

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 1 of 30

FCC Test Report

Applicant : ACCO Brands, Inc.

Address 4 Corporate Drive, Lake Zurich, Illinois 60047,

USA

Product Name : Pro Fit® Ergo MY630 EQ Rechargeable Mouse

Report Date : May 15, 2024

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 2 of 30

Contents

1. Gene	ral Information	AUpo.	<u>.</u> r	<u></u>	boto	<i>b</i> ₁	·····	<u>`</u> <u>\</u> \	(
1.1	Client Information	ek buj	oo _{ter}	Vup.	yk	otek	Auporg	b.,.	
1.3	Description of Device (EU-Auxiliary Equipment Used	During Tes	st						/05
14	Operation channel list								
^o 1.5.	Description of Test Modes	$\nabla_{U_{P}}$;e ^k	opo.	h.,		10010	P
1.7.	Measurement Uncertainty Test Summary	VUOD		bo ^{tek}	Anbore		ate ^K	VUPO46)K	8
1.8.	Description of Test Facility	Aubo.		Yo	Pole	b'u		270	S/~ . (
1.9.	Disclaimer	AUT.	,018	. And	k npr	,4e)t	Nupo,	· · · · · · · ·)(.0 ¹ 01
Million Matak	O. Test Equipment List nna requirement	otek .	/upolek	Pupa	-ek	abotek	Aupoho		10 44
Z. Anten	ma requirement	*&K	Sporek	Anb	ον·······	worek.	Anbo	16	KU/CLZ
o ^{ten} 2.1.	Conclusion	74,00,1	,	ek	oter		3K ~ ~ ~ ~	hotek	12
3. Cond	ucted Emission at AC powe	r line	An	otek	<u>anbotek</u>	····bopo,	rek Er	abolek.	13
3.1.	EUT Operation	Anbate	24	yo.	1900		,010	Vu.	y 13
3.2.	Test Setup	٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠	ołek.	Vultura.		rek	Aupoler.	KUD	1∢ 14
4. Occu	Conclusion	ret.	opotek	Anbote.	Anv	otek	Anbotek	Anb	16
4 1	FUT Operation	Dr. b	hotek	Anbo	Yeu Vi	in stek	nbot	ek p	²⁰⁰⁰
4.2	Test Setup	upor	VI.,.		hoten.	Vup	<i>*</i>	uotek	16
4.3.	Test Data	Anbotek		· ek	- Novek	W POLC	k Vi	· · · · · · · · · · · · · · · · · · ·	16
5. Maxir	num Conducted Output Pov	ver	1019	0,0	VII.	b	ofer	AUD	17
5.1.	num Conducted Output Pov		No.K	Pupo _{te} ,	Ant			Vupo.	17
5.2	Test Setun								27 1
6 Powo	r Spectral Density	Va	nek .	Vupo,	ick Vu	00.	,50 ⁷⁶	sk b	nbot
o. Fowe		^{upolek}	PUPO:		V				10
6.1. 6.2.								otek	280
.6.3.	. EUT Operation . Test Setup	- obolek	Anbote	γ. 	potek	Aupotel		otek Jotek	18
7464.4	Test Data			~			377	V1	18
7. Emiss	EUT Operation Test Setup Test Datasions in non-restricted frequ			~			377	V1	18
7. Emiss 7.1.	. Test Datasions in non-restricted frequ	ency band	ds	,,botek	Anbotek Anbotek	y. A.	upatek Natek	Anbotek Anbotek	18 19 19
7. Emiss 7.1.	Test Datasions in non-restricted frequely EUT Operation	ency band	ds	"po _{tek}	Anborek Anbor	ik bi	nodek Modek	Anbotek Anbotek	18 19 19
7. Emiss 7.1.	Test Datasions in non-restricted frequely EUT Operation	ency band	ds	"po _{tek}	Anborek Anbor	ik bi	nodek Modek	Anbotek Anbotek	18 19 19
7. Emiss 7.1.	Test Datasions in non-restricted frequely EUT Operation	ency band	ds	"po _{tek}	Anborek Anbor	ik bi	nodek Modek	Anbotek Anbotek	18 19 19
7. Emiss 7.1.	Test Datasions in non-restricted frequely EUT Operation	ency band	ds	"po _{tek}	Anborek Anbor	ik bi	nodek Modek	Anbotek Anbotek	18 19 19
7. Emiss 7.1.	Test Datasions in non-restricted frequely EUT Operation	ency band	ds	"po _{tek}	Anborek Anbor	ik bi	nodek Modek	Anbotek Anbotek	18 19 19
7. Emiss 7.1.	Test Datasions in non-restricted frequely EUT Operation	ency band	ds	"po _{tek}	Anborek Anbor	ik bi	nodek Modek	Anbotek Anbotek	18 19 19
7. Emiss 7.1.	Test Datasions in non-restricted frequely EUT Operation	ency band	ds	"po _{tek}	Anborek Anbor	ik bi	nodek Modek	Anbotek Anbotek	18 19 19
7. Emiss 7.1.	. Test Datasions in non-restricted frequ	ency band	ds	"po _{tek}	Anborek Anbor	ik bi	nodek Modek	Anbotek Anbotek	18 19 19

