

Page 1 of 57

	I I I I I I I I I I I I I I I I I I I	EST REPORT		
	Product Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue Test Standards	 H3000 Bluetooth H Kensington M01584-D N/A EED32O80799103 GV3M01584-D Sep. 23, 2022 47 CFR Part 15 Su 		
	4 Corporate Driv Centre Testin Hongwei Indu Shenz TEI	: PASS Prepared for: ACCO Brands, Inc. Ye, Lake Zurich, Illin Prepared by: Ing International Gro Ustrial Zone, Bao'an hen, Guangdong, C L: +86-755-3368 366 X: +86-755-3368 338	up Co., Ltd. 70 District, hina 88	
ENTRE TESTING	Compiled by: Weishife Approved by: Approved by: Report Seal	Ma Date:	Tom Chen Sep. 23, 2022 Check No.: 931007	0622

Page 2 of 57

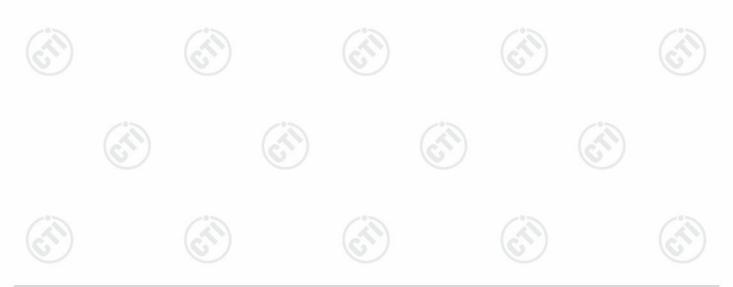
1 Contents

Page

1 CONTENTS		2
2 VERSION	••••••	3
3 TEST SUMMARY		
4 GENERAL INFORMATION		
4 GENERAL INFORMATION		5
4.1 CLIENT INFORMATION		
4.2 GENERAL DESCRIPTION OF EUT		
4.3 TEST CONFIGURATION 4.4 TEST ENVIRONMENT		
4.5 DESCRIPTION OF SUPPORT UNITS		
5 TEST RESULTS AND MEASUREMENT DATA		
5.1 ANTENNA REQUIREMENT		
5.2 AC Power Line Conducted Emissions		
5.3 MAXIMUM CONDUCTED OUTPUT POWER 5.4 20DB EMISSION BANDWIDTH		
5.5 CARRIER FREQUENCY SEPARATION.		
5.6 NUMBER OF HOPPING CHANNEL		
5.7 TIME OF OCCUPANCY		
5.8 BAND EDGE MEASUREMENTS		
5.9 Conducted Spurious Emissions 5.10 Pseudorandom Frequency Hopping Sequence		
5.10 PSEUDORANDOM PREQUENCY HOPPING SEQUENCE		
6 APPENDIX A		
7 PHOTOGRAPHS OF TEST SETUP		
8 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS		

2 Version

3	Version No	10	Date	10		Descriptio	on	12
Ð	00	s	ep. 23, 2022			Original		(St)
	(A)		(T)		(critic)		(ST)	


Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Test Item	Test Requirement	Result PASS	
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)		
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	PASS	
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS	
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS	
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS	
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS	
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS	
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS	
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS	
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS	

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

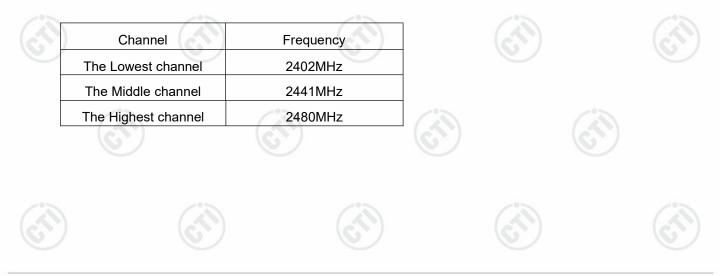
4 General Information

4.1 Client Information

Applicant:	ACCO Brands, Inc.
Address of Applicant:	4 Corporate Drive, Lake Zurich, Illinois 60047, USA
Manufacturer:	ACCO Brands, Inc.
Address of Manufacturer:	4 Corporate Drive, Lake Zurich, Illinois 60047, USA
Factory:	Dongguan 3e Electronics LTD
Address of Factory:	No.20, Shiji Road, Houjie, Dongguan, Guangdong, China
	Address of Applicant: Manufacturer: Address of Manufacturer: Factory:

4.2 General Description of EUT

	Product Name:	H3000 Bluetooth Headset - Over Ear	
	Model No.:	M01584-D	
2	Trade Mark:	Kensington	
	Product Type:	Portable	(C)
	Operation Frequency:	2402MHz~2480MHz	
	Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	
	Modulation Type:	GFSK, π/4DQPSK, 8DPSK	2
	Number of Channel:	79)
	Hopping Channel Type:	Adaptive Frequency Hopping systems	
	Antenna Type:	Chip Antenna	
	Antenna Gain:	4.61 dBi	(3)
5	Power Supply:	DC 5V	(\mathcal{C}^{\prime})
	Test Voltage:	DC 5V	
	Sample Received Date:	Jul.08, 2022	
	Sample tested Date:	Jul.18, 2022 to Aug.18, 2022)
			/



Page 6 of 57

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

4.3 Test Configuration

Software:	RTLBTAPP	
EUT Power Grade:	Class2 (Power level is built-in set pa selected)	rameters and cannot be changed and
Use test software to set the le transmitting of the EUT.	owest frequency, the middle frequency a	nd the highest frequency keep
Mode	Channel	Frequency(MHz)
	СНО	2402
DH1/DH3/DH5	СН39	2441
	CH78	2480
	СН0	2402
2DH1/2DH3/2DH5	СНЗ9	2441
	CH78	2480
	СН0	2402
3DH1/3DH3/3DH5	СН39	2441
	CH78	2480

4.4 Test Environment

	Operating Environment	t:				
	Radiated Spurious Emi	ssions:				
	Temperature:	22~25.0 °C				
	Humidity:	50~55 % RH				
	Atmospheric Pressure:	1010mbar				
	Conducted Emissions:					
	Temperature:	22~25.0 °C	\smile		\sim	
	Humidity:	50~55 % RH				
~	Atmospheric Pressure:	1010mbar		13		13
	RF Conducted:					
S.	Temperature:	22~25.0 °C		S		S
	Humidity:	50~55 % RH				
	Atmospheric Pressure:	1010mbar			-	

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Portable computer	DELL	Latitude 3490	FCC&CE	CTI
			(\mathcal{A})	

4.6 Test Location

All tests were performed at:

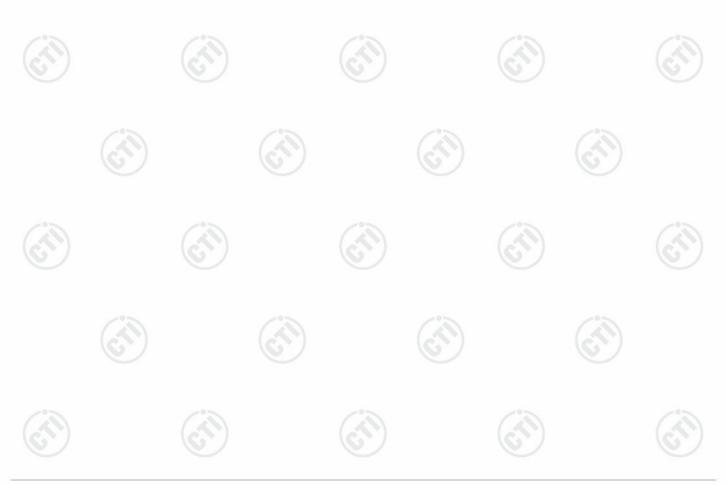
Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty	6
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	DE nower conducted	0.46dB (30MHz-1GHz)	
	RF power, conducted	0.55dB (1GHz-40GHz)	
5)	(G [*])	3.3dB (9kHz-30MHz)	
2	Dedicted Source emission test	4.3dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)	
		3.4dB (18GHz-40GHz)	10
4	Conduction emission	3.5dB (9kHz to 150kHz)	6
4	Conduction emission	3.1dB (150kHz to 30MHz)	Y
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	
	U III		

