ10-LK73	Test V	Voltage/Freq.:	12	20V / 60Hz		
Test Date Com	pleted:	02/2	4/2020	Г	Test Engineer:	A	lexander Sowi	nski	
Standar	ds		Description		Severity Level	l or	Limit	Criteria	Test Result
FCC 15.209; FCC RSS-210 Product Family Sta Emissions	,		Emission Requirements for Intentional Radiators	See Basic Standards Below			See Below	Complies	
FCC 15.225; RSS-	210		Carrier Field Strength	< 124 dBµV/m @ 3m			Limit	Complies	
FCC 15.225; RSS-	210		Out-of-Band Emissions	Per 15.225, Section a-d		Limit	Complies		
FCC 15.209; FCC RSS-210	15.225;		Transmitter Spurious Emissions	Class B, 9k - 30 MHz Class B, 30 - 1000 MHz			Limit	Complies	
FCC 15.225; RSS-	210		Frequency Stability + Voltage Variation	±0.01% of NFC Operating Frequency		ncy Limit Cor			
FCC 15.215; RSS-	210		Occupied Bandwidth	Reporting purposes only			N/A	Complies	
RSS-210			Duty Cycle	Report	ing purposes on	ly		N/A	Complies

Report No.:

31955166.002

Page 7 of 54

2 Laboratory Information

2.1 Accreditations & Endorsements

2.1.1 US Federal Communications Commission

TUV Rheinland of North America located at, 710 Resende Road Webster, NY 14580 is accredited by the commission for performing testing services for the general public on a fee basis. This laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (Registration No 5253). The laboratory scope of accreditation includes: Title 47 CFR Part 15, and 18. The accreditation is updated every 3 years.

2.1.2 ILAC/A2LA

This is a program which is administered under the auspices of A2LA. The laboratory has been assessed and accredited in accordance with ISO Standard 17025:2017 (Certificate Number: 3331.08). The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 VCCI

VCCI Accredited test lab. Registration numbers A-0329.

2.1.4 Industry Canada

(Registration No.: 482B-1) The 10 meter Semi-Anechoic chamber has been accepted by Industry Canada to perform testing to 3 and to 10m, based on the test procedures described in ANSI C63.4-2014.

2.1.5 BSMI

Registration No.: SL2-IN-E-1159R. The BSMI accreditation was obtained by NIST MRA with the BSMI.

2.1.6 Korea

(Designation No.: US0192). Recognized by National Radio Research Agency (RRA) as an accredited Conformity Assessment Body (CAB) under the terms for Korea Phase I of the APEC TEL.

Report No.:

31955166.002

Page 8 of 54

2.2 Test Software

1) CIGUI 32 Version 1.4 for California Instruments AC power source

- 2) HP software E7415A Version A.01.45
- 3) National Instruments 'Measurement & Automation Employer' Version 4.6.2f1
- 4) TILE version 3.4.K.28
- 5) Voltech PM 6000 Firmware 1.22.07RC6, Software IEC61000-3 for PM6000 Release 1.24.12
- 6) California Instruments AC power source MXHCL
- 7) Rohde & Schwarz EMI Measurement software EMC32 version 8.50.0
- 8) TILE version 4.0.B
- 9) Keytek CEWare 2.10

2.3 Measurement Uncertainty

Two types of measurement uncertainty are expressed in this report, per *ISO Guide To The Expression Of Uncertainty In Measurement*, 1st Edition, 1995.

The Combined Standard Uncertainty is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities, equal to the positive square root of a sum of terms, the terms being the variances or co-variances of these other quantities weighted according to how the measurement result varies with changes in these quantities. The term standard uncertainty is the result of a measurement expressed as a standard deviation.

The Expanded Uncertainty defines an interval about the result of a measurement that may be expected to encompass a large fraction of the distribution of values that could reasonably be attributed to the measurand. The fraction may be viewed as the coverage probability or level of confidence of the interval.

2.3.1 Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength $(dB\mu V/m) = RAW - AMP + CBL + ACF$

Where: RAW = Measured level before correction $(dB\mu V)$

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

 $\mu V/m = 10^{\frac{dB\mu V/m}{20}}$

Report No.:

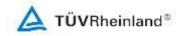
31955166.002

Page 9 of 54

Sample radiated emissions calculation @ 30 MHz

Measurement +Antenna Factor-Amplifier Gain+Cable loss=Radiated Emissions (dBuV/m)

25 dBuV/m + 17.5 dB - 20 dB + 1.0 dB = 23.5 dBuV/m


2.3.2 Measurement Uncertainty Emissions

Per CISPR 16-4-2	Ulab	Ucispr
Radiated Disturbance @ 1	Om	
30 MHz – 1,000 MHz	4.57 dB	5.2 dB
Radiated Disturbance @ 3	m	
1.0 GHz – 6.0 GHz	5.18 dB	5.2 dB
6.0 GHz – 18.0 GHz	5.48 dB	5.5 dB
18.0 GHz – 26.5 GHz	5.21 dB	
26.5 GHz – 40.0 GHz	4.99 dB	
Conducted Disturbance @	Mains Terminals	
150 kHz – 30 MHz	2.62 dB	3.6 dB
Disturbance Power		
30 MHz - 300 MHz	3.88 dB	4.5 dB

Measurement Uncertainty Emissions

The estimated combined standard uncertainty for radiated emissions measurements is $\pm4.57~\text{dB}$	Per CISPR16-4-2 Method
The estimated combined standard uncertainty for radiated emissions measurements from 1 GHz to 6 GHz is \pm 5.18dB	Per CISPR16-4-2 Method
The estimated combined standard uncertainty for radiated emissions measurements from 6 GHz to 18 GHz is \pm 5.48dB	Per CISPR16-4-2 Method
The estimated combined standard uncertainty for conducted emissions measurements is ± 2.62 dB.	Per CISPR16-4-2 Method

Expanded measurement uncertainty numbers are shown in the tables above. Compliance criteria are not based on measurement uncertainty.

Report No.:

31955166.002

Page 10 of 54

2.4 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard ISO IEC 17025:2017. Equipment calibration records are kept on file at the test facility.