Report No.: 18220WC40055401	FCC ID: GV3M0170	8-M Page	3 of 30
10. Emissions in frequency bands (above 1GHz)	Anbotek Anbote	Aug Motek Put	26
10.1. EUT Operation	botek Anbore	All alek	oboten 26
	bo _{te}	Anb	26
10.3. Test Data	k Vupor VII.	rek aboter	27
APPENDIX I TEST SETUP PHOTOGRAPH	riek anboiek Anb	o. k. Potek	Anbores
APPENDIX II EXTERNAL PHOTOGRAPH	o company	upolo VIII	30
APPENDIX III INTERNAL PHOTOGRAPH	boter And	rotek pupor	30

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 4 of 30

TEST REPORT

Applicant : ACCO Brands, Inc.

Manufacturer : ACCO Brands, Inc.

Product Name : Pro Fit® Ergo MY630 EQ Rechargeable Mouse

Test Model No. : M01708-M

Reference Model No. : N/A

Trade Mark : Kensington

Rating(s) Input: 5V= 300mA

· Battery Capacity: DC 3.7V, 500mAh

47 CFR Part 15.247

Test Standard(s) : ANSI C63.10-2020

KDB 558074 D01 15.247 Meas Guidance v05r02

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:	Mar. 25, 2024
	inbore Air botek Anbotek Anbo
Date of Test:	Mar. 25, 2024 to Apr. 15, 2024
	Anborek Anbo kek/ Anborek Anbore
	Nian xiu Chen
Prepared By	ok Anbotek Anbote Anb tek mbo
	(Nianxiu Chen)
	Bolward pan
Approved & Authorized Signer	Moreover posts
Approved & Authorized Signer	Vupors, Tun ok Potsk Vupo,
	(Edward Pan)

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 5 of 30

Revision History

Report Version		Description	Issued Date			
	Anbore R00 potek An	Original Issue.	May 15, 2024			
3	Anbotek Anbotek	Anbotek Anbotek Anbotek	Anbotek Anbotek Ant			
/0	ore Ambotek Anbotek	Anbotek Anbotek Anbot	tek Anbotek Anboter			

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 6 of 30

1. General Information

1.1. Client Information

Applicant	:	ACCO Brands, Inc.
Address	:	4 Corporate Drive, Lake Zurich, Illinois 60047, USA
Manufacturer	:	ACCO Brands, Inc.
Address	:	4 Corporate Drive, Lake Zurich, Illinois 60047, USA

1.2. Description of Device (EUT)

Product Name	:	Pro Fit® Ergo MY630 EQ Rechargeable Mouse
Test Model No.	:	M01708-M
Reference Model No.	:	N/A Anbotek Anbotek Anbotek Anbotek
Trade Mark		Kensington
Test Power Supply	:	DC 5V from Adapter input AC 120V/60Hz; DC 3.7V battery inside
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	N/A Anborek Anborek Anborek Anborek Anborek Anborek
RF Specification		
Operation Frequency	:	2402MHz to 2480MHz
Number of Channel	:	40 Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek
Modulation Type		GFSK Anborek Anborek Anborek Anborek Anborek
Antenna Type		PCB Antenna
Antenna Gain(Peak)		-2.81dBi

Remark:

- (1) All of the RF specification are provided by customer.(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 7 of 30

1.3. Auxiliary Equipment Used During Test

Title Manufacturer		Model No.	Serial No.	
Xiaomi 33W adapter	Xiaomi	MDY-11-EX	SA62212LA04358J	

1.4. Operation channel list

Operation Band:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
Orek	2402	And 10 tok	2422	20	2442	30	2462
1 botek	2404	11	2424	21	2444	31,000te	2464
2 2 abo	2406	12	2426	22 Anbo	2446	rek 32 Anbo	2466
3	2408	13	2428	23 An	2448	botel 33	2468
4	2410	nbo 14	2430	24	2450	34	2470
Anbo 5	2412	Anbotto	2432	25	2452	35	2472
And Grek	2414	16	2434	26	2454	36	2474
7	2416	17. ^{nb}	2436	× 27 _{Anboh}	2456	ek 37 _{Mab} o	2476
8 And	2418	18 And	2438	otell 28 An	2458	38 N	2478
9 AT	2420	19 P	2440	29	2460	39	2480