4.8 Equipment List

		Conduct	ed disturbance	Test	
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	04-15-2021	04-14-2022
Temperature / Humidity Indicator	Defu	TH128		6) (
LISN	R&S	ENV216	100098	03-04-2021	03-03-2022 02-28-2023
Barometer	changchun	DYM3	1188		(4)


RF test system							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022		
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022		
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022		
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022		
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022		
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022		
Communication test set	R&S	CMW500	120765	08-04-2021	08-03-2022		
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022		
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-24-2021	06-23-2022		
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518				

	3M Semi-an	echoic Chamber (2)	- Radiated distu	urbance Test	
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber &					
Accessory	TDK	SAC-3		05/24/2019	05/23/2022
Equipment	6	6		$\langle G \rangle$	G
Receiver	R&S	ESCI7	100938-003	10/14/2021	10/13/2022
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/23/2019	05/22/2022
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024
Multi device Controller	maturo	NCD/070/10711112		(A)-	-
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024
Spectrum Analyzer	R&S	FSP40	100416	04/29/2021	04/28/2022
Microwave Preamplifier	Agilent	8449B	3008A02425	06/23/2021	06/22/2022

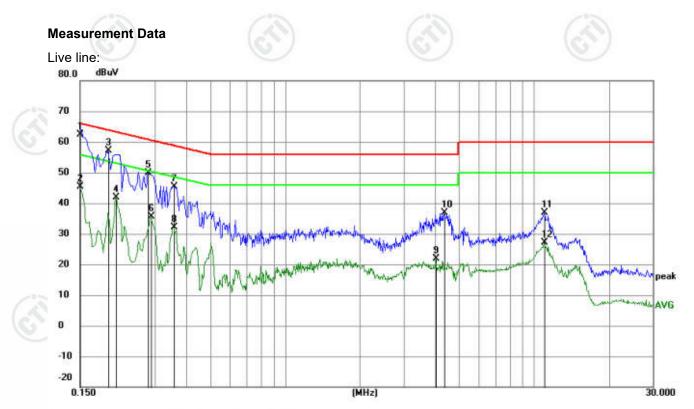
CTI 华测检测 Report No.: EED32080799103

		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-04-2021 03-01-2022	03-03-2022 02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021 02-23-2022	03-03-2022 02-22-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021 02-23-2022	03-03-2022 02-22-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022
Preamplifier	EMCI	EMC001330	980563	04-15-2021	04-14-2022
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		- 0
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	0	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	- 6	<u> </u>
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		2
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		- (2
Cable line	Times	HF160-KMKM-3.00M	393493-0001		

5 Test results and Measurement Data

5.1 Antenna Requirement

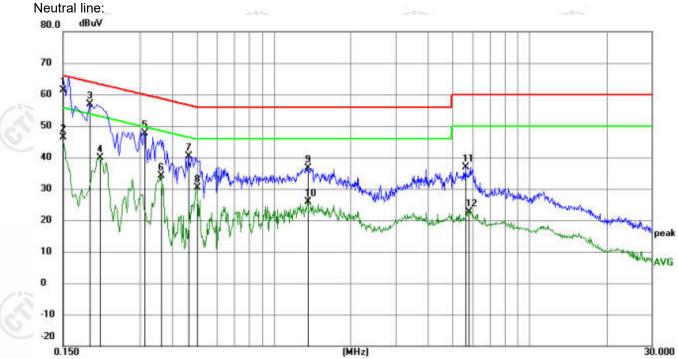
Stand	ard requirement	t: 47 CFR	Part 15C Sec	tion 15.203 /2	47(c)			
 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. 								
	ntenna:		ee Internal ph	notos				
The ar	ntenna is Chip an	itenna. The bes	st case gain o	f the antenna	is 4.61dBi.	(2)		


5.2 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.20	07			
 Test Method:	ANSI C63.10: 2013	01			
 Test Frequency Range:	150kHz to 30MHz				
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sw	voon timo-auto			
Limit:	$\frac{112, 000-3 \text{ km}^2, 000-30 \text{ km}^2, 000}{12, 000}$	•			
Liitiit.	Frequency range (MHz)	Limit (d	,		
	0.45.0.5	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm	of the frequency.			
Test Setup:					
	Ground Reference Plane				
Test Procedure:	1) The mains terminal disturb	ance voltage test was	conducted in a shielde		
	 2) The EUT was connected to Impedance Stabilization Ne impedance. The power cable connected to a second LISM reference plane in the same measured. A multiple socke power cables to a single LIS exceeded. 3) The tabletop EUT was place ground reference plane. An placed on the horizontal ground of the EUT shall be 0.4 m fr vertical ground reference plane reference plane. The LISN unit under test and bonded mounted on top of the groun between the closest points the EUT and associated equipment and all of the inter the interplane. 	twork) which provides les of all other units of N 2, which was bonded way as the LISN 1 fo e way as the LISN 1 fo et outlet strip was used SN provided the rating ed upon a non-metallic d for floor-standing arr ound reference plane, h a vertical ground reference from the vertical ground ane was bonded to the 1 was placed 0.8 m fro to a ground reference nd reference plane. Th of the LISN 1 and the uipment was at least 0 m emission, the relative	a $50\Omega/50\mu$ H + 5Ω linea the EUT were I to the ground r the unit being to connect multiple of the LISN was not table 0.8m above the angement, the EUT was erence plane. The rear reference plane. The horizontal ground m the boundary of the plane for LISNs is distance was EUT. All other units of .8 m from the LISN 2. e positions of		
	ANSI C63.10: 2013 on cond		gg		
Exploratory Test Mode:	Non-hopping transmitting mode		ation and all kind of		
	data type at the lowest, middle,				
 			GESK modulation at th		
Final Test Mode:	Through Pre-scan, find the D	H5 of data type and	GFSK modulation at th		
		H5 of data type and se.	GFSK modulation at th		

No. Mk	c. Free	q.	Reading Level	Correct Factor	Measure- ment		Margin		
	MHz	2	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.15	500	52.43	9.87	62.30	66.00	-3.70	QP	
2	0.15	500	35.57	9.87	45.44	56.00	-10.56	AVG	
3	0.19	949	47.31	9.87	57.18	63.83	-6.65	QP	
4	0.20	85	32.07	9.89	41.96	53.26	-11.30	AVG	
5	0.28	805	39.92	10.03	49.95	60.80	-10.85	QP	
6	0.28	95	25.52	10.05	35.57	50.54	-14.97	AVG	
7	0.35	570	35.40	10.01	45.41	58.80	-13.39	QP	
8	0.35	570	22.20	10.01	32.21	48.80	-16.59	AVG	
9	4.04	25	12.15	9.78	21.93	46.00	-24.07	AVG	
10	4.34	85	27.14	9.78	36.92	56.00	-19.08	QP	
11	10.96	35	27.04	9.81	36.85	60.00	-23.15	QP	
12	10.96	35	17.20	9.81	27.01	50.00	-22.99	AVG	

