

SPORTON International Inc. No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Chic Technology Corp
Applicant Address	16F, No. 150, Chien-1 Road, 235 Chung Ho City, Taipei Hsien, Taiwan,
	R.O.C.
FCC ID	GV372242
Manufacturer's company	Chic Technology Corp
Manufacturer Address	Xiwang Industrial Park, Tian Tang Wei, Feng Gang, Dongguan, Guangdong, China.

Product Name	PilotMouse Laser Wireless
Brand Name	Kensington
Model Name	72242
Test Rule Part(s)	47 CFR FCC Part 15 Subpart C § 15.249
Test Freq. Range	2400 ~ 2483.5MHz
Receive Date	Jan. 10, 2006
Test Date	Jan. 12, 2006
Submission Type	Original Equipment

Statement

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full. The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.4-2003 and 47 CFR FCC Part 15 Subpart C. The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Lab Code: 200079-0

Table of Contents

1.	CER		1
2.	SUM	IMARY OF THE TEST RESULT	2
3.	GEN	NERAL INFORMATION	
	3.1.	Product Details	
	3.2.	Table for Filed Antenna	3
	3.3.	Table for Carrier Frequencies	3
	3.4.	Table for Test Modes	4
	3.5.	Table for Testing Locations	4
	3.6.	Table for Supporting Units	4
	3.7.	Test Configurations	5
4.	TEST	RESULT	
	4.1.	AC Power Line Conducted Emissions Measurement	
	4.2.	Field Strength of Fundamental Emissions Measurement	9
	4.3.	20dB Spectrum Bandwidth Measurement	13
	4.4.	Radiated Emissions Measurement	16
	4.5.	Band Edge Emissions Measurement	
	4.6.	Antenna Requirements	32
5.	LIST	OF MEASURING EQUIPMENTS	33
6.	SPO	RTON COMPANY PROFILE	34
	6.1.	Test Location	34
7.	NVL/	AP CERTIFICATE OF ACCREDITATION	35
AF	PENI	Dix A. Photographs of Eut	A1 ~ A15
AF	PENI	DIX B. TEST PHOTOS	B1 ~ B2

History of This Test Report

Original Issue Date: Feb. 7, 2006

Report No.: FR592017-01

- No additional attachment.
- Additional attachment were issued as following record:

Attachment No.	Issue Date	Description

1. CERTIFICATE OF COMPLIANCE

Product Name	:	PilotMouse Laser Wireless
Brand Name	:	Kensington
Model Name	:	72242
Applicant	:	Chic Technology Corp
Test Rule Part(s)	:	47 CFR FCC Part 15 Subpart C § 15.249

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Jan. 10, 2006 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Wayne Hsu / Supervisor Sporton International Inc.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C						
Part	Part Rule Section Description of Test		Result	Under Limit			
4.1	15.207	AC Power Line Conducted Emissions	Complies	-			
4.2	15.249(a)	Field Strength of Fundamental Emissions	Complies	30.25 dB			
4.3	15.215(c)	20dB Spectrum Bandwidth Compli		-			
4.4	15.249(a)/(d))/(d) Radiated Emissions Co		4.57 dB			
4.5	15.249(d) Band Edge Emissions		Complies	16.12 dB			
4.6	15.203	Antenna Requirements	Complies	-			

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.26dB	Confidence levels of 95%
Field Strength of Fundamental Emissions	±3.72dB	Confidence levels of 95%
20dB Spectrum Bandwidth	±6.25×10-7	Confidence levels of 95%
Radiated Emissions/ Band Edge Emissions	±3.72dB	Confidence levels of 95%

3. GENERAL INFORMATION

3.1. Product Details

Items	Description
Product Type	Low Power Communication Device
Radio Type	Intentional Transmitter
Power Type	3V DC From Battery for Transmitter
Interface Type	NA
Modulation	GFSK
Frequency Range	2400 ~ 2483.5MHz
Channel Band Width (99%)	1.70 MHz
Max. Field Strength	54.38dBuV/m at 3m (Average)
Carrier Frequencies	Please refer to section 3.3
Antenna	Please refer to section 3.2