1.5. Description of Test Modes

Pretest Modes	Descriptions	
ek Anbore TM1 Anborek	Keep the EUT in continuously transmitting mode with GFSK modulation.	AUD

FCC ID: GV3M01708-M Report No.: 18220WC40055401 Page 8 of 30

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB
Occupied Bandwidth	925Hz
Conducted Output Power	0.76dB
Power Spectral Density	0.76dB
Conducted Spurious Emission	1.24dB
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test Summary

wer and the work All	- 10° - 10°	- P
Test Items	Test Modes	Status
Antenna requirement	diek Viek	ibotek P Ar
Conducted Emission at AC power line	Mode1	anbot P
Occupied Bandwidth	Mode1	AU Piek
Maximum Conducted Output Power	Mode1	Pupotek
Power Spectral Density	Mode1	ek P Anbot
Emissions in non-restricted frequency bands	Mode1	botek P An
Band edge emissions (Radiated)	Mode1	nbo*P
Emissions in frequency bands (below 1GHz)	Mode1	anb Bek
Emissions in frequency bands (above 1GHz)	Mode1	Photek
Note: P: Pass N: N/A, not applicable	Anbotek Anbotek Anbot	ek Anbote

Hotline

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 9 of 30

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- 1. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

FCC ID: GV3M01708-M Report No.: 18220WC40055401 Page 10 of 30

1.10. Test Equipment List

Cond	ucted Emission at A	C power line				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
· 1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-01-18	2025-01-17
otek 2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
30t	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	Alootek	Auport Losek
4	EMI Test Receiver	Rohde & Schwarz	ESPI3	100926	2023-10-12	2024-10-11

Emissions in non-restricted frequency bands

Occupied Bandwidth

Maximum Conducted Output Power Power Spectral Density

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 _{An} h	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2023-10-16	2024-10-15
_e 2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19
oo*3*	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
Andore	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2023-10-12	2024-10-11
5,00	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03

Hotline

www.anbotek.com.cn

400-003-0500

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 11 of 30

ote.	And	stek rupo.	N. Ok	pote.	AUS	iek
	edge emissions (Ra sions in frequency ba		Anbore	Anboick	Aupotek	Anbotek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 00	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
nboto. 4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	Anbotek	Anborek
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
re ^k 7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2023-05-25	2024-05-24

Emiss	sions in frequency ba	ands (below 1GHz)				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
. 2	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16
34	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
4ntel	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11
5,00	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A, Noot	y Aupon	k Anbotek

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 12 of 30

2. Antenna requirement

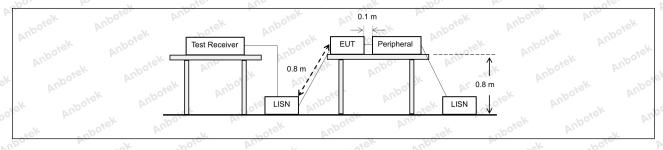
Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1. Conclusion

The antenna is a **PCB Antenna** which permanently attached, and the best case gain of the antenna is **-2.81 dBi**. It complies with the standard requirement.

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 13 of 30


3. Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except section, for an intentional radiator public utility (AC) power line, the result back onto the AC power line on are band 150 kHz to 30 MHz, shall no measured using a 50 µH/50 ohms (LISN).	that is designed to be con adio frequency voltage tha ny frequency or frequencie t exceed the limits in the f	nnected to the at is conducted es, within the following table, as				
shotek Anbore	Frequency of emission (MHz)	Conducted limit (dBµV)					
Ans sek abotek	Anbore Anbore	Quasi-peak	Average				
Anbore Arr.	0.15-0.5	66 to 56*	56 to 46*				
Test Limit:	0.5-5 tek nbote Am	56 Borel An	46				
Ant both	5-30 And State of Sta	60	50 reh				
k Wuporg Wu.	*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2020 section 6.2	Projek Auporen	Ans				
Procedure:	Refer to ANSI C63.10-2020 section line conducted emissions from un						