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.


```
Page 15 of 57
```

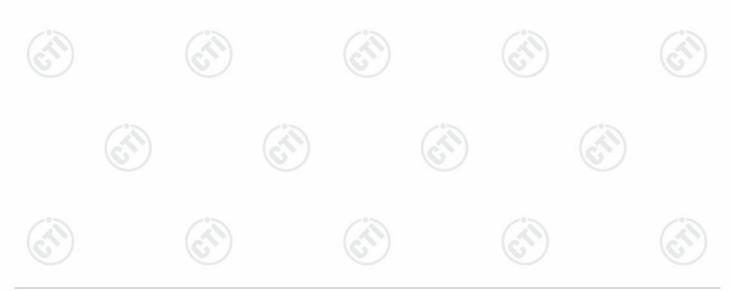

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	51.43	9.87	61.30	66.00	-4.70	QP	
2		0.1500	36.57	9.87	46.44	56.00	-9.56	AVG	
3		0.1905	47.01	9.87	56.88	64.01	-7.13	QP	
4		0.2085	30.08	9.89	39.97	53.26	-13.29	AVG	
5		0.3120	37.47	10.06	47.53	<u>59.92</u>	-12.39	QP	
6		0.3615	24.12	10.01	34.13	48.69	-14.56	AVG	
7		0.4650	30.49	9.96	40.45	56.60	-16.15	QP	
8		0.5010	20.31	9.95	30.26	46.00	-15.74	AVG	
9		1.3560	26.70	9.82	36.52	56.00	-19.48	QP	
10		1.3560	15.96	9.82	25.78	46.00	-20.22	AVG	
11		5.6400	27.14	9.78	36.92	60.00	-23.08	QP	
12		5.7885	12.73	9.78	22.51	50.00	-27.49	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

5.3 Maximum Conducted Output Power

	Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
	Test Method:	ANSI C63.10:2013
3	Test Setup:	
		Control Computer Supply Tuber Table
-13		Remark: Offset=Cable loss+ attenuation factor.
Ŷ	Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
	Limit:	21dBm
S)	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.



5.4 20dB Emission Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
	Test Method:	ANSI C63.10:2013					
	Test Setup:	E orted Computer Power Supply TemPERATURE CABNET Table					
	Test Procedure:	 Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report. 					
	Limit:	NA					
23	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type					
3	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.					
	Test Results:	Refer to Appendix A					
	Let N 1						

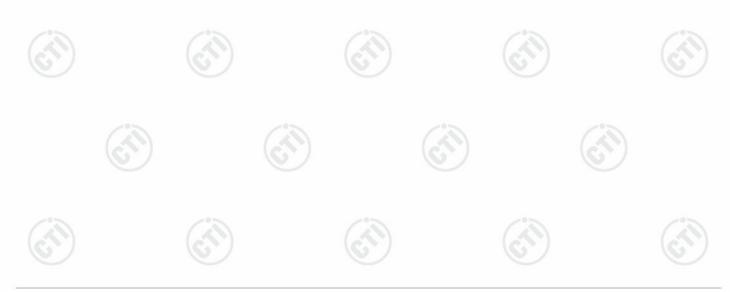
5.5 Carrier Frequency Separation

•••	ounior requency	
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
Ċ	Test Setup:	RF test Control Con
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
	Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
6	Test Results:	Refer to Appendix A



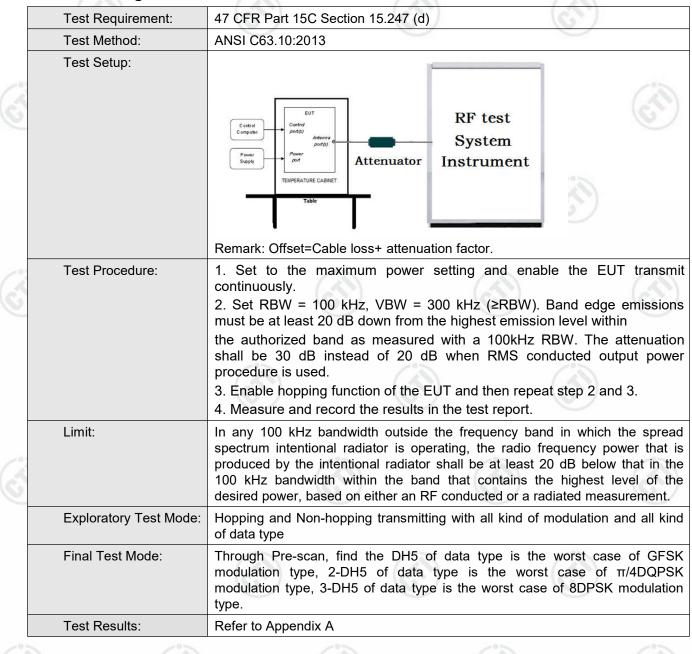
5.6 Number of Hopping Channel

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
	Test Method:	ANSI C63.10:2013					
(CN)	Test Setup:	Control Control Control Power Supply TemPERATURE CABNET Table					
2	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for					
		each measurement.2. Set to the maximum power setting and enable the EUT transm continuously.3. Enable the EUT hopping function.					
		4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold.					
3		5. The number of hopping frequency used is defined as the number of total channel.6. Record the measurement data in report.					
	Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.					
	Test Mode:	Hopping transmitting with all kind of modulation					
	Test Mode.						



5.7 Time of Occupancy

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)						
	Test Method:	ANSI C63.10:2013						
(0)	Test Setup:	Control Contro						
		Remark: Offset=Cable loss+ attenuation factor.						
N)	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by Rf cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 						
୍	Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.						
	Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.						
	Test Results:	Refer to Appendix A						
	G							



5.8 **Band edge Measurements**

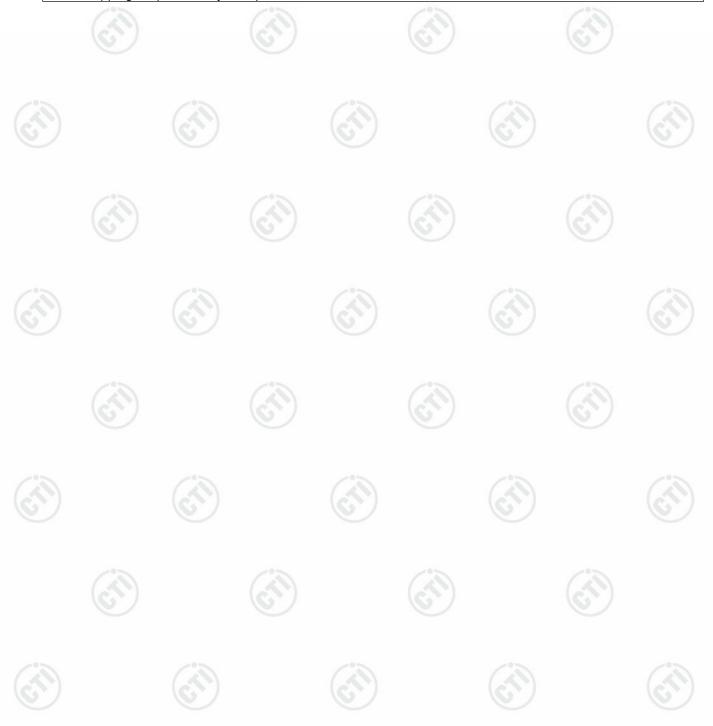
Hotline:400-6788-333

5.9 Conducted Spurious Emissions

	eenaaotea epanet		
	Test Requirement:	47 CFR Part 15C Section 15.247 (d	
	Test Method:	ANSI C63.10:2013	
(j)	Test Setup:	Control Computer Power Supply TemPERATURE CABINET Table	RF test System Instrument
		Remark: Offset=Cable loss+ attenua	ation factor.
3	Test Procedure:	 The RF output of EUT was concable and attenuator. The path loss measurement. Set to the maximum power continuously. Set RBW = 100 kHz, VBW = 300 harmonics / spurs must be at least level within the authorized band as referenced. 	nected to the spectrum analyzer by RF was compensated to the results for each setting and enable the EUT transmi 0kHz, scan up through 10th harmonic. Al t 20 dB down from the highest emissior measured with a 100kHz RBW.
Ś	Limit:	spectrum intentional radiator is ope produced by the intentional radiator 100 kHz bandwidth within the ban	the frequency band in which the spread erating, the radio frequency power that is shall be at least 20 dB below that in the d that contains the highest level of the er an RF conducted or a radiated
	Exploratory Test Mode:	Non-hopping transmitting with all kir	nd of modulation and all kind of data type
	Final Test Mode:	modulation type, 2-DH5 of data	of data type is the worst case of GFSK type is the worst case of $\pi/4DQPSK$ e is the worst case of 8DPSK modulation
10-			

Page 23 of 57

5.10 Pseudorandom Frequency Hopping Sequence 47 CFR Part 15C Section 15.247 (a)(1), (h) requirement: Test Requirement: The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted. Compliance for section 15.247(a)(1) According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a ninestage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 29 -1 = 511 bits · Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: 20 62 46 77 7 64 16 75 1 8 73 Each frequency used equally on the average by each transmitter. According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.


Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

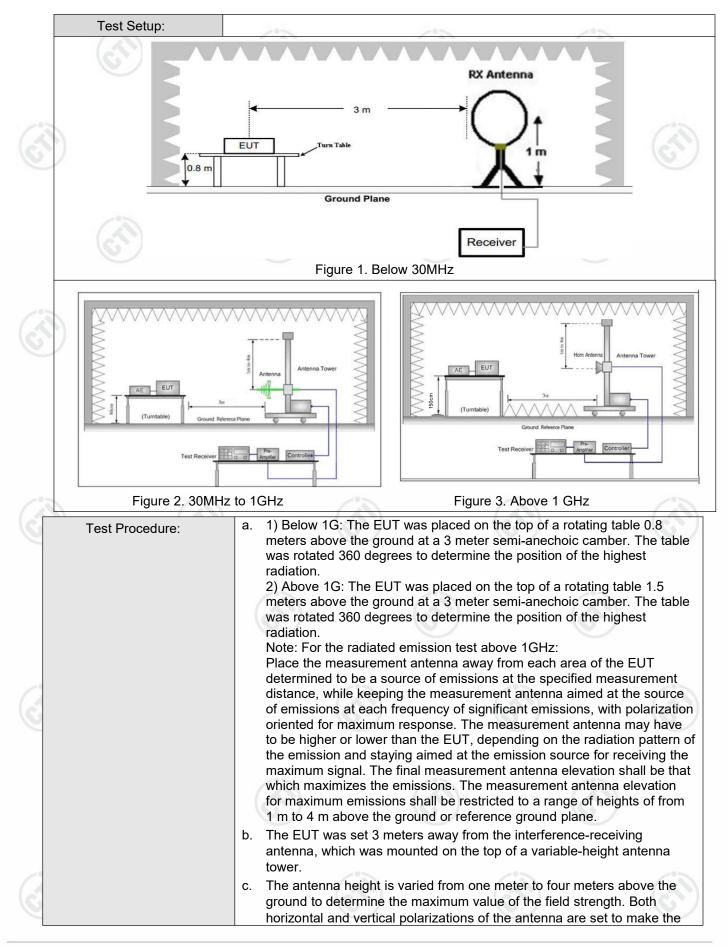
Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

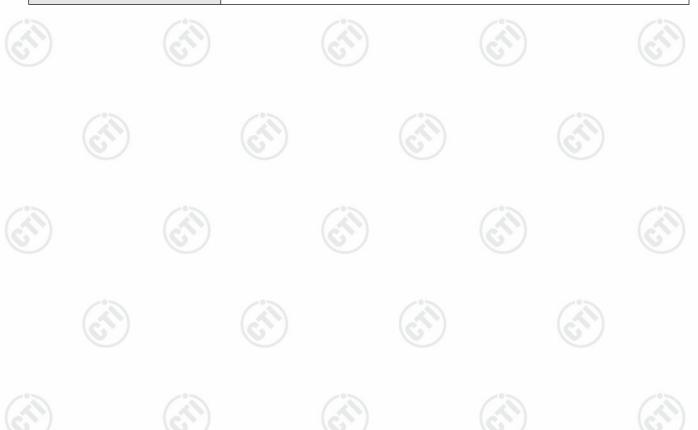
According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

5.11 Radiated Spurious Emission & Restricted bands

	Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15.	.205	6)	
	Test Method:	ANSI C63.10: 2013		\smile		\bigcirc	S	
	Test Site:	Measurement Distance	: 3m	ı (Semi-Anech	ioic Cham	ber)		
	Receiver Setup:	Frequency		Detector	RBW	VBW	Remark	
8		0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak	
-		0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average	
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak	
		0.110MHz-0.490MHz		Peak	10kHz	30kHz	Peak	
		0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average	
		0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak	
		30MHz-1GHz		Peak	100 kH	z 300kHz	Peak	
				Peak	1MHz	3MHz	Peak	
		Above 1GHz	0	Peak	1MHz	10kHz	Average	
	Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)	
		0.009MHz-0.490MHz	24	400/F(kHz)	-	-	300	
		0.490MHz-1.705MHz	24	000/F(kHz)	-	-73	30	
		1.705MHz-30MHz		30	-	0	30	
		30MHz-88MHz		100	40.0	Quasi-peak	3	
		88MHz-216MHz		150	43.5	Quasi-peak	3	
		216MHz-960MHz		200	46.0	Quasi-peak	3	
		960MHz-1GHz)	500	54.0	Quasi-peak	3	
-		Above 1GHz	/	500	54.0	Average	3	
		Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.						

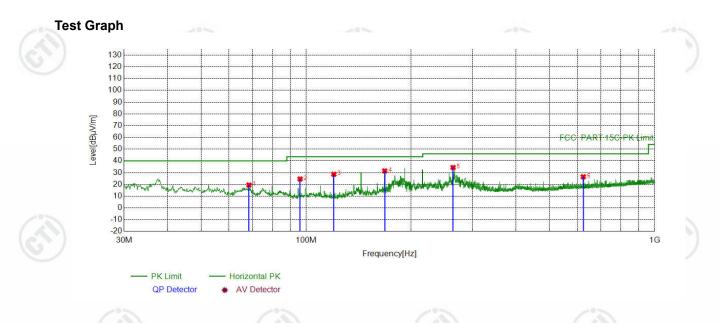


Page 26 of 57



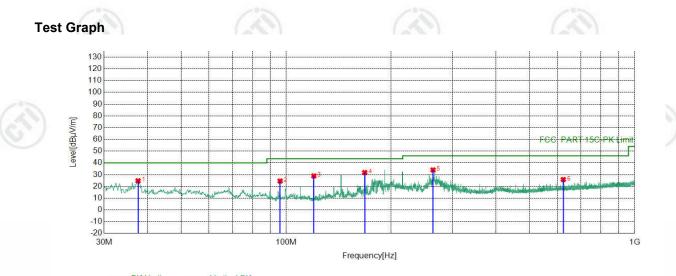
Report No. : EED32O80799103

	measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	 g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)
	 The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case.
	Pretest the EUT at Transmitting mode, For below 1GHz part, through pre- scan, the worst case is the lowest channel.
	Only the worst case is recorded in the report.
Test Results:	Pass



Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.