3.2. Table for Filed Antenna

Ant.	Antenna Type	Connector	Gain (dBi)	
1	Printed Antenna	NA	0.00	

3.3. Table for Carrier Frequencies

Test Frequency				
2402 MHz	2432 MHz	2462 MHz		
2405 MHz	2435 MHz	2465 MHz		
2408 MHz	2439 MHz	2468 MHz		
2411 MHz	2441 MHz	2470 MHz		

3.4. Table for Test Modes

Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Channel	Antenna
AC Power Line Conducted Emissions	Normal Use	-	1
Radiated Emissions 9kHz~1GHz	CTX of X Axis	2435 MHz	1
Field Strength of Fundamental Emissions	CTX of X Axis	2402 MHz	1
Radiated Emissions 1GHz~10 th Harmonic		2435 MHz	
		2470 MHz	
Band Edge Emissions	CTX of X Axis	2402 MHz	1
		2470 MHz	
20dB Spectrum Bandwidth	СТХ	2402 MHz	NA
		2435 MHz	
		2470 MHz	

Note: CTX=continuously transmitting

3.5. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH03-HY	SAC	Hwa Ya	101377	IC 4088	-
CO04-HY	Conduction	Hwa Ya	101377	IC 4088	-
TH01-HY	OVEN Room	Hwa Ya	-	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC); Fully Anechoic Chamber (FAC). Please refer section 6 for Test Site Address.

3.6. Table for Supporting Units

Support Unit	Brand	Model	FCC ID
Notebook	DELL	PP01L	DoC
Printer	EPSON	LQ-680	DoC
Modem	ACEEX	DM-1414	-

3.7. Test Configurations

3.7.1. Radiation Emissions Test Configuration

3.7.2. AC Power Line Conduction Emissions Test Configuration

The transmitter is battery powered; there is no need to do this testing.

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

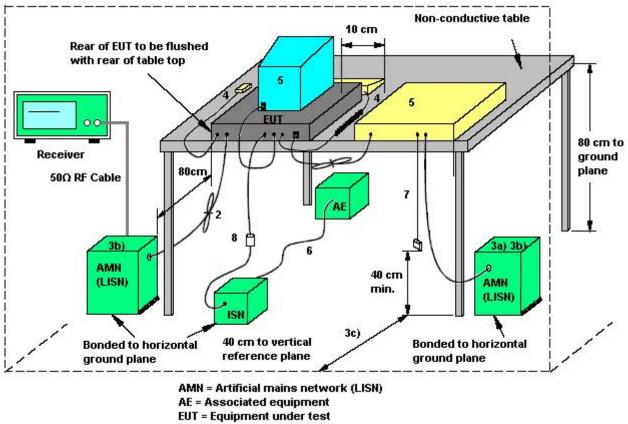
4.1.1. Limit

For a Low-power Radio-frequency Device which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)		
0.15~0.5	66~56	56~46		
0.5~5	56	46		
5~30	60	50		

4.1.2. Measuring Instruments and Setting

Please refer to section 5 in this report. The following table is the setting of the receiver.


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.4. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 KHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

4.1.4. Test Setup Layout

ISN = Impedance stabilization network

- 1. If cables, which hang closer than 40 cm to the horizontal metal groundplane, cannot be shortened to appropriate length, the excess shall be folded back and forth forming a bundle 30 cm to 40 cm long.
- 2. Excess mains cord shall be bundled in the centre or shortened to appropriate length.
- 3. EUT is connected to one artificial mains network (AMN). All AMNs and ISNs may alternatively be connected to a vertical reference plane or metal wall.
- 4. All other units of a system are powered from a second AMN. A multiple outlet strip can be used for multiple mains cords.
- 5. AMN and ISN are 80 cm from the EUT and at least 80 cm from other units and other metal planes.
- 6. Mains cords and signal cables shall be positioned for their entire lengths, as far as possible, at 40 cm from the vertical reference plane.
- 7. Cables of hand operated devices, such as keyboards, mouses, etc. shall be placed as for normal usage.
- 8. Peripherals shall be placed at a distance of 10 cm from each other and from the controller, except for the monitor which, if this is an acceptable installation practice, shall be placed directly on the top of the controller.
- 9. I/O signal cable intended for external connection.
- 10. The end of the I/O signal cables which are not connected to an AE may be terminated, if required, using correct terminating impedance.
- 11. If used, the current probe shall be placed at 0,1 m from the ISN.

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

4.1.7. Results of AC Power Line Conducted Emissions Measurement

The transmitter is battery powered; there is no need to do this testing.