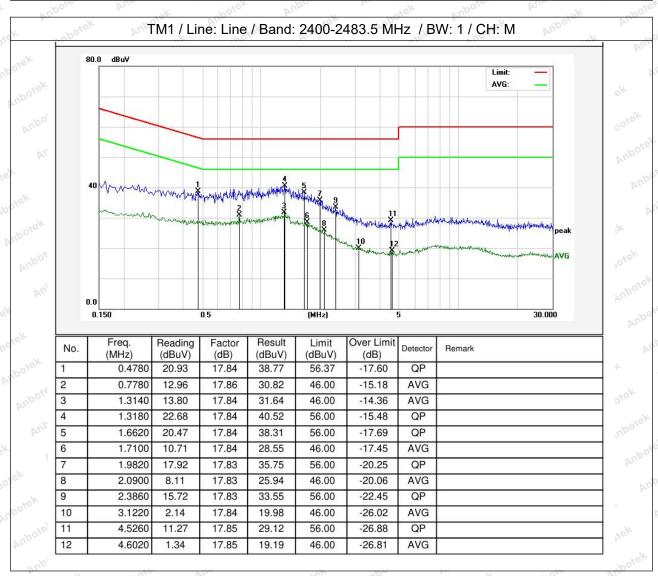
3.1. EUT Operation

Operating Envi	ronment:	Aupor	Projek.	Aupote	Aug Stek	mbotek	Aupo.
Test mode:	1: TX mode	Pr.	EUT in conti	nuously trans	mitting mode w	ith GFSK	Anbo

3.2. Test Setup

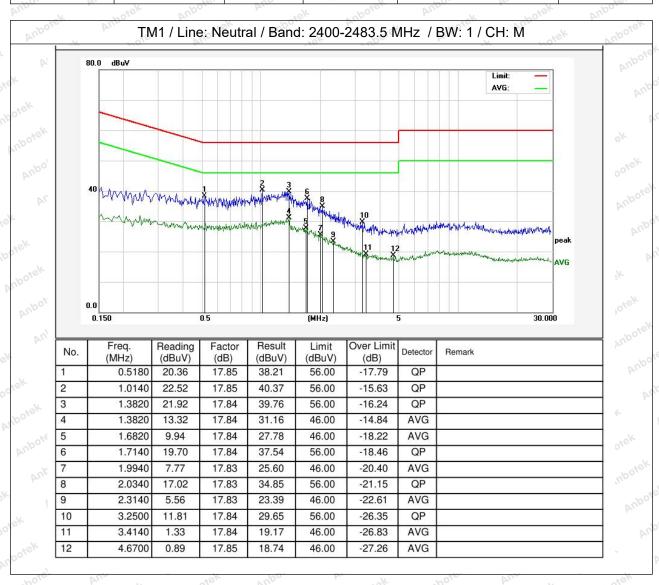
Hotline

www.anbotek.com.cn


400-003-0500

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 14 of 30

3.3. Test Data

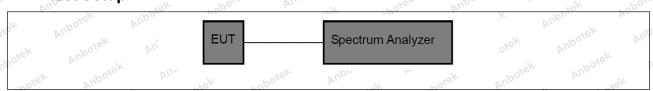

Temperature:	25.1 °C	Humidity:	67 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 15 of 30

Temperature: 25.1 °C Humidity: 67 % Atmospheric Pressure: 101 kPa

Note: Only record the worst data in the report.

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 16 of 30


4. Occupied Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
nbotek Anbotek Anbotek Anbotek Anbotek	11.8.1 Option 1 The steps for the first option are as follows: a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. b) Set the VBW ≥ [3 × RBW].
Anbotek Anb	c) Detector = peak. d) Trace mode = max-hold. e) Sweep = No faster than coupled (auto) time.
potek Anbotek	f) Allow the trace to stabilize. g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the
Procedure:	envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be as close as possible to this value.
ek Anbotek Anbo	11.8.2 Option 2 The automatic bandwidth measurement capability of an instrument may be
Anbotek Anbotek	employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW ≥ 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function.
Anbotek Anbotek	When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.

4.1. EUT Operation

Operating Envi	ronment:	Dur	anbotek	Aupo.	potek	Anbore
Test mode:	1: TX mode: Kee modulation.	p the EUT in c	ontinuously	transmitting m	ode with GFSI	Anbotes

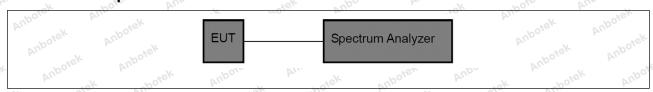
4.2. Test Setup

4.3. Test Data

Temperature: 25.3 °C	Humidity: 48 %	Atmospheric Pressure:	101 kPa
----------------------	----------------	-----------------------	---------

Please refer to Appendix A of the Appendix Test Data.

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 17 of 30


5. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020 section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power

5.1. EUT Operation

Operating Envi	ronment:	abotek	Aupor	Dir.	hotek	Aupoten	Anb	rek	200
Test mode:	1: TX mode: modulation.	Keep the E	JT in continu	uously	transmit	ting mode	with GFSh	K hotek	ν.

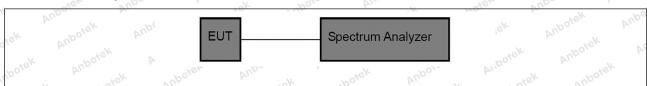
5.2. Test Setup

5.3. Test Data

	Temperature:	25.3 °C	Humidity:	48 %	Atmospheric Pressure:	101 kPa
--	--------------	---------	-----------	------	-----------------------	---------

Please refer to Appendix C of the Appendix Test Data.