Report No.:

31955166.002

Page 11 of 54

2.5 Measurement Equipment Identification

Equipment	Manufacturer	Model #	Ref.	Serial #	Last Cal dd/mm/yy	Next Cal dd/mm/yy	Test			
	Radiated Emissions									
Receiver (20Hz-40GHz)	Rohde & Schwarz	ESU 40		100274	29-Jul-19	29-Jul-20	RE			
BiLog	Sunol	JB3		A102115	27-Jun-18	27-Jun-20	RE			
Horn(1-18 GHz)	ETS-Lindgren	3117		109306	20-Aug-18	20-Aug-20	RE			
Horn (18-26.5 GHz)	EMCO	024083		6707	02-Aug-18	02-Aug-20	RE			
Horn (26.5-40 GHz)	EMCO	024085		1180	02-Aug-18	02-Aug-20	RE			
Loop Antenna	EMCO	6502		8901-2302	24-Apr-18	24-Apr-20	RE			
Horn (1-18 GHz)	EMCO	3115		9512-4630	N/A	N/A	RE			
Amplifier	Hewlett-Packard	8447D		030907	30-Jul-19	30-Jul-20	RE			
Temp Chamber	Cincinnati Sub-Zero	EZT-570Sv		ROC031	3-Sep-19	3-Sep-20	RE			
		General Laborato	ry Equi	pment						
Multimeter	Fluke	87		59890224	1-Aug-19	1-Aug-20				
Pressure/Temperature/RH	Control Company	68000-49		181704893	31-Oct-18	31-Oct-20				

Note: RE=Radiated Emissions

Report No.:

31955166.002

Page 12 of 54

3 Product Information

3.1 Test Plan

The EUT product information, test configuration, mode of operation, test types, test procedures, test levels, pass/failure criteria, in this report were carried out per the product test plan located in appendix A of this report.

3.2 EUT Photos

"EUT Front.jpg"

Figure 1 – External Photo of EUT (Front)

"EUT Side.jpg"

Figure 2 – External Photo of EUT (Side)

"EUT Back.jpg"

Figure 3 – External Photo of EUT (Back)

"EUT with Batteries.jpg"

Figure 4 – External Photo of EUT (Charging Mode)

"Intermal Modifications.jpg"

Figure 5 – Internal Photo of EUT

Report No.:

31955166.002

Page 13 of 54

4 **Emissions**

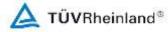
4.1 Carrier Field Strength

This test measures the electromagnetic levels of the fundamental transmission(s) generated by the EUT in the direction of the maximum level under specified conditions of measurements in the presence of modulation.

Results	Complies (as test	Complies (as tested per this report) Date 02/24/2020						24/2020		
Standard	FCC 15.225; RSS	-210								
Product Model	JCEMDS					Seria	l#	JEMI-KZ1)-LK	.73
Configuration	See test plan for d	See test plan for details.								
Test Set-up	Tested 3 meters details.	Tested 3 meters semi- anechoic chamber placed on turn-table, see test plans for details.								
EUT Powered By	120V / 60Hz	Temp	24	° C	Hum	idity	32%	Pressu	re	998 mbar
Frequency Range	13.56 MHz @ 3 meters									
Perf. Criteria	Fundamental < 124 dBµV/m Perf. Verification Readings Under Limit						Limit			
Mod. to EUT	See Test Plan Test Performed By Alexander Sowinski					nski				

4.1.1 Over View of Test

4.1.2 Test Procedure


Radiated emissions tests were performed using the procedures of FCC 15.225 and/or ANSI C63.4 and ANSI C63.10 including methods for signal maximizations and EUT configuration. The photos included with the report show the EUT in its maximized configuration. Further radiated emission tests were performed per the procedures stated in the other emissions standards listed in this report. Transmitter under test was switched on at maximum output power for the duration of the testing. The following frequencies were used during testing: NFC: 13.56 MHz.

4.1.3 Deviations

There were no deviations from the test methodology listed in the test plan for the radiated emission test.

4.1.4 Final Test

All final radiated emissions measurements were below (in compliance) the limits.

Report No.:

31955166.002

Page 14 of 54

4.1.5 Final Data

Table 1: Carrier Field Strength								
13.56 MHz	Measured	Loop Position	Azimuth	Height	Limit	Margin		
	dBµV/m	deg	deg	cm	dBµV/m	dB		
X-Axis	68.213	0°	178	100.0	124.0	-55.787		
X-Axis	59.713	90°	182	100.0	124.0	-64.287		
Y-Axis	65.932	0°	182	100.0	124.0	-58.068		
Y-Axis	59.777	90°	182	100.0	124.0	-64.223		
Z-Axis	62.295	0°	181	100.0	124.0	-61.705		
Z-Axis	30.763	90°	97	100.0	124.0	-93.237		

4.1.6 Test Setup Photos

"c-NFC-X.jpg"

Figure 6 – NFC Setup "X-axis"

"c-NFC-Y.jpg"

Figure 7 – NFC Setup "Y-axis"

"c-NFC-Z.jpg"

Figure 8 – NFC Setup "Z-axis"

Report No.:

31955166.002

Page 15 of 54

4.2 Out-of-Band Emissions

This test measures the electromagnetic levels of out-of-band spurious signals generated by the EUT that radiated from the EUT and may affect the performance of other nearby electronic equipment.

4.2.1 Over View of Test

Results	Complies (as test	Complies (as tested per this report)Date02/24/2020								
Standard	FCC 15.225; RSS	-210								
Product Model	JCEMDS					Seria	l#	JEMI-KZ1	0-LK	373
Configuration	See test plan for d	etails.								
Test Set-up	Tested 3 meters a details.	Tested 3 meters semi- anechoic chamber placed on turn-table, see test plans for details.								
EUT Powered By	120V/60Hz Temp 24°C Humidity 32% Pressure 998 mb					998 mbar				
Frequency Range	13.110 – 14.010 MHz @ 3 meters									
Perf. Criteria	Per 15.225 Section a-d Perf. Verification Readings Under Limit					: Limit				
Mod. to EUT	See Test Plan		Test Performed By Alexander Sowinski							

4.2.2 Test Procedure

Out-of-Band Emissions tests were performed using the procedures of FCC 15.225 and/or ANSI C63.4 and ANSI C63.10 including methods for signal maximizations and EUT configuration. The photos included with the report show the EUT in its maximized configuration. Further radiated emission tests were performed per the procedures stated in the other emissions standards listed in this report. NFC transmitter was switched on at maximum output power for the duration of the testing. The following frequencies were used during testing: NFC: 13.56 MHz.

All plots consist of a Blue Max-Hold trace and a Red Clear-Write trace.

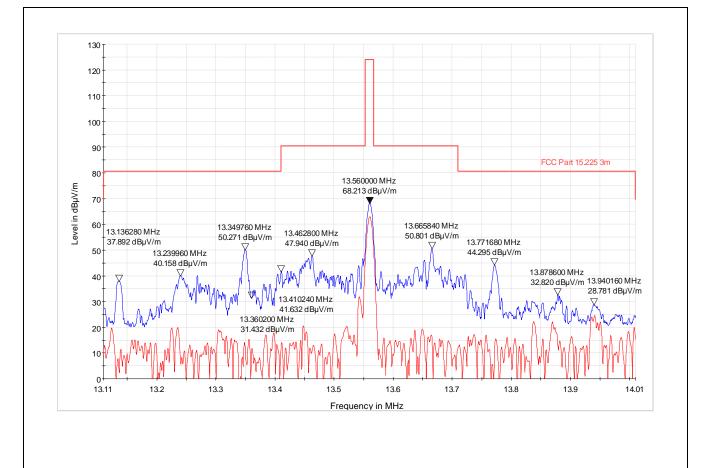
4.2.3 Deviations

There were no deviations from the test methodology listed in the test plan for the out-of-band emission test.