	Susp	ected List								
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Tolanty	Kennark
1	1	68.5129	-20.46	39.98	19.52	40.00	20.48	PASS	Horizontal	PK
G	2	96.0636	-19.08	43.71	24.63	43.50	18.87	PASS	Horizontal	PK
-	3	120.0250	-20.08	48.73	28.65	43.50	14.85	PASS	Horizontal	PK
	4	168.0448	-20.59	52.06	31.47	43.50	12.03	PASS	Horizontal	PK
	5	263.9874	-16.27	50.67	34.40	46.00	11.60	PASS	Horizontal	PK
	6	624.0874	-8.44	34.93	26.49	46.00	19.51	PASS	Horizontal	PK
		(\mathbf{C}^{*})		(5)		6)		(\mathbf{c})	

Page 29 of 57

PK Limit ---- Vertical PK QP Detector * AV Detector

Susp	ected List	-	-		-				
	Freq.	Factor	Reading	Level	Limit	Margin	D 1		
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark
1	37.5668	-18.80	43.60	24.80	40.00	15.20	PASS	Vertical	PK
2	96.0636	-19.08	43.69	24.61	43.50	18.89	PASS	Vertical	PK
3	120.0250	-20.08	49.00	28.92	43.50	14.58	PASS	Vertical	PK
4	168.0448	-20.59	52.37	31.78	43.50	11.72	PASS	Vertical	PK
5	263.9874	-16.27	50.29	34.02	46.00	11.98	PASS	Vertical	PK
6	624.0874	-8.44	34.32	25.88	46.00	20.12	PASS	Vertical	PK
		67)		6)	6	57		67)

Radiated Spurious Emission above 1GHz:

				1 A A							
M	lode	:	G	GFSK Transmit	tting		Channel:		2402 MHz	Z	
N	10	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	1298.8299	1.06	40.96	42.02	74.00	31.98	Pass	н	PK	
	2	1929.0929	4.18	39.31	43.49	74.00	30.51	Pass	Н	PK	
2	3	4804.1203	-16.23	70.66	54.43	74.00	19.57	Pass	Н	PK	
	4	4805.1203	-16.23	65.91	49.68	54.00	4.32	Pass	Н	PK	
	5	6405.2270	-12.85	53.64	40.79	74.00	33.21	Pass	н	PK	
	6	9210.4140	-7.89	51.50	43.61	74.00	30.39	Pass	Н	PK	
	7	1197.6198	0.80	45.31	46.11	74.00	27.89	Pass	V	PK	
	8	1630.6631	2.49	40.06	42.55	74.00	31.45	Pass	V	PK	
	9	4804.1203	-16.23	63.99	47.76	74.00	26.24	Pass	V	PK	
1	10	7723.3149	-11.12	52.66	41.54	74.00	32.46	Pass	V	PK	
1	11	11092.5395	-6.20	52.24	46.04	74.00	27.96	Pass	V	PK	
1	12	13723.7149	-1.74	50.96	49.22	74.00	24.78	Pass	V	PK	
						/					

Mod	e:		GFSK Transmit	tting	GFSK Transmitting				2
NO	Freq. [MHz]	Factor [dB]	Reading [dBμV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1413.6414	1.40	40.27	41.67	74.00	32.33	Pass	Н	PK
2	1899.4899	4.03	39.47	43.50	74.00	30.50	Pass	Н	PK
3	4882.1255	-16.21	68.87	52.66	74.00	21.34	Pass	Н	PK
4	7128.2752	-11.65	52.59	40.94	74.00	33.06	Pass	Н	PK
5	11133.5422	-6.28	51.73	45.45	74.00	28.55	Pass	Н	PK
6	12558.6372	-4.41	50.78	46.37	74.00	27.63	Pass	Н	PK
7	1196.0196	0.80	45.66	46.46	74.00	27.54	Pass	V	PK
8	1738.2738	3.07	40.52	43.59	74.00	30.41	Pass	V	PK
9	4882.1255	-16.21	63.60	47.39	74.00	26.61	Pass	V	PK
10	6858.2572	-12.07	53.17	41.10	74.00	32.90	Pass	V	PK
11	10213.4809	-7.04	52.15	45.11	74.00	28.89	Pass	V	PK
12	14301.7535	-0.41	49.49	49.08	74.00	24.92	Pass	V	PK

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

CTI华测检测 Report No. : EED32O80799103

Page 31 of 57

Mode	e:	(GFSK Transmit	tting		Channel:		2480 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1339.8340	1.19	40.45	41.64	74.00	32.36	Pass	Н	PK
2	1859.2859	3.72	39.93	43.65	74.00	30.35	Pass	Н	PK
3	4960.1307	-15.97	67.04	51.07	74.00	22.93	Pass	Н	PK
4	6971.2648	-11.82	52.93	41.11	74.00	32.89	Pass	Н	PK
5	9919.4613	-7.10	50.90	43.80	74.00	30.20	Pass	Н	PK
6	13690.7127	-1.76	50.85	49.09	74.00	24.91	Pass	Н	PK
7	1198.6199	0.80	42.72	43.52	74.00	30.48	Pass	V	PK
8	1734.6735	3.06	40.05	43.11	74.00	30.89	Pass	V	PK
9	4960.1307	-15.97	60.92	44.95	74.00	29.05	Pass	V	PK
10	6859.2573	-12.07	52.24	40.17	74.00	33.83	Pass	V	PK
11	9234.4156	-7.90	51.99	44.09	74.00	29.91	Pass	V	PK
12	13739.7160	-1.71	49.97	48.26	74.00	25.74	Pass	V	PK
1		16.		16.7	7	67	1		621
Mode	ə:		т/4DQPSK Tra	4DQPSK Transmitting			Channel:		2
		Factor							
NO	Freq. [MHz]	[dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
NO 1						Margin [dB] 31.56	Result Pass	Polarity H	Remark PK
	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]				
1	[MHz] 1198.2198	[dB] 0.80	[dBµV] 41.64	[dBµV/m] 42.44	[dBµV/m] 74.00	31.56	Pass	H	PK
1	[MHz] 1198.2198 1764.0764	[dB] 0.80 3.16	[dBµV] 41.64 40.53	[dBµV/m] 42.44 43.69	[dBµV/m] 74.00 74.00	31.56 30.31	Pass Pass	H H	PK PK
1 2 3	[MHz] 1198.2198 1764.0764 4804.1203	[dB] 0.80 3.16 -16.23	[dBµV] 41.64 40.53 73.66	[dBµV/m] 42.44 43.69 57.43	[dBµV/m] 74.00 74.00 74.00	31.56 30.31 16.57	Pass Pass Pass	H H H	PK PK PK
1 2 3 4	[MHz] 1198.2198 1764.0764 4804.1203 4805.1203	[dB] 0.80 3.16 -16.23 -16.23	[dBµV] 41.64 40.53 73.66 66.64	[dBµV/m] 42.44 43.69 57.43 50.41	[dBµV/m] 74.00 74.00 74.00 54.00	31.56 30.31 16.57 3.59	Pass Pass Pass Pass	H H H H	PK PK PK AV
1 2 3 4 5	[MHz] 1198.2198 1764.0764 4804.1203 4805.1203 7619.3080	[dB] 0.80 3.16 -16.23 -16.23 -11.19	[dBµV] 41.64 40.53 73.66 66.64 52.91	[dBµV/m] 42.44 43.69 57.43 50.41 41.72	[dBµV/m] 74.00 74.00 74.00 54.00 74.00	31.56 30.31 16.57 3.59 32.28	Pass Pass Pass Pass Pass	H H H H	PK PK PK AV PK
1 2 3 4 5 6	[MHz] 1198.2198 1764.0764 4804.1203 4805.1203 7619.3080 10219.4813	[dB] 0.80 3.16 -16.23 -16.23 -11.19 -7.00	[dBµV] 41.64 40.53 73.66 66.64 52.91 51.59	[dBµV/m] 42.44 43.69 57.43 50.41 41.72 44.59	[dBµV/m] 74.00 74.00 54.00 74.00 74.00 74.00	31.56 30.31 16.57 3.59 32.28 29.41	Pass Pass Pass Pass Pass Pass	H H H H H	PK PK PK AV PK PK
1 2 3 4 5 6 7	[MHz] 1198.2198 1764.0764 4804.1203 4805.1203 7619.3080 10219.4813 13241.6828	[dB] 0.80 3.16 -16.23 -16.23 -11.19 -7.00 -3.26	[dBµV] 41.64 40.53 73.66 66.64 52.91 51.59 50.75	[dBµV/m] 42.44 43.69 57.43 50.41 41.72 44.59 47.49	[dBµV/m] 74.00 74.00 54.00 74.00 74.00 74.00 74.00	31.56 30.31 16.57 3.59 32.28 29.41 26.51	Pass Pass Pass Pass Pass Pass Pass	H H H H H H	РК РК РК АV РК РК РК
1 2 3 4 5 6 7 8	[MHz] 1198.2198 1764.0764 4804.1203 4805.1203 7619.3080 10219.4813 13241.6828 1198.8199	[dB] 0.80 3.16 -16.23 -16.23 -11.19 -7.00 -3.26 0.80	[dBµV] 41.64 40.53 73.66 66.64 52.91 51.59 50.75 44.19	[dBµV/m] 42.44 43.69 57.43 50.41 41.72 44.59 47.49 44.99	[dBµV/m] 74.00 74.00 54.00 74.00 74.00 74.00 74.00 74.00	31.56 30.31 16.57 3.59 32.28 29.41 26.51 29.01	Pass Pass Pass Pass Pass Pass Pass Pass	H H H H H H V	РК РК АV РК РК РК РК
1 2 3 4 5 6 7 8 9	[MHz] 1198.2198 1764.0764 4804.1203 4805.1203 7619.3080 10219.4813 13241.6828 1198.8199 1848.4848	[dB] 0.80 3.16 -16.23 -16.23 -11.19 -7.00 -3.26 0.80 3.64	[dBµV] 41.64 40.53 73.66 66.64 52.91 51.59 50.75 44.19 39.63	[dBµV/m] 42.44 43.69 57.43 50.41 41.72 44.59 47.49 44.99 43.27	[dBµV/m] 74.00 74.00 54.00 74.00 74.00 74.00 74.00 74.00 74.00	31.56 30.31 16.57 3.59 32.28 29.41 26.51 29.01 30.73	Pass Pass Pass Pass Pass Pass Pass Pass	H H H H H H V V	РК РК АV РК РК РК РК РК
1 2 3 4 5 6 7 8 9 10	[MHz] 1198.2198 1764.0764 4804.1203 4805.1203 7619.3080 10219.4813 13241.6828 1198.8199 1848.4848 4804.1203	[dB] 0.80 3.16 -16.23 -16.23 -11.19 -7.00 -3.26 0.80 3.64 -16.23	[dBµV] 41.64 40.53 73.66 66.64 52.91 51.59 50.75 44.19 39.63 65.17	[dBµV/m] 42.44 43.69 57.43 50.41 41.72 44.59 47.49 44.99 43.27 48.94	[dBµV/m] 74.00 74.00 54.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	31.56 30.31 16.57 3.59 32.28 29.41 26.51 29.01 30.73 25.06	Pass Pass Pass Pass Pass Pass Pass Pass	H H H H H V V V V	РК РК АV РК РК РК РК РК РК