FCC ID: GV3M01708-M Report No.: 18220WC40055401 Page 18 of 30


6. Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission

6.1. EUT Operation

Operating Envi	ronment:	rek.	Anbotek	Anba	abotek	Anboro	. bojek
Test mode:	1: TX mode:	Keep	the EUT in	continuously	transmitting	mode with G	FSK MAN
Tost mode.	modulation.					· · · · · ·	

6.2. Test Setup

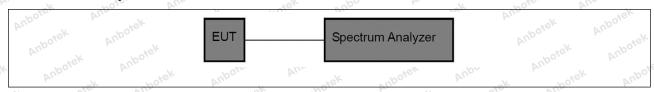
6.3. Test Data

Temperature:	25.3 °C	Aupo	Humidity:	48 %	Atmospheric Pressure: 101 kPa
--------------	---------	------	-----------	------	-------------------------------

Please refer to Appendix D of the Appendix Test Data.

Hotline

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 19 of 30


7. Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Anbotek	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

7.1. EUT Operation

Operating Envi	ronment:	aboiek	Vupoter K	Vur	otek	Anborek	Vupo.	*ek	200
Test mode:	1: TX mode:	Keep the El	JT in continu	ously tra	ansmitt	ing mode w	ith GFSK	ζο, ΄΄	24
Tool mode.	modulation.								D.S

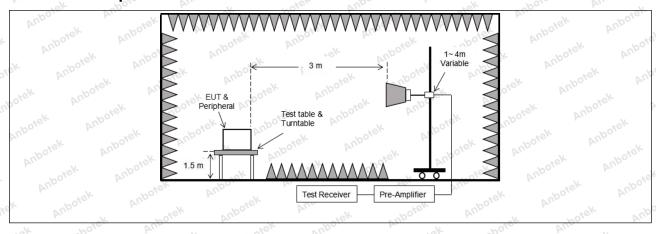
7.2. Test Setup

7.3. Test Data

Temperature: 2	25.3 °C	Humidity:	48 %	Atmospheric Pressure:	101 kPa
----------------	---------	-----------	------	-----------------------	---------

Please refer to Appendix E&F of the Appendix Test Data.

FCC ID: GV3M01708-M Page 20 of 30 Report No.: 18220WC40055401

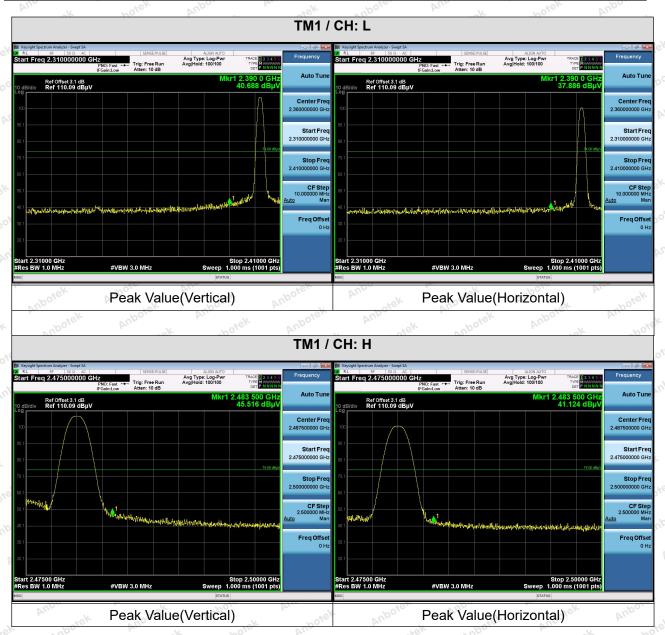

8. Band edge emissions (Radiated)

Anbotek Anbotek		In addition, radiated emissions	
Test Requirement:		d in § 15.205(a), must also comp ecified in § 15.209(a)(see § 15.2	
k Anbotek Anbot	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
o stek	0.009-0.490	2400/F(kHz)	300 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Spotek Anbo	0.490-1.705	24000/F(kHz)	30 Stek
in. "Sk "Upojer	1.705-30.0	30	30
Anbor Art	30-88	100 **	3,ek anbore
shotek Anbo	88-216	150 **	3
W. Spote	216-960	200 **	3 botes And
Aupor	Above 960	500 Morek Anbox	3 rek a
nbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	frequency bands 54-72 MH However, operation within to sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi-page 80 kHz, 110–490 kHz and a	ng under this section shall not be z, 76-88 MHz, 174-216 MHz or these frequency bands is permitted in the tighter limit applies at the best detector except for the frequency above 1000 MHz. Radiated emisted on measurements employing	470-806 MHz. ed under other and edges. measurements uency bands 9– sion limits in
Potes Files	- 160, by	O 40°K Photek Pube	V Grek
Test Method:	ANSI C63.10-2020 section KDB 558074 D01 15.247 M		Who who tek
Procedure:	ANSI C63.10-2020 section	6.10.5.2	Doi Air