4.2.4 Final Test

All final out-of-band emissions measurements were below (in compliance) the limits.

Report No.:

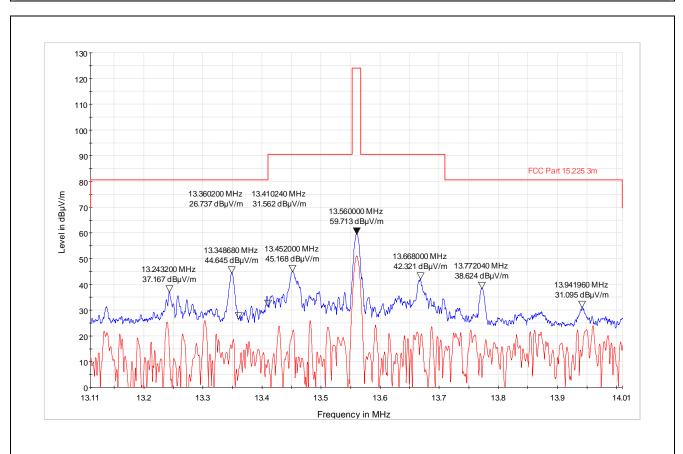

31955166.002

Page 16 of 54

4.2.5 Final Plots

NOTES: 13.56MHz OOB X-axis

Band-edge Plot Perpendicular (Loop 0°)


Report No.:

31955166.002

Page 17 of 54

NOTES: 13.56MHz OOB X-axis

Band-edge Plot Parallel (Loop 90°)

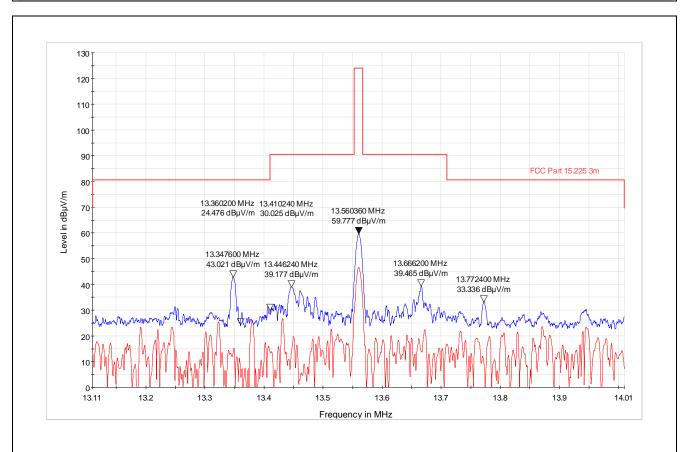

Report No.:

31955166.002

Page 18 of 54

NOTES: 13.56MHz OOB Y-axis

Band-edge Plot Perpendicular (Loop 0°)

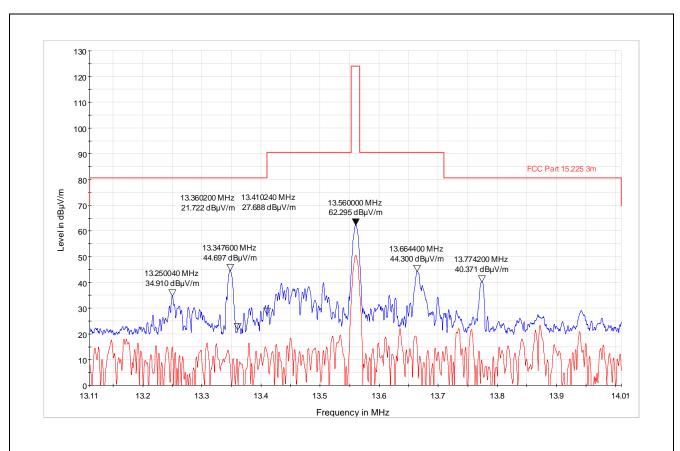

Report No.:

31955166.002

Page 19 of 54

NOTES: 13.56MHz OOB Y-axis

Band-edge Plot Parallel (Loop 90°)

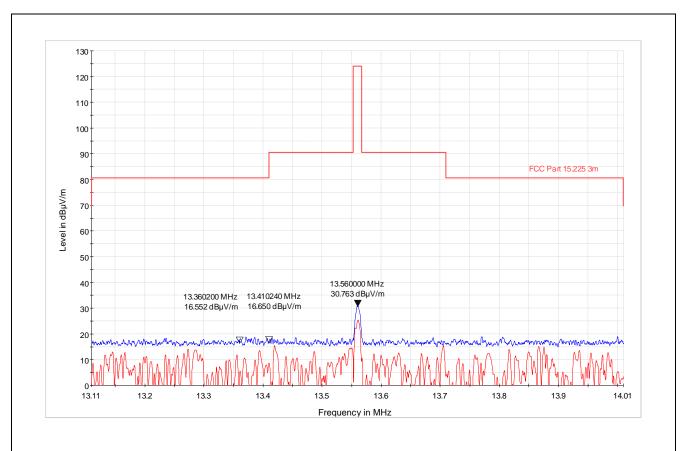

Report No.:

31955166.002

Page 20 of 54

NOTES: 13.56MHz OOB Z-axis

Band-edge Plot Perpendicular (Loop 0°)


Report No.:

31955166.002

Page 21 of 54

NOTES: 13.56MHz OOB Z-axis

Band-edge Plot Parallel (Loop 90°)

Report No.:

31955166.002

Page 22 of 54

4.2.6 Test Setup Photos

"c-NFC-X.jpg"

Figure 9 – NFC Setup "X-axis"

"c-NFC-Y.jpg"

Figure 10 – NFC Setup "Y-axis"

"c-NFC-Z.jpg"

Figure 11 – NFC Setup "Z-axis"

Report No.:

31955166.002

Page 23 of 54

4.3 Transmitter Spurious Emissions

This test measures the electromagnetic levels of spurious signals generated by the EUT that radiated from the EUT and may affect the performance of other nearby electronic equipment. Band-edge testing was also performed to confirm the absence of significant spurious emissions located within restricted bands.

4.3.1 Over View of Test

Results	Complies (as test		Date	01/2	21/2020						
Standard	FCC 15.209; FCC 15	5.225; RSS-	210								
Product Model	JCEMDS				Seria	ıl#	JEMI-KZ1	0-LK	.73		
Configuration	See test plan for d	etails.									
Test Set-up	Tested 3 meters s details.	Tested 3 meters semi- anechoic chamber placed on turn-table, see test plans for details.									
EUT Powered By	120V / 60Hz	Temp	24° C	Hum	idity	32%	6 Pressu	re	1016 mbar		
Frequency Range	9k - 30 MHz @ 3	9k - 30 MHz @ 3 meters									
	30 - 1000 MHz @ 3 meters										
Perf. Criteria	Class B (Below Limit) Perf. Verification Readings Under Limit					Limit					
Mod. to EUT	See Test Plan		Test						Alexander Sowinski		

4.3.2 Test Procedure

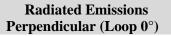
Radiated emissions tests were performed using the procedures of FCC 15.209; FCC 15.225; RSS-210 and/or ANSI C63.4 and ANSI C63.10 including methods for signal maximizations and EUT configuration. The photos included with the report show the EUT in its maximized configuration. Further radiated emission tests were performed per the procedures stated in the other emissions standards listed in this report. All transmitters were switched on at maximum output power for the duration of the testing. The following frequencies were used during testing: NFC: 13.56 MHz.