4.2. Field Strength of Fundamental Emissions Measurement

4.2.1. Limit

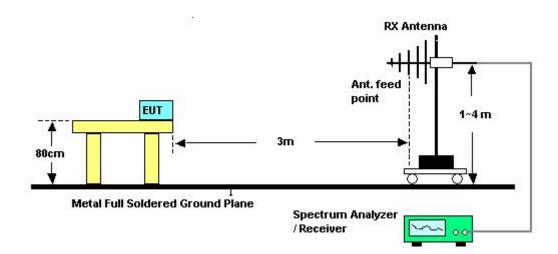
The field strength of emissions within these bands specified at a distance of 3 meters (measurement instrumentation employing an average detector) shall comply with the following table.

Frequency Band (MHz)	Fundamental Emissions Limit (dBuV/m) at 3m
2400-2483.5	94
5725-5875	94

4.2.2. Measuring Instruments and Setting

Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Power Meter Parameter	Setting			
Attenuation	Auto			
RB	MHz Peak / 1MHz Average			
VB	1 MHz Peak / 10Hz Average			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			


4.2.3. Test Procedures

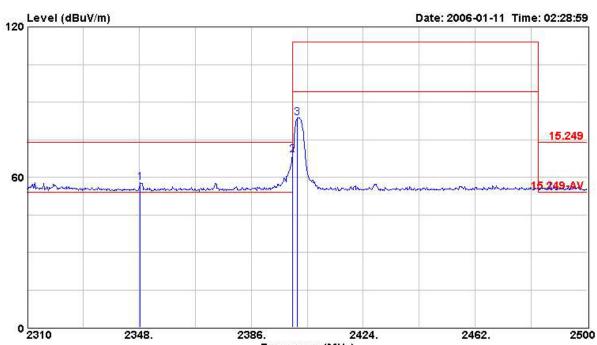
- 1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. For Fundamental emissions, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the

field strength is at its maximum value.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

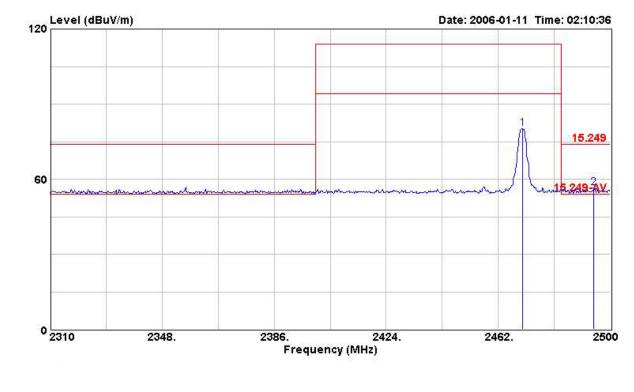
There is no deviation with the original standard.


4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.2.7. Test Result of Field Strength of Fundamental Emissions

Temperature	25℃	Humidity	56%
Test Engineer	Vic	Configurations	X axis / 2402 MHz ; 2470 MHz
2402 MHz			



F	requency	(MHz)

	Freq MHz	Level dBuV/m	Over Limit dB	Read Level dBuV	Limit Line dBuV/m		Antenna Factor 	Factor	Remark	Table Pos deg	Ant Pos cm
3 111	2401.770 2401.770		-30.25 -39.62	52.73 23.36	114.00 94.00	2.81 2.81	28.21 28.21		Peak Average		

2470 MHz

	Freq	Level	Over Limit	Read Level	Limit Line		Antenna Factor	3100 m.100 m .		Table Pos	Ant Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB/m	dB		deg	cm
1	2470.170	80.15	-33.85	48.97	114.00	2.84	28.34	0.00	Peak		
1	2469.980	50.78	-43.22	19.60	94.00	2.84	28.34	0.00	Average		

Note:

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

 $\label{eq:corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.$

Receiving maximum fundamental emissions are Vertical Polarization / Horizontal Polarization.

4.3. 20dB Spectrum Bandwidth Measurement

4.3.1. Limit

Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band (2400 \sim 2483.5MHz).

4.3.2. Measuring Instruments and Setting

Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 6dB Bandwidth
RB	100 kHz
VB	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- 2. The resolution bandwidth of 100 kHz and the video bandwidth of 100 kHz were used.
- 3. Measured the spectrum width with power higher than 6dB below carrier.