8.1. EUT Operation

Operating Envir	onment:	anbotek	Anbo	-botek	Anbore	A.n.b	rek no
Test mode:	1: TX mode: K modulation.	eep the EU	Γ in continuo	usly transmitti	ng mode wit	h GFSK	abotek

8.2. Test Setup



Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 21 of 30

8.3. Test Data

Temperature: 25.3 °C Humidity: 48 % Atmospheric Pressure: 101 kPa

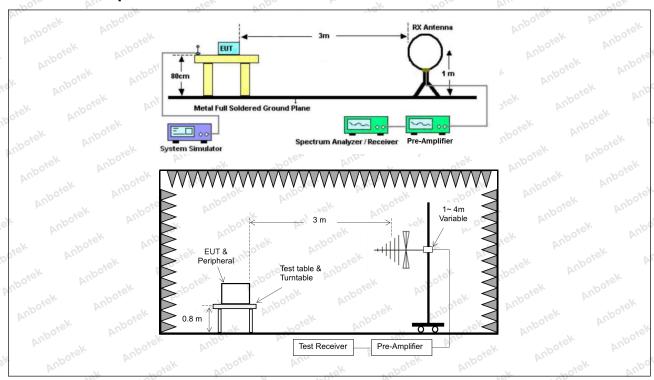
Remark: When the PK measure result value is less than the AVG limit value, the AV measure result values test not applicable.

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 22 of 30

9. Emissions in frequency bands (below 1GHz)

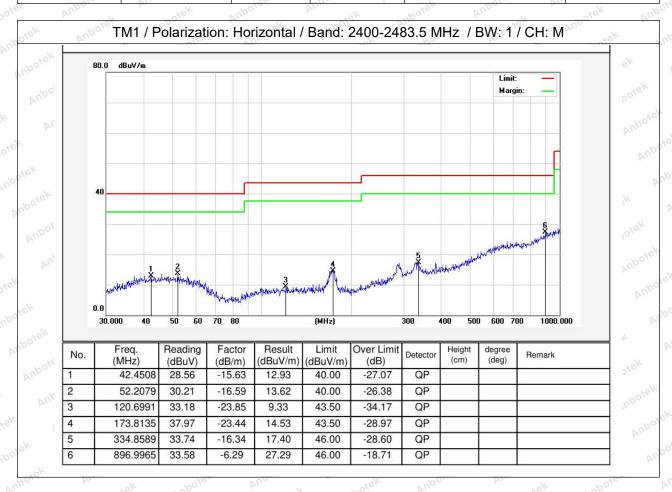
Anbotek Anbotek		In addition, radiated emissions	
Test Requirement:		d in § 15.205(a), must also comp ecified in § 15.209(a)(see § 15.2	
k Anbotek Anbot	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
o. A. Stek	0.009-0.490	2400/F(kHz)	300 , 1001
abotek Anbo	0.490-1.705	24000/F(kHz)	30 50 tel
iek abojek	1.705-30.0	30° , , , , , , , , , , , , , , , , , , ,	30
Anbo. A. Siek	30-88	100 **	3,ek note
Spotek Aupo	88-216	150 **	3
All. abote	216-960	200 **	3 boten And
Aupo, W.	Above 960	500	3 rek on
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	frequency bands 54-72 MH However, operation within to sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi-page 110-490 kHz, 110-490 kHz and a section of the se	ng under this section shall not be z, 76-88 MHz, 174-216 MHz or these frequency bands is permitted in the tighter limit applies at the bein the above table are based on beak detector except for the frequency above 1000 MHz. Radiated emisted on measurements employing	470-806 MHz. ed under other and edges. measurements uency bands 9– esion limits in
Pose Bulga	16K 700, by	O C 18/4 Applete Apple	k kojek
Test Method:	ANSI C63.10-2020 section KDB 558074 D01 15.247 M		Se Vup
Procedure:	ANSI C63.10-2020 section	6.6.4 An	

9.1. EUT Operation


,o¹	Operating Envir	onment:	anboten	Anbe	botel	Anbore	bu.	rick vy
	Test mode:	1: TX mode: Ke	eep the EUT	in continue	ously transm	itting mode	with GFSK	Upo Pak
70	00	modulation.	DI		ter Tup.		rek .	oboro