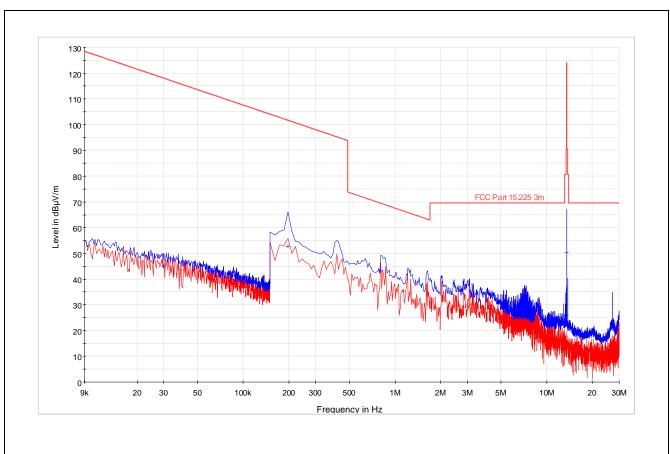
4.3.3 Deviations

There were no deviations from the test methodology listed in the test plan for the radiated emission test.

4.3.4 Final Test

All final radiated emissions measurements were below (in compliance) the limits.

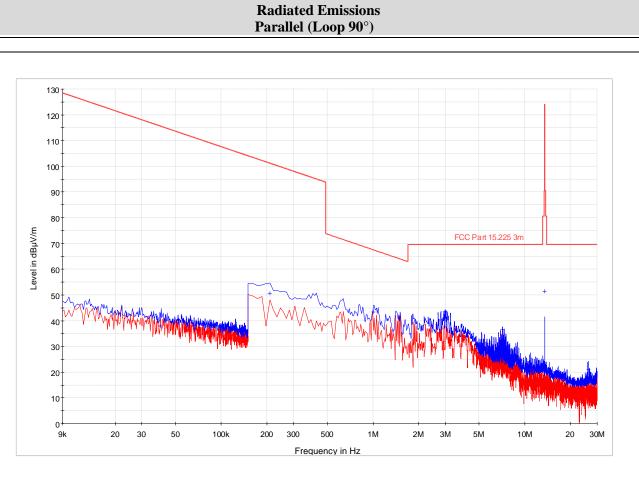

Report No.:


31955166.002

Page 24 of 54

4.3.5 Final Graphs

NOTES: 9k-30MHz, No Load

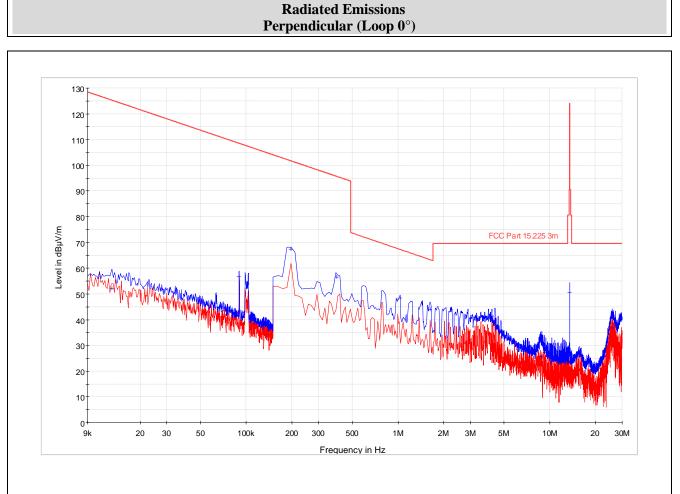


Report No.:

31955166.002

Page 25 of 54

NOTES: 9k-30MHz, No Load

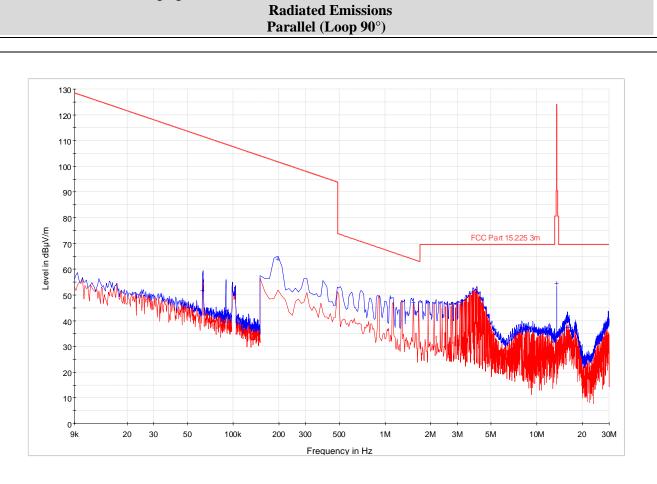


Report No.:

31955166.002

Page 26 of 54

NOTES: 9k-30MHz, Charging

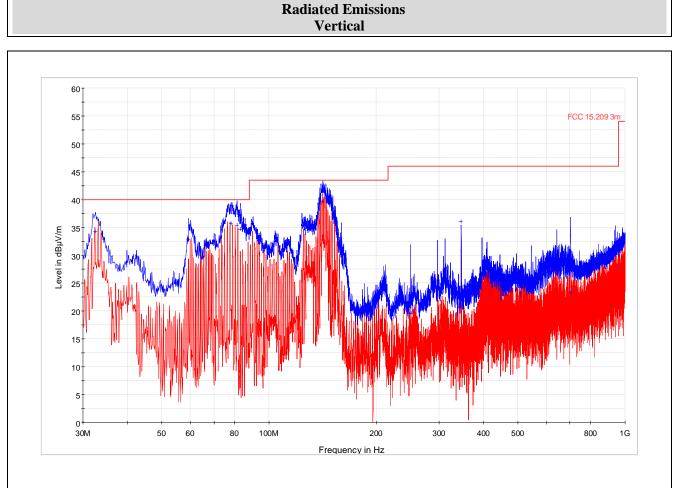


Report No.:

31955166.002

Page 27 of 54

NOTES: 9k-30MHz, Charging

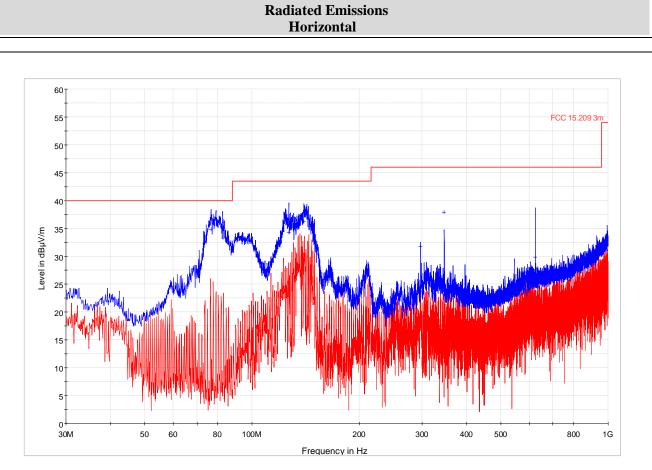


Report No.:

31955166.002

Page 28 of 54

NOTES: 30-1000MHz, No Load

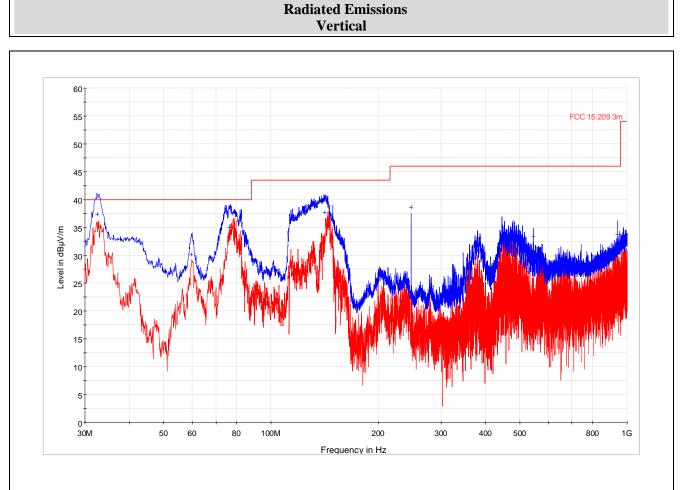


Report No.:

31955166.002

Page 29 of 54

NOTES: 30-1000MHz, No Load

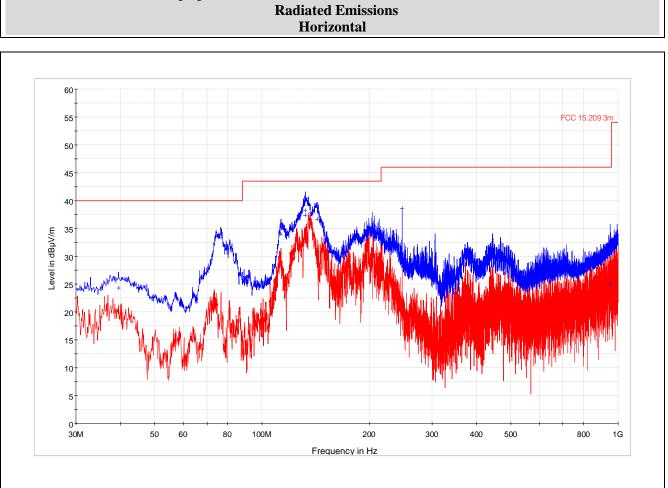


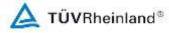
Report No.:

31955166.002

Page 30 of 54

NOTES: 30-1000MHz, Charging




Report No.:

31955166.002

Page 31 of 54

NOTES: 30-1000MHz, Charging

Report No.:

31955166.002

Page 32 of 54

4.3.6 Final Tabulated Data

Table 2: $9k =$	30 MHz Tabulated	Data No Load

Frequency QuasiPeak Height Loop Position Azimuth Limit Margir						
Frequency	QuasiPeak	Height	Loop Position Azimuth		Limit	Margin
MHz	dBµV/m	cm	deg	deg	dBµV/m	dB
0.030	44.7	100.0	0°	2.0	118.1	-73.4
0.040	38.0	100.0	90°	259.0	115.6	-77.6
0.198	52.6	100.0	0°	153.0	101.7	-49.1
0.210	50.5	100.0	90°	151.0	101.2	-50.7
0.808	43.3	100.0	0°	0.0	69.5	-26.2
1.011	43.5	100.0	90°	54.0	67.5	-24.0
2.992	43.6	100.0	90°	0.0	69.5	-25.9
7.111	36.2	100.0	0°	309.0	69.5	-33.3
7.111	36.6	100.0	90°	86.0	69.5	-32.9
13.560	50.4	100.0	0°	182.0	124.0	-73.6
13.560	51.3	100.0	90°	182.0	124.0	-72.7
26.370	21.1	100.0	90°	4.0	69.5	-48.4
27.121	23.0	100.0	0°	35.0	69.5	-46.5

Report No.:

31955166.002

Page 33 of 54

Table 3: 9k – 30 MHz Tabulated Data, Charging							
Frequency	QuasiPeak	Height	Loop Position	Azimuth Limit		Margin	
MHz	dBµV/m	cm		deg	dBµV/m	dB	
0.013	52.0	100.0	0°	-3.0	125.3	-73.3	
0.063	51.7	100.0	90°	220.0	111.6	-59.9	
0.063	44.9	100.0	0°	120.0	111.6	-66.7	
0.089	41.9	100.0	90°	159.0	108.6	-66.7	
0.090	56.8	100.0	0°	3.0	108.5	-51.7	
0.102	50.4	100.0	90°	40.0	107.4	-57.0	
0.102	53.9	100.0	0°	123.0	107.4	-53.5	
0.197	67.4	100.0	0°	180.0	101.7	-34.3	
0.198	64.0	100.0	90°	97.0	101.8	-37.8	
0.395	56.6	100.0	0°	180.0	95.7	-39.1	
1.034	48.5	100.0	0°	181.0	67.3	-18.8	
1.547	47.0	100.0	90°	16.0	63.8	-16.8	
1.635	44.0	100.0	0°	159.0	63.3	-19.3	
4.019	51.2	100.0	90°	56.0	69.5	-18.3	
8.854	25.5	100.0	0°	357.0	69.5	-44.0	
13.560	54.5	100.0	90°	178.0	124.0	-69.5	
13.560	50.6	100.0	0°	182.0	124.0	-73.4	
16.042	37.5	100.0	90°	148.0	69.5	-32.0	
18.036	35.7	100.0	90°	26.0	69.5	-33.8	
25.749	36.7	100.0	0°	97.0	69.5	-32.8	
29.606	38.1	100.0	90°	290.0	69.5	-31.4	

Report No.:

31955166.002

Page 34 of 54

Table 4: 30 – 1000 MHz Tabulated Data, No Load							
Frequency	QuasiPeak	Height	Polarization	Azimuth	Limit	Margin	
MHz	dBµV/m	cm		deg	dBµV/m	dB	
32.48	34.3	100.0	V	318.0	40.0	-5.7	
59.48	32.8	110.0	V	282.0	40.0	-7.2	
76.60	34.8	230.0	Н	104.0	40.0	-5.2	
78.32	35.7	130.0	V	310.0	40.0	-4.3	
81.24	35.5	190.0	V	311.0	40.0	-4.5	
83.24	34.7	140.0	V	295.0	40.0	-5.3	
126.76	34.2	244.0	Н	115.0	43.5	-9.3	
139.88	36.2	200.0	Н	336.0	43.5	-7.3	
141.60	39.6	100.0	V	358.0	43.5	-3.9	
250.00	19.6	100.0	V	19.0	46.0	-26.4	
297.00	31.8	350.0	Н	240.0	46.0	-14.2	
346.52	37.9	100.0	Н	248.0	46.0	-8.1	
346.52	36.0	150.0	V	54.0	46.0	-10.0	
625.08	29.9	232.0	Н	-3.0	46.0	-16.1	
700.96	23.5	150.0	V	19.0	46.0	-22.5	

Table 5: 30 – 1000 MHz Tabulated Data Charging

Table 5: 30 – 1000 MHz Tabulated Data, Charging							
Frequency	QuasiPeak	Height	Polarization Azimuth		Limit	Margin	
MHz	dBµV/m	cm		deg	dBµV/m	dB	
32.48	37.4	100.0	V	168.0	40.0	-2.6	
39.56	24.3	250.0	Н	224.0	40.0	-15.7	
59.64	30.2	100.0	V	248.0	40.0	-9.8	
76.48	35.0	180.0	V	334.0	40.0	-5.0	
76.60	33.4	250.0	Н	82.0	40.0	-6.6	
112.84	34.0	200.0	Н	65.0	43.5	-9.5	
132.32	38.2	200.0	Н	318.0	43.5	-5.3	
141.64	37.6	100.0	V	188.0	43.5	-5.9	
142.84	36.6	200.0	Н	331.0	43.5	-6.9	
247.52	38.6	120.0	Н	43.0	46.0	-7.4	
247.52	38.7	210.0	V	-2.0	46.0	-7.3	
379.52	30.9	125.0	V	322.0	46.0	-15.1	
443.16	31.3	100.0	Н	17.0	46.0	-14.7	
445.52	33.4	130.0	V	328.0	46.0	-12.6	
544.52	33.5	100.0	V	307.0	46.0	-12.5	
940.48	33.7	100.0	V	356.0	46.0	-12.3	
949.32	25.0	100.0	Н	26.0	46.0	-21.0	

Report No.:

31955166.002

Page 35 of 54

4.3.7 Photos

"RE 9k NoLoad1.jpg"

Figure 12 - Radiated Emissions Test Setup (9k - 30 MHz, No Load)

"RE 9k NoLoad2.jpg"

Figure 13 - Radiated Emissions Test Setup (9k - 30 MHz, No Load)

"RE 9k Chrg1.jpg"

Figure 14 - Radiated Emissions Test Setup (9k - 30 MHz, Charging)

"RE 9k Chrg2.jpg"

Figure 15 - Radiated Emissions Test Setup (9k - 30 MHz, Charging)

"RE Low NoLoad1.jpg"

Figure 16 - Radiated Emissions Test Setup (30 - 1000 MHz No Load)

"RE Low NoLoad2.jpg"

Figure 17 - Radiated Emissions Test Setup (30 – 1000 MHz, No Load)

"RE Low Chrg1.jpg"

Figure 18 - Radiated Emissions Test Setup (30 - 1000 MHz, Charging)

"RE Low Chrg2.jpg"

Figure 19 - Radiated Emissions Test Setup (30 – 1000 MHz, Charging)

Report No.:

31955166.002

Page 36 of 54

4.4 Frequency Stability + Voltage Variation

This test evaluates the stability of the EUT's transmit frequency under extreme conditions.

4.4.1 Test Over View

Results	Complies (as tested per this report)					Date	Date 02/19/2020		
Standard	FCC 15.225; RSS-210								
Product Model	JCEMDS				Seria	l#	JEMI-KZ10-LK73		
Configuration	See test plan for details.								
Test Set-up	Tested in shielded room, EUT placed inside temperature chamber. See test plan for details								
EUT Powered By	120V / 60Hz	Temp	23° C	Hum	idity	32%	Pressure	1015 mbar	
Perf. Criteria	±0.01 % Transmit frequency Perf. Verifi			ation	Rea	Readings under Limit			
Mod to EUT	See Test Plan Test Perf			Perform	ned By	Alex	Alexander Sowinski		

4.4.2 Test Procedure

Frequency stability was performed inside the temperature chamber, varying the ambient temperature of the EUT between -20°C and 50°C, and the supply voltage between 85% and 115% of the nominal supply voltage. The peak frequency of the transmitter was recorded via loop antenna and spectrum analyzer. Nominal transmit frequencies – NFC: 13.56MHz.

4.4.3 Deviations

There were no deviations from the test methodology listed in the test plan for the frequency stability test.

4.4.4 Final Test

The frequency stability of the EUT was recorded to be within the tolerances specified by the standard.

Report No.:

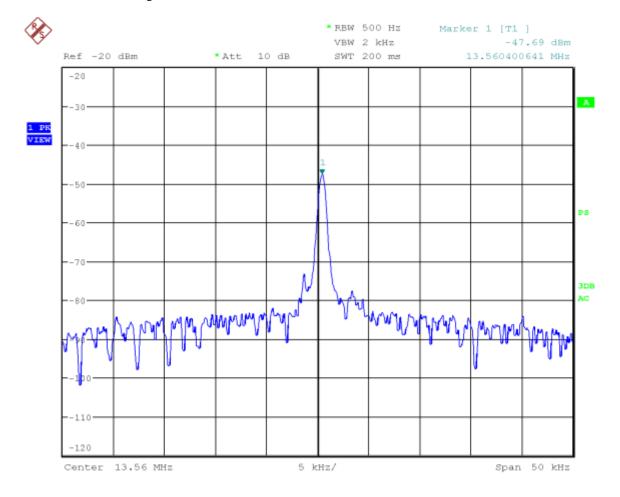
31955166.002

Page 37 of 54

4.4.5 Final Frequency Stability Data

			-		•	
Voltage	Temperature	Measured	Lower	Upper	Error	Result
Ŭ	•	Freq	Limit	Limit		
V	°C	MHz	MHz	MHz	kHz	
102	-20	13.560401	13.558644	13.561356	0.401	Pass
102	22	13.560481	13.558644	13.561356	0.481	Pass
102	50	13.560401	13.558644	13.561356	0.401	Pass
138	-20	13.560401	13.558644	13.561356	0.401	Pass
138	22	13.560481	13.558644	13.561356	0.481	Pass
138	50	13.560401	13.558644	13.561356	0.401	Pass

Table 6: NFC (13.56MHz) Frequency Stability



Report No.:

31955166.002

Page 38 of 54

4.4.6 Sample Plot

Date: 19.FEB.2020 01:16:52

Figure 20 – Sample NFC Frequency Stability Plot

Report No.:

31955166.002

Page 39 of 54

4.4.7 Setup Photos

"NFC Stability Setup.jpg"

Figure 21 – Frequency Stability Test Setup (NFC)