4.3.4. Test Setup Layout

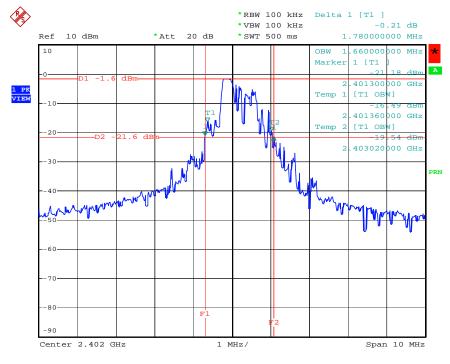
EUT

Spectrum Analayzer

4.3.5. Test Deviation

There is no deviation with the original standard.

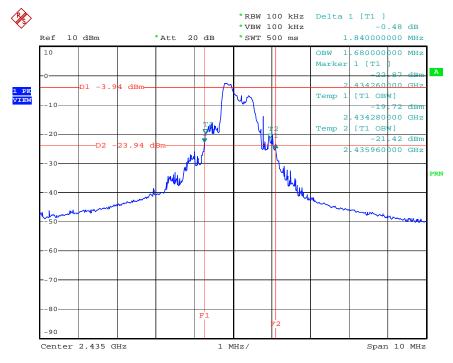
4.3.6. EUT Operation during Test


The EUT was programmed to be in continuously transmitting mode.

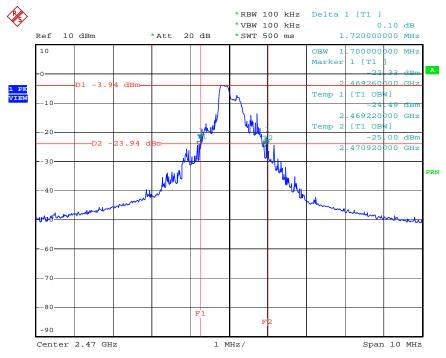
4.3.7. Test Result of 20dB Spectrum Bandwidth

Temperature	28 °C	Humidity	58%
Test Engineer	Eason Lu	Configurations	2402 MHz / 2435 MHz / 2470 MHz

Frequency	20dB BW (MHz)	99% OBW (MHz)	Frequency range (MHz) f _L > 2400MHz	Frequency range (MHz) f _H < 2483.5MHz	Test Result
2402 MHz	1.78	1.66	2401.3000	-	Complies
2435 MHz	1.84	1.68	-	-	Complies
2470 MHz	1.72	1.70	-	2470.9800	Complies


20 dB/99% Bandwidth Plot on 2402 MHz

Date: 11.JAN.2006 19:02:40



20 dB/99% Bandwidth Plot on 2435 MHz

Date: 11.JAN.2006 19:09:34

Date: 11.JAN.2006 19:07:07

4.4. Radiated Emissions Measurement

4.4.1. Limit

Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

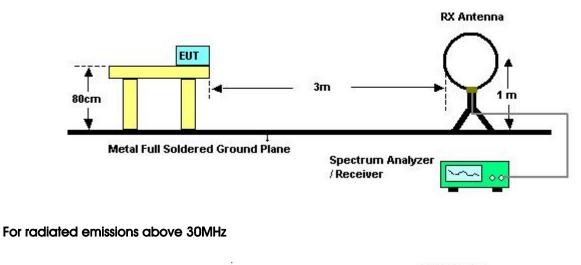
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

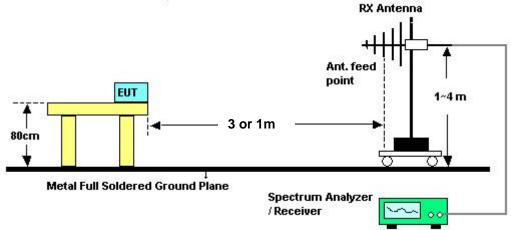
4.4.2. Measuring Instruments and Setting

Please refer to section 5 in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (other emission)	100KHz / 100KHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start \sim Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start \sim Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP


4.4.3. Test Procedures


- Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

4.4.4. Test Setup Layout

For radiated emissions below 30MHz

Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = 20 log (specific distanc [3m] / test distance [1m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [9.54 dB].