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

CTI华测检测

Report No. : EED32O80799103

Page 32 of 57

	Mode	:		π/4DQPSk	Trans	smitting		Channel:		2441 MHz	<u>:</u>
	NO	Freq. [MHz]	Factor [dB]	r Readi [dBµ ^v	0	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1161.4161	0.82	40.8	2	41.64	74.00	32.36	Pass	Н	PK
- 10	2	1839.8840	3.58	40.0	5	43.63	74.00	30.37	Pass	Н	PK
5	3	4882.1255	-16.21	1 71.5	9	55.38	74.00	18.62	Pass	Н	PK
2	4	4883.1255	-16.21	64.7)	48.49	54.00	5.51	Pass	Н	AV
	5	7643.3096	-11.14	52.7	3	41.64	74.00	32.36	Pass	Н	PK
	6	10316.4878	-6.43	50.9	1	44.48	74.00	29.52	Pass	Н	PK
	7	12421.6281	-4.72	51.4	1	46.72	74.00	27.28	Pass	Н	PK
	8	1199.8200	0.80	45.9	3	46.73	74.00	27.27	Pass	V	PK
	9	1824.2824	3.46	40.8)	44.35	74.00	29.65	Pass	V	PK
	10	4881.1254	-16.21	65.1)	48.89	74.00	25.11	Pass	V	PK
	11	7852.3235	-11.13	3 52.3	1	41.21	74.00	32.79	Pass	V	PK
à	12	11230.5487	-6.49	52.0	1	45.52	74.00	28.48	Pass	V	PK
5	13	13745.7164	-1.71	51.1	1	49.40	74.00	24.60	Pass	V	PK

Mode	: :	Π	/4DQPSK Tra	nsmitting		Channel:		2480 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1198.0198	0.80	41.82	42.62	74.00	31.38	Pass	Н	PK
2	1998.0998	4.54	39.23	43.77	74.00	30.23	Pass	Н	PK
3	4960.1307	-15.97	69.73	53.76	74.00	20.24	Pass	Н	PK
4	7778.3186	-11.31	52.66	41.35	74.00	32.65	Pass	Н	PK
5	10765.5177	-6.31	50.83	44.52	74.00	29.48	Pass	Н	PK
6	12398.6266	-4.70	50.83	46.13	74.00	27.87	Pass	Н	PK
7	1198.4198	0.80	44.28	45.08	74.00	28.92	Pass	V	PK
8	1965.0965	4.37	39.68	44.05	74.00	29.95	Pass	V	PK
9	4960.1307	-15.97	64.49	48.52	74.00	25.48	Pass	V	PK
10	6843.2562	-12.16	52.06	39.90	74.00	34.10	Pass	V	PK
11	8964.3976	-8.73	50.75	42.02	74.00	31.98	Pass	V	PK
12	11208.5472	-6.45	52.24	45.79	74.00	28.21	Pass	V	PK

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

CTI华测检测 Report No. : EED32O80799103

Page 33 of 57

Мо	de:		8DPSK Transm	nitting		Channel:		2402 MHz	2
NC	Freq. [MHz]	Factor [dB]	Reading [dBμV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1349.8350	1.22	40.54	41.76	74.00	32.24	Pass	Н	PK
2	1888.2888	3.94	39.47	43.41	74.00	30.59	Pass	Н	PK
3	4803.1202	-16.23	73.94	57.71	74.00	16.29	Pass	Н	PK
4	4805.1203	-16.23	65.95	49.72	54.00	4.28	Pass	Н	AV
5	6405.2270	-12.85	53.97	41.12	74.00	32.88	Pass	Н	PK
6	10817.5212	-6.25	50.93	44.68	74.00	29.32	Pass	Н	PK
7	14415.7611	0.99	48.65	49.64	74.00	24.36	Pass	Н	PK
8	1149.2149	0.83	42.42	43.25	74.00	30.75	Pass	V	PK
9	1751.0751	3.11	39.97	43.08	74.00	30.92	Pass	V	PK
10	4804.1203	-16.23	65.59	49.36	74.00	24.64	Pass	V	PK
11	6963.2642	-11.82	52.99	41.17	74.00	32.83	Pass	V	PK
12	9165.4110	-8.16	52.04	43.88	74.00	30.12	Pass	V	PK
13	12573.6382	-4.30	51.03	46.73	74.00	27.27	Pass	V	PK