"Chamber Stability Setup.jpg"

Figure 22 – Frequency Stability Test Setup (Inside Chamber)

Report No.:

31955166.002

Page 40 of 54

4.5 Occupied Bandwidth

This test evaluates the 99% Occupied Bandwidth of the EUT

4.5.1 Test Over View

Results	Complies (as tested per this report)						e 02/19/2020			
Standard	FCC 15.215; RSS	-210								
Product Model	JCEMDS Serial						JEMI-KZ10-LK73			
Configuration	See test plan for d	etails.								
Test Set-up	Tested in shielded test plan for detail	-	UT place	d on ta	ble ins	ide sem	i-anechoic cł	namber. See		
EUT Powered By				Hum	idity	32%	Pressure	1015 mbar		
Perf. Criteria	Report result	Perf.	Perf. Verification			Report result				
Mod to EUT	See Test Plan	Test Performed By			Ale	Alexander Sowinski				

4.5.2 Test Procedure

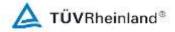

Occupied Bandwidth testing was performed by measuring the transmission of the EUT and applying the procedures detailed in ANSI C63.10 Section 6.9. EUT was placed on non-conductive support inside semi-anechoic chamber. Measurements of fundamental transmissions were taken at 3m using the appropriate antenna.

4.5.3 Deviations

There were no deviations from the test methodology listed in the test plan for the occupied bandwidth test.

4.5.4 Final Test

The occupied bandwidth of the EUT was recorded to be within the tolerances specified by the standard.

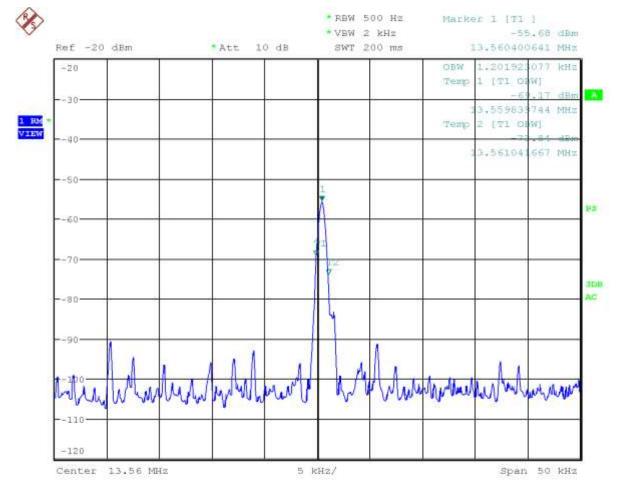

Report No.:

31955166.002

Page 41 of 54

4.5.5 Occupied Bandwidth Data

Table 7: Occupied Bandwidth											
	Loop	99%	Extreme conditions	Declared							
Orientation	Position	OBW	correction	OBW	Limit	Result					
		kHz	kHz	kHz							
X-Axis	0°	1.442308	1.923308	2.478	N/A	Pass					
X-Axis	90°	1.362179	1.843179	2.478	N/A	Pass					
Y-Axis	0°	1.201923	1.682923	2.478	N/A	Pass					
Y-Axis	90°	1.201923	1.682923	2.478	N/A	Pass					
Z-Axis	0°	1.282051	1.763051	2.478	N/A	Pass					
Z-Axis	90°	1.201923	1.682923	2.478	N/A	Pass					



Report No.:

31955166.002

Page 42 of 54

Date: 19.FEB.2020 02:49:56

Figure 23 – Sample NFC OBW Plot

Report No.:

31955166.002

Page 43 of 54

4.5.7 Test Setup Photos

"c-NFC-X.jpg"

Figure 24 – NFC Setup "X-axis"

"c-NFC-Y.jpg"

Figure 25 – NFC Setup "Y-axis"

"c-NFC-Z.jpg"

Figure 26 – NFC Setup "Z-axis"

Report No.:

31955166.002

Page 44 of 54

4.6 Duty Cycle

This test evaluates the duty cycle of the EUT

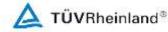
4.6.1 Test Over View

Results	Complies (as tested per this report)							01/20/2020		
Standard	RSS-210	RSS-210								
Product Model	JCEMDS Serial# JEMI-KZ							MI-KZ10-	Z10-LK73	
Configuration	See test plan for d	See test plan for details.								
Test Set-up	N/A									
EUT Powered By	120V / 60Hz	Temp	Femp ^o C Humidity			%]	Pressure	mbar	
Perf. Criteria	Report result	Perf. Verification			Rep	Report result				
Mod to EUT	See Test Plan	Test Performed By			Ale	Alexander Sowinski				

4.6.2 Test Procedure

Duty cycle was provided by the customer: 100%.

4.6.3 Deviations


There were no deviations from the test methodology listed in the test plan for the duty cycle test.

4.6.4 Final Test

The duty cycle of the EUT was recorded to be within the tolerances specified by the standard.

4.6.5 Final Data

Duty cycle for EUT is reported as 100% (always on transmitters) for the NFC transmitters.

Report No.:

31955166.002

Page 45 of 54

Appendix A

5 Test Plan

This test report is intended to follow the test plan outlined herein unless otherwise stated. The test plan provides product information, reference standards, and testing details. The product information below came via client, product manual, product itself and or the internet. Test procedure information will reference standards or internal TUV Rheinland NA procedures.

Client	Hubbell Incorporated (Delaware), Wiring Device Kellems Division
Address 1	40 Waterview Dr
Address 2	Shelton, CT, 06484
Contact Person	David Gellis
Telephone	(475)-882-4676
Fax	
e-mail	dgellis@hubbell.com

5.2 Model(s) Name

JCEMDS

5.3 Type of Product

JumpCharge

Report No.:

31955166.002

Page 46 of 54

5.4 Equipment Under Test (EUT) Description

EUT is desktop style battery charging and rental platform. User interface comprises NFC radio. Platform accepts, charges, and manages rental and return of proprietary battery modules.

5.5 Wireless

Yes Yes		No
---------	--	----

Unit:	Desktop (JEMI-KZ10-LK73)
Proposed FCC ID:	GX7-JCEMDSK3
Proposed IC ID:	10282A-JCEMDSK3
NFC FCC ID:	WQJ-VP4880 (uncertified)
NFC IC ID:	N/A
NFC Frequency:	13.56 MHz
NFC Antenna:	Loop Antenna, 0 dBi
NFC TX Power:	123.9 dBµV/m @ 3m (28.67 dBm EIRP)

5.6 General Product Information

Size	Н	6"	W	18"	L	18"	
Weight	5 lbs		Fork	Lift Needed	No		
Notes							

Report No.:

31955166.002

Page 47 of 54

5.7 Modifications

"Internal Modifications with Arrows.jpg"

Figure 27 – Internal modifications to EUT

Modified Part	Serial number (if relevant)	Reason
AC Input: Ferrite core added	Laird / LBF159079-000	Radiated Emissions
AC Input: Ferrite core added	Laird / 28B0625-100	Radiated Emissions
DC Converter: Corners grounded	20 AWG wire	Radiated Emissions
Board Supply: Ferrite core added	Laird / 28A2736-0A2	Radiated Emissions

5.8 EUT Electrical Power Information

5.8.1 Electrical Power Type

\square	AC		DC		Batteries		Host -
-----------	----	--	----	--	-----------	--	--------

5.8.2 Electrical Power Information

Name	Туре	Volt	tage	Frequency	Current	Notes
		min	max			
AC Input	AC	108	132	60Hz	4.2A	
Notes						

5.9 EUT Modes of Operation during Testing

EUT operation comprises a charging mode (all possible batteries present and charging at max power) and a no-load mode (no batteries present, no charging power being delivered). During testing, all device transmitters are active on a nominal frequency and transmitting at maximum output power.