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.4.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	25 °C	Humidity	56%
Test Engineer	Vic	Configurations	2435 MHz

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

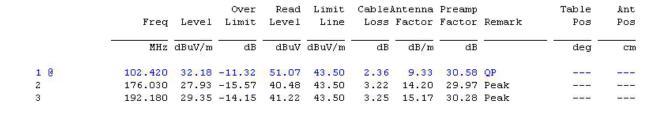
The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = $40 \log$ (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

15.249 -6dB

200

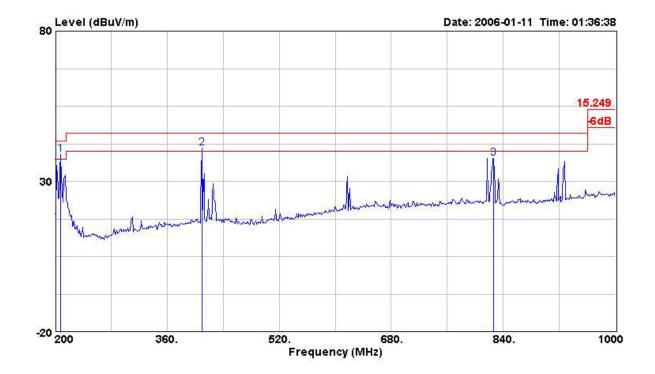

30

-20 <u>|</u>30

64.

4.4.8. Results of Radiated Emissions (30MHz~1GHz)

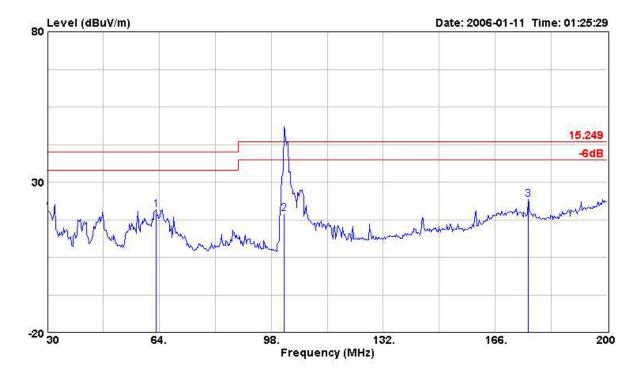
Temperature	25 °C	Humidity	56%					
Test Engineer	Vic	Configurations	2435 MHz					
Horizontal								
80 Level (dB	uV/m)		Date: 2006-01-11 Time: 01:08:36					


98.

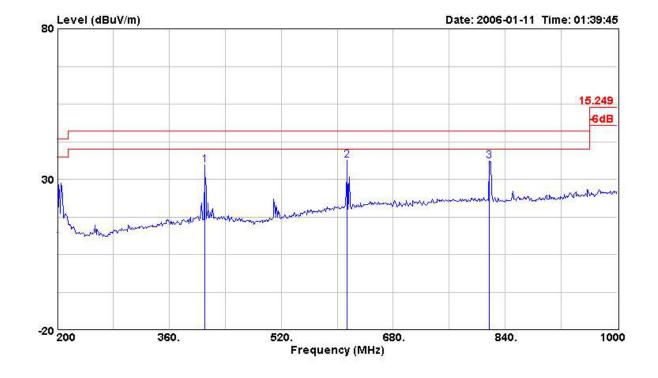
Frequency (MHz)

132.

166.



		Freq	Level	Over Limit	Read Level	Limit Line		Antenna Factor	- 2000 Marine 1	Remark	Table Pos	Ant Pos
		MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB/m	dB		deg	cm
1	0	208.000	38.93	-4.57	50.90	43.50	3.09	15.56	30.63	Peak		
2	0	409.600	41.10	-4.90	50.75	46.00	4.52	16.72	30.89	Peak		
3	0	826.400	37.68	-8.32	40.30	46.00	6.00	21.85	30.47	Peak		



Vertical

			Over	Read	Limit	Cable	Antenna	Preamp		Table	Ant
	Freq	Level	Limit	Level	Line	Loss	dB dB/m	Factor	Remark	Pos 	Pos cm
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB		dB			
1	62.980	20.79	-19.21	38.77	40.00	2.22	10.29	30.49	Peak		
2	101.910	19.39	-24.11	38.36	43.50	2.36	9.25	30.58	QP		
3	176.030	24.18	-19.32	36.73	43.50	3.22	14.20	29.97	Peak		<u></u>