Mod	e:	8	DPSK Transm	itting		Channel:		2441 MHz	Z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1140.0140	0.83	41.84	42.67	74.00	31.33	Pass	Н	PK
2	1752.6753	3.12	40.35	43.47	74.00	30.53	Pass	Н	PK
3	4882.1255	-16.21	71.66	55.45	74.00	18.55	Pass	Н	PK
4	4883.1255	-16.21	63.88	47.67	54.00	6.33	Pass	Н	AV
5	6509.2339	-12.70	54.39	41.69	74.00	32.31	Pass	Н	PK
6	10423.4949	-6.33	50.55	44.22	74.00	29.78	Pass	Н	PK
7	13740.7160	-1.71	50.45	48.74	74.00	25.26	Pass	Н	PK
8	1197.8198	0.80	45.40	46.20	74.00	27.80	Pass	V	PK
9	1739.0739	3.07	39.73	42.80	74.00	31.20	Pass	V	PK
10	4882.1255	-16.21	65.44	49.23	74.00	24.77	Pass	V	PK
11	6413.2275	-12.84	52.91	40.07	74.00	33.93	Pass	V	PK
12	10780.5187	-6.28	50.79	44.51	74.00	29.49	Pass	V	PK
12	12445.6297	-4.75	51.94	47.19	74.00	26.81	Pass	V	PK
0	· ·	(AN)			1		61	•	(~)

CTI 华测检测 Report No.: EED32080799103

Page 34 of 57

Mode	e:		8DPSK Transm	nitting		Channel:		2480 MHz	z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1354.0354	1.24	41.18	42.42	74.00	31.58	Pass	н	PK
2	1982.6983	4.46	40.57	45.03	74.00	28.97	Pass	Н	PK
3	4960.1307	-15.97	69.10	53.13	74.00	20.87	Pass	Н	PK
4	7784.3190	-11.33	53.41	42.08	74.00	31.92	Pass	Н	PK
5	10845.5230	-6.29	51.01	44.72	74.00	29.28	Pass	Н	PK
6	13758.7172	-1.69	50.23	48.54	74.00	25.46	Pass	Н	PK
7	1200.0200	0.80	43.89	44.69	74.00	29.31	Pass	V	PK
8	1907.4907	4.07	39.40	43.47	74.00	30.53	Pass	V	PK
9	4960.1307	-15.97	63.88	47.91	74.00	26.09	Pass	V	PK
10	7798.3199	-11.37	52.72	41.35	74.00	32.65	Pass	V	PK
11	9254.4170	-7.92	51.44	43.52	74.00	30.48	Pass	V	PK
12	13748.7166	-1.70	50.31	48.61	74.00	25.39	Pass	V	PK
· /		10.7	1	10.7	1	10.2			1000

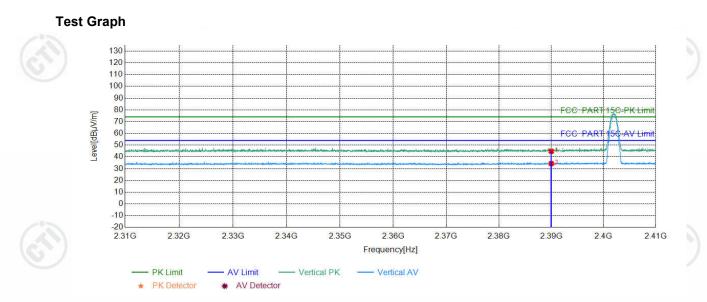
Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

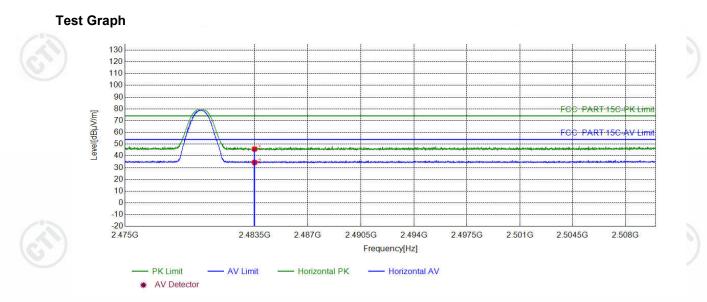
2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Page 35 of 57

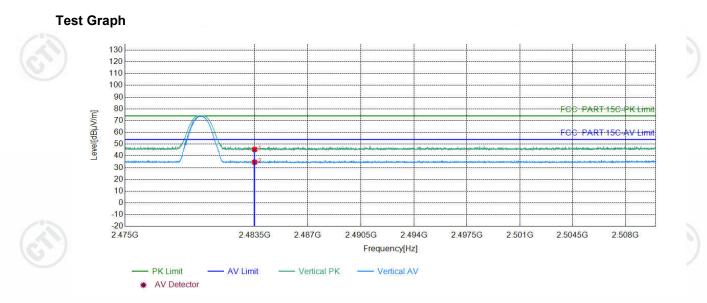


	Mode:	G	SK Transm	nitting		Channel:	240	2	
	Remark	:							
Test G	iraph								
	130 120								
	110 100								
	90 80						F	CC PART 10 - PKL	mit
and feller M/mil	70 60						F	CC PART 50 AV L	mit
	50 40			- Julion day		**************************************			-
	30 20							**************************************	
	10								
	-10								
	-20 2.31G 2.3	32G 2.3	3G 2.34G	2.35G Fre	2.36G 2.37 quency[Hz]	G 2.38G	2.39G	2.4G	2.41G
	PK Lim	nit <u> </u>	V Limit	lorizontal PK -	- Horizontal AV				
	🖈 PK Det	tector *	AV Detector						
Suspe	cted List			(2)	.)				1.20
	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
NO			20.10	44.95	74.00	29.05	PASS	Horizontal	PK
NO 1	2390.0000	5.77	39.18	++.00					

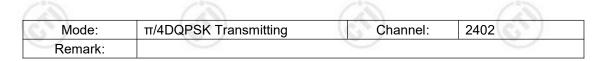
Sus NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	38.98	44.75	74.00	29.25	PASS	Vertical	PK
2	2390.0000	5.77	28.57	34.34	54.00	19.66	PASS	Vertical	AV
$\langle \Sigma \rangle$		(\sim)		(2))	(c	<u>()</u>		(\sim)

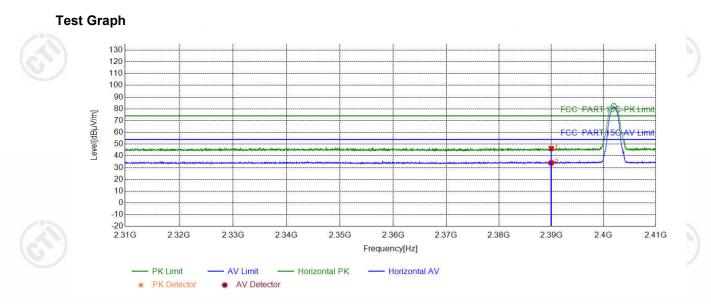


NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	39.26	45.83	74.00	28.17	PASS	Horizontal	PK
2	2483.5000	6.57	27.88	34.45	54.00	19.55	PASS	Horizontal	AV

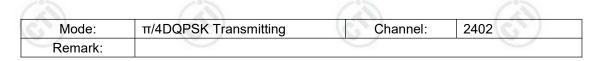


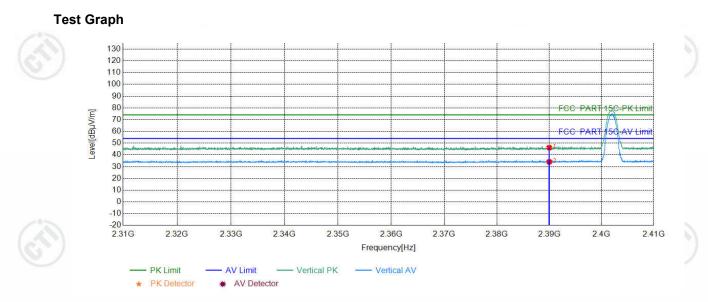
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	38.92	45.49	74.00	28.51	PASS	Vertical	PK
2	2483.5000	6.57	28.12	34.69	54.00	19.31	PASS	Vertical	AV