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 23 of 30

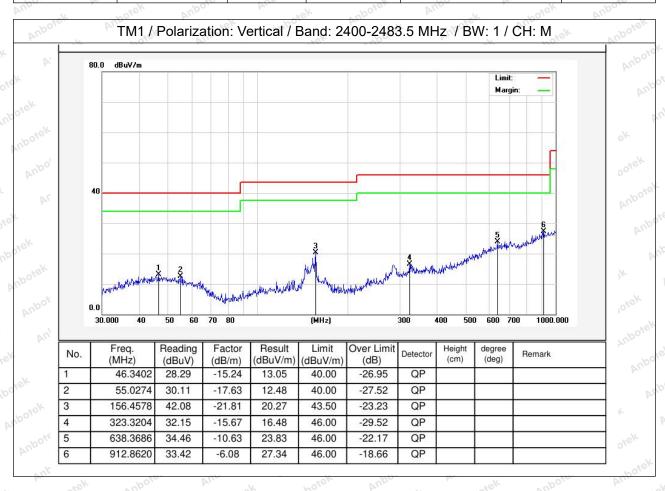
9.2. Test Setup



Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 24 of 30

9.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

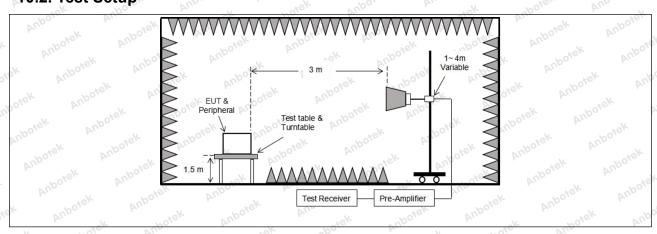

Temperature:	23.5 °C	Aupo	Humidity:	55 %	Atmo	spheric Pres	sure:	101 kPa

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 25 of 30

Temperature: 23.5 °C Humidity: 55 % Atmospheric Pressure: 101 kPa

Note: Only record the worst data in the report.

Report No.: FCC ID: GV3M01708-M 18220WC40055401 Page 26 of 30


10. Emissions in frequency bands (above 1GHz)

PUD. FSK	Pole VIII	- Super Full	igk JbO7
Test Requirement:		ons which fall in the restricted back comply with the radiated emission 5(c)) `	
k Aupotek Aupot	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
'upote, Yur Potek	0.490-1.705 1.705-30.0	24000/F(kHz) 30	30
	30-88	100 **	3.ek anborek
Spotek Anbo	88-216	150 **	3
	216-960	200 **	3 bores And
Test Limit;	Above 960	500	3 rek on
	intentional radiators operatifrequency bands 54-72 MH However, operation within the sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi-part of the emission table above 100 miles and	ragraph (g), fundamental emissing under this section shall not be z, 76-88 MHz, 174-216 MHz or hese frequency bands is permitt § 15.231 and 15.241. The tighter limit applies at the bein the above table are based on beak detector except for the frequency above 1000 MHz. Radiated emisted on measurements employing	e located in the 470-806 MHz. ed under other and edges. measurements uency bands 9— ssion limits in
Test Method:	ANSI C63.10-2020 section KDB 558074 D01 15.247 M		ak Anbotek
Procedure:	ANSI C63.10-2020 section	6.6.4 Ant	ote. Aug

10.1. EUT Operation

Operating Envir	onment:	Anbotek	Aupo,	hotek.	Anbote.	And	otek or
Test mode:	a: 1: TX mode: Keep the EUT in continuously transmitting mode with GFSK		*6K				
00	modulation.						

10.2. Test Setup

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 27 of 30

10.3. Test Data

Temperature: 23.5	°C Humidity:	55 % Atm	ospheric Pressure:	101 kPa	
-------------------	--------------	----------	--------------------	---------	--

AUG	hotek Anb		rick anbor	Ans	k hotek	Anbo.
			TM1 / CH: L			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4804.00	28.78	15.27	44.05	74.00	-29.95	Vertical
7206.00	28.79	18.09	46.88	74.00	-27.12	Vertical
9608.00	39.75	23.76	63.51	74.00	-10.49	Vertical
12010.00	Aupotes* A	iek .	abořek Anb	74.00	otek Anbote	Vertical
14412.00	OUPO*SK	Anbo. P	hoisk b	74.00	rick on	Vertical
4804.00	28.42	15.27	43.69	74.00	-30.31	Horizontal
7206.00	29.44	18.09	47.53	74.00	-26.47	Horizontal
9608.00	38.25	23.76	62.01	74.00	-11.99	Horizontal
12010.00	otek * Aupo	-V	ick Wipote	74.00	, abotek	Horizontal
14412.00	woick*	DOJE. VILL	tek nb	74.00	K hore	Horizontal
Average value: Frequency	Reading	Factor	Result	Limit	Over Limit	polarization
(MHz) 4804.00	(dBuV) 17.05	(dB/m)	(dBuV/m) 32.32	(dBuV/m) 54.00	(dB) -21.68	Vertical
7206.00	17.03	18.09	35.93	54.00	-18.07	Vertical
9608.00	27.22	23.76	50.98	54.00	-3.02	Vertical
12010.00	*	23.70	0.90 AUD	54.00	-3.02 box	Vertical Vertical
14412.00	Anbore.	Yur,	Vupetek Vi	54.00	hotek Anbo	Vertical
4804.00	16.75	15.27	32.02	54.00	-21.98	Horizontal
7206.00	18.47	18.09	36.56	54.00	-17.44	Horizontal
9608.00	26.76	23.76	50.52	54.00	-3.48	Horizontal
12010.00	*	ZJ:10	30.32	54.00	-0.40/8·	Horizontal
14412.00	Upotek Yup	rek a	otek Anbot	54.00	ek Anbotek	Horizontal
VUO	40.	100. Bu	2.0	740. 2 2 VUD		ok