Report No.:

31955166.002

Page 48 of 54

5.10 EUT Clock/Oscillator Frequencies

Please specify the maximum clock frequency used in the product -5.825 GHz

In the table below, please specify other clock frequencies and sensitive operating frequencies in the product.

Clock Frequencies & Sensitive Frequencies				
13.56 MHz				
2.402-2.48 GHz				
2.412-2.462 GHz				
2.422-2.452 GHz				
5.18-5.24 GHz				
5.19-5.23 GHz				
5.21 GHz				
5.745-5.825 GHz				
5.755-5.795 GHz				
5.775 GHz				

5.11 Electrical Support Equipment

Туре	Manufacturer	Model	Connected To
Batteries	JUMPCHARGE	JCBATTERY	EUT Battery Slots

5.12 Non - Electrical Support Equipment

Item	Notes
Gas	N/A
Water	N/A
Air	N/A

Report No.:

31955166.002

Page 49 of 54

5.13 EUT Equipment/Cabling Information

		- <i>.</i>		Cable Type	
EUT Port	Connected To	Location	Length	Shielded	Bead
AC	AC Main	Rear	3m	Yes	
Ethernet	N/A	Rear	25'	Yes	

Report No.:

31955166.002

Page 50 of 54

5.14 Emissions

5.14.1 Carrier Field Strength

Standard	FCC 15.225; RSS-210		TU	TUV Test Procedure		MS-0005082	
Limit	124 dBµV/m Emissions Vo		Emissions Verification Emission		Emissions U	ns Under Limit	
Frequency Range	13.56 MHz Ant Dist 3		3m	Det	QP		
Scan #1	Final Scan						
Configuration	See Appendix A, EUT Configuration						
EUT Powered By	See Appendix A, EUT Electrical Power Information						
Notes	None						

5.14.2 Out-of-Band Emissions

5.14.2.1 Out-of-Band Emissions Test Set-up

Standard	FCC 15.225; RSS-210		τι	V Test	Procedure	MS-0005082
Limit	13.11 < f < 13.41 MHz	Limit			80.5 dBµV/m	1
(Frequency)	13.71 < f < 14.01 MHz	(Level)		80.5 dBµV/m	1	
	13.41 < f < 13.553 MHz				90.5 dBµV/m	
	13.567 < f < 13.71 MHz			90.5 dBµV/m		
	13.553 < f < 13.567 MHz			124 dBµV/m		
Frequency Range	13.11 – 14.01 MHz	Ant Dist 3m Det			QP	
Scan #1	Final Scan					
Configuration	See Appendix A, EUT Configuration					
EUT Powered By	See Appendix A, EUT Electrical Power Information					
Notes	None					

Report No.:

31955166.002

Page 51 of 54

5.14.3 Transmitter Spurious Emissions

5.14.3.1 Transmitter Spurious Emissions Test Set-up

Standard	FCC 15.209; FCC 15.225; RSS-210			V Test	Procedure	MS-0005082
Limit	9 < f < 490 kHz	Limit			-	logarithmically to 93.8 dBµV/m
(Frequency)	490 < f < 1705 kHz	(Level)			Decreasing	logarithmically 62.9 dBµV/m
	1.705 < f < 13.11 MHz				69.5 dBµV/1	m
	13.11 < f < 14.01 MHz				See 5.14.2.1	
	14.01 < f < 30 MHz				69.5 dBµV/1	m
	30 < f < 88 MHz				$40 \text{ dB}\mu\text{V/m}$	
	88 < f < 216 MHz			43.5 dBµV/m		m
	216 < f < 960 MHz				46 dBµV/m	
	f > 960 MHz				54 dBµV/m	
Frequency Range	9k – 30 MHz	Ant Dist	3m	Det	QP	
	30 – 1000 MHz	Ant Dist	3m	Det	QP	
Scan #1	Final Scan					
Configuration	See Appendix A, EUT Configuration					
EUT Powered By	See Appendix A, EUT Electrical Power Information					
Notes	None					

Report No.:

31955166.002

Page 52 of 54

5.14.4 Frequency Stability

5.14.4.1 Frequency Stability Test Set-up

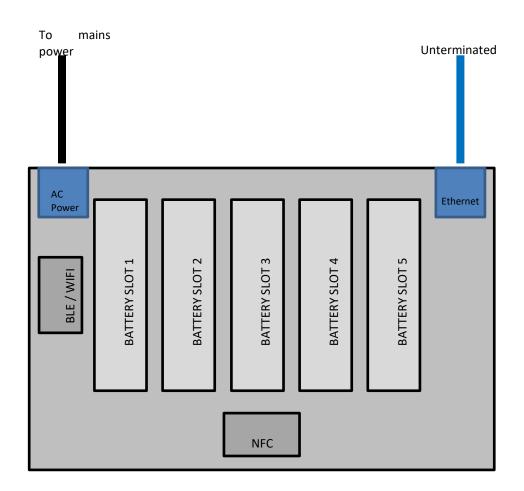
Standard	FCC 15.225; RSS-210	TUV Test Procedure	MS-0005180		
Limit	± 0.01% Transmit Frequency	Stability Verification	Stability Under Limit		
EUT Powered By	85% Nominal Voltage: 102 VA	C / 60 Hz			
	115% Nominal Voltage: 138 VAC / 60 Hz				
Ambient Temperature	-20°C to 50°C				
Scan #1	Frequency Stability				
Configuration	See Appendix A, EUT Configuration				
Notes	None				

5.14.5 Occupied Bandwidth

5.14.5.1 Occupied Bandwidth Test Set-up

Standard	FCC 15.215; RSS-210	TUV Test Procedure	MS-0005180		
Limit	N/A	Stability Verification	Report result		
EUT Powered By	120V/60Hz				
Scan #1	Occupied Bandwidth				
Configuration	See Appendix A, EUT Configuration				
Notes	None				

Report No.:


31955166.002

Page 53 of 54

5.15 EUT Configuration

Configuration		Description
	Charge Mode	All possible batteries installed, maximum charge power
No-Load		No batteries installed
Notes All configurations are the same except as noted above		

5.16 Block Diagram

Report No.:

31955166.002

Page 54 of 54

END OF REPORT