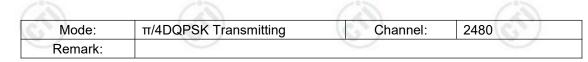


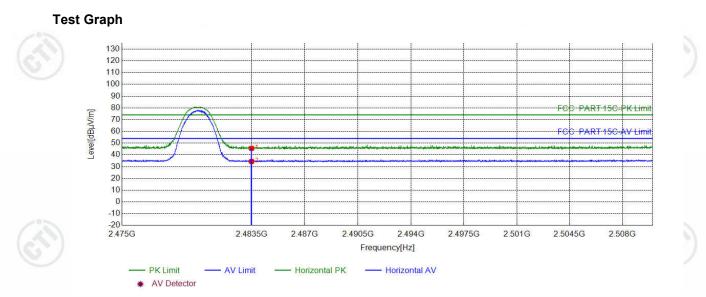
Susp NO	ected List Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.50	46.27	74.00	27.73	PASS	Horizontal	PK
2	2390.0000	5.77	28.26	34.03	54.00	19.97	PASS	Horizontal	AV
	2000.0000		20.20						



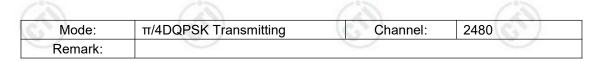


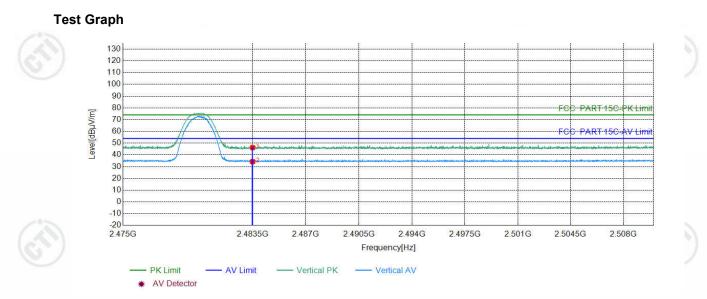
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.39	46.16	74.00	27.84	PASS	Vertical	PK
2	2390.0000	5.77	28.34	34.11	54.00	19.89	PASS	Vertical	AV



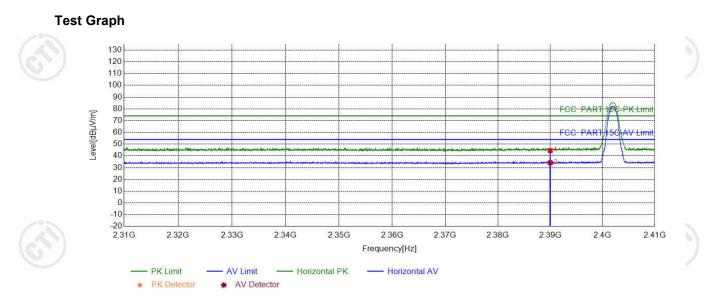


NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	39.01	45.58	74.00	28.42	PASS	Horizontal	PK
2	2483.5000	6.57	27.88	34.45	54.00	19.55	PASS	Horizontal	AV
	2400.0000	0.07	21.00	04.40	04.00	10.00	1 400	Honzontai	



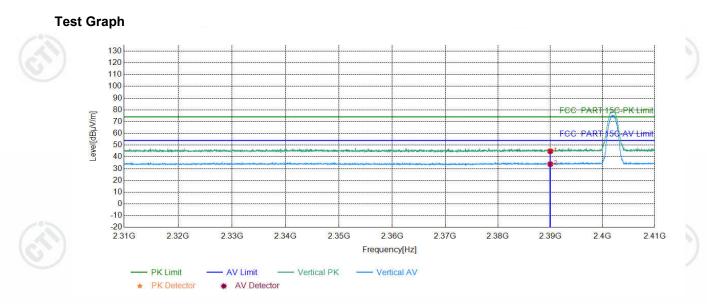


	uspe 10	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5000	6.57	39.64	46.21	74.00	27.79	PASS	Vertical	PK
6-	2	2483.5000	6.57	27.74	34.31	54.00	19.69	PASS	Vertical	AV
	2	2403.3000	0.57	21.14	04.01	34.00	19.09	F A33	ventical	(

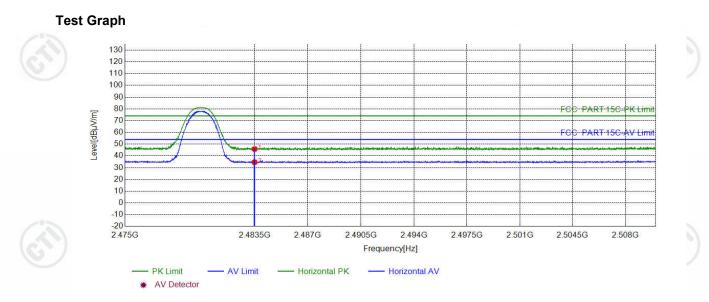


	Suspe NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	38.75	44.52	74.00	29.48	PASS	Horizontal	PK
-62	2	2390.0000	5.77	28.41	34.18	54.00	19.82	PASS	Horizontal	AV
5			(\sim)		(5)	($\langle \cdot \rangle$		(\mathcal{A})

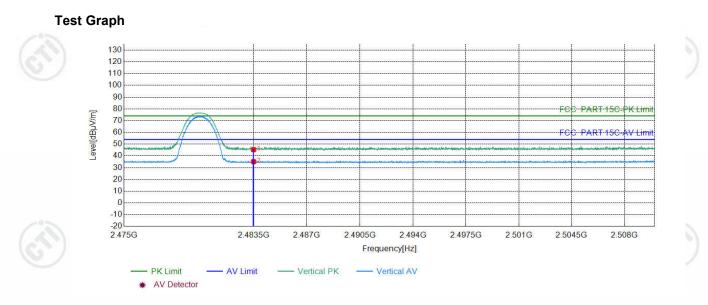




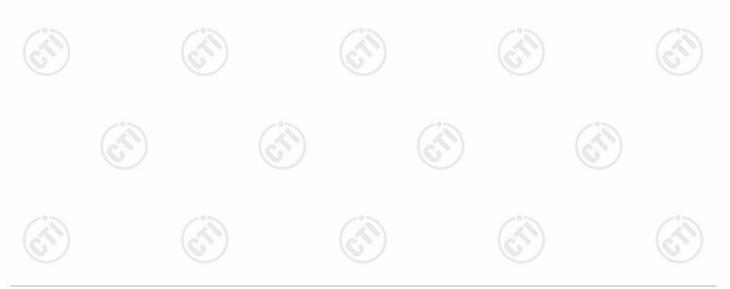
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	39.06	44.83	74.00	29.17	PASS	Vertical	PK
2	2390.0000	5.77	28.10	33.87	54.00	20.13	PASS	Vertical	AV



S	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5000	6.57	39.30	45.87	74.00	28.13	PASS	Horizontal	PK
	2	2483.5000	6.57	28.11	34.68	54.00	19.32	PASS	Horizontal	AV
)	2100.0000		20.11	01.00	01.00	10.02		Tionzontai	



Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com


NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	38.82	45.39	74.00	28.61	PASS	Vertical	AV
2	2483.5000	6.57	28.58	35.15	54.00	18.85	PASS	Vertical	PK

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Page 47 of 57

6 Appendix A

Refer to Appendix: Bluetooth Classic of EED32O80799103

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com