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 28 of 30

				hotek	Anbor	rek
			TM1 / CH: M			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4880.00	28.33	15.42	43.75	74.00	-30.25	Vertical
7320.00	28.76	18.02	46.78	74.00	-27.22	Vertical
9760.00	39.25	23.80	63.05	74.00	-10.95	Vertical
12200.00	ek * nbotek	Anbor	L hotek	74.00	Aug	Vertical
14640.00	* * *	ick Aupole	Pur Die	74.00	Vupo.	Vertical
4880.00	28.23	15.42	43.65	74.00	-30.35	Horizontal
7320.00	29.31	18.02	47.33	74.00	-26.67	Horizontal
9760.00	37.97	23.80	61.77	74.00	-12.23	Horizontal
12200.00	* * siek	Anbore	Ans	74.00	Yupo.	Horizontal
14640.00	Ant.	nbotek	Aupo	74.00	Anbore	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4880.00	17.14	15.42	32.56	54.00	-21.44	Vertical
7320.00	17.70	18.02	35.72	54.00	-18.28	Vertical
9760.00	28.07	23.80	51.87	54.00	-2.13	Vertical
12200.00	k *upor	An Siek	anbotek	54.00	boiek	Vertical
14640.00	otek * Anboti	And	ek spojek	54.00	pi, notek	Vertical
4880.00	16.86	15.42	32.28	54.00	-21.72	Horizontal
7320.00	18.82	18.02 M	36.84	54.00	-17.16	Horizontal
9760.00	26.06	23.80	49.86	54.00	-4.14 M	Horizontal
12200.00	Anbotok	Aup. "GK	abotek	54.00	"Otek D	Horizontal
14640.00	* botek	Anbo	W. Olek	54.00	And	Horizontal

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 29 of 30

Le. AUD	- stek	Vupo,	Dr.	hoie.	AUD	ate ^K
		•	TM1 / CH: H			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4960.00	28.46	15.58	44.04	74.00	-29.96	Vertical
7440.00	28.92	17.93	46.85	74.00	-27.15	Vertical
9920.00	39.95	23.83	63.78	74.00	-10.22	Vertical
12400.00	* Stell	anbotes	Aug	74.00	Aupol	Vertical
14880.00	* And	rek Spotel	Aupo.	74.00	Anbore	Vertical
4960.00	28.37	15.58	43.95	74.00	-30.05	Horizontal
7440.00	29.52	17.93	47.45	74.00	-26.55	Horizontal
9920.00	38.35	23.83	62.18	74.00	-11.82	Horizontal
12400.00	Anb * *ek	abotek	Aupo, K	74.00	inpoter, bu	Horizontal
14880.00	W.*po,	hotek hotek	Anbores	74.00	anbotek	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4960.00	18.26	15.58	33.84	54.00	-20.16	Vertical
7440.00	18.97	17.93	36.90	54.00	17.10	Vertical
9920.00	27.72	23.83	51.55	54.00	-2.45	Vertical
12400.00	k * hotek	Anbo	hotek	54.00	Vun Jek	Vertical
14880.00	* * *	sk Pupole	And	54.00	Aupo	Vertical
4960.00	18.04	15.58	33.62	54.00	-20.38	Horizontal
7440.00	19.62	17.93	oto ⁸ 37.55 m ^{b0}	54.00	-16.45	Horizontal
9920.00	26.21	23.83	50.04	54.00	-3.96	Horizontal
12400.00	* tek	Aupoles	Aur	54.00	100. by	Horizontal
14880 00	Aux *	hotek	Anbo	54 00	VUPOJO D	Horizontal

Remark:

- 1. Result =Reading + Factor
- 2. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Report No.: 18220WC40055401 FCC ID: GV3M01708-M Page 30 of 30

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