		Freq	Level	Over Limit	Read Level			Antenna Factor	28 · · · · · · · · · · · · · · · · · · ·	Remark	Table Pos	Ant Pos
		MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB/m	dB		deg	cm
1	0	410.400	34.69	-11.31	44.31	46.00	4.53	16.71	30.86	Peak		
2	0	614.400	36.26	-9.74	41.48	46.00	5.25	20.44	30.91	Peak		
3	0	816.800	36.08	-9.92	38.53	46.00	6.24	21.87	30.56	Peak		

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

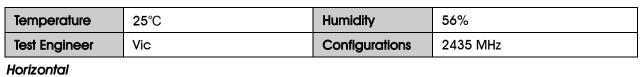
Pol. : V is Vertical Polarization ; H is Horizontal Polarization.

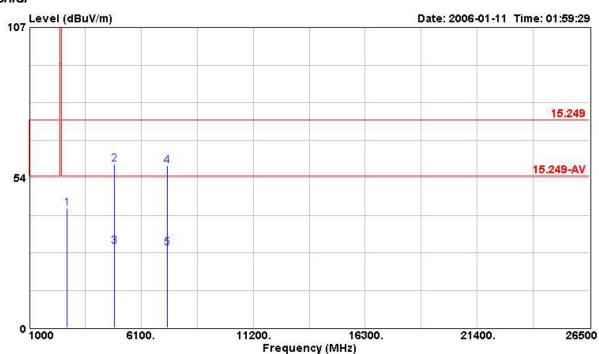
4.4.9. Results for Radiated Emissions (1GHz \sim 10th Harmonic)


Temperature	25°C	Humidity	56%
Test Engineer	Vic	Configurations	2402 MHz

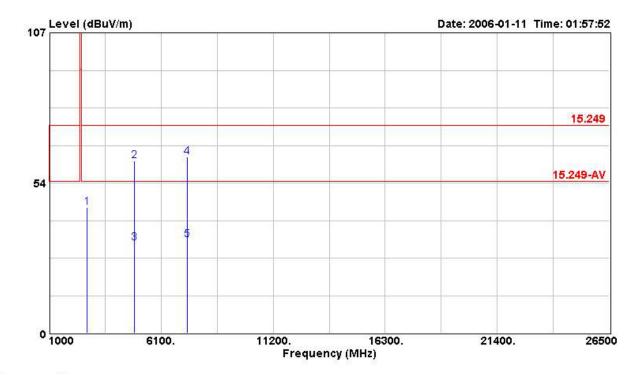
			Over	Read	Limit	Cable.	Antenna	Preamp		Table	Ant
	Freq	Level	Limit	Level	Line	Loss	Factor	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB/m	dB		deg	cm
1	2718.000	40.13	-33.87	40.97	74.00	3.01	29.14	32.99	Peak		
2	4808.000	58.33	-15.67	53.55	74.00	4.22	33.10	32.54	PEAK		
3	4808.000	28.96	-25.04	24.19	54.00	4.22	33.10	32.54	Average		
4	7204.000	59.74	-14.26	50.88	74.00	5.31	35.90	32.35	PEAK		

Horizontal



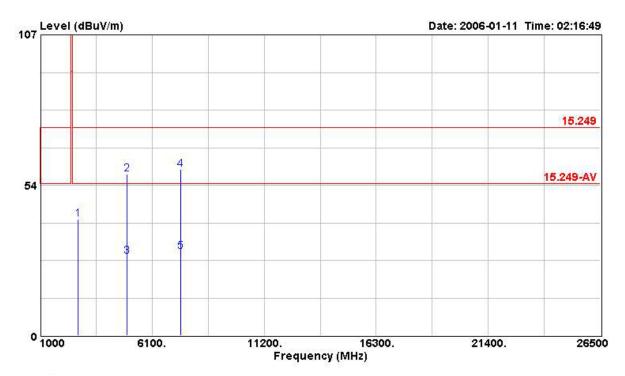

Vertical

			Over	Read	Limit	Cable.	Antenna	Preamp		Table	Ant
	Freq	Level	Limit	Level	Line	Loss	Factor	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB/m	dB		deg	cm
1	2718.000	41.55	-32.45	42.39	74.00	3.01	29.14	32.99	Peak		
2	4804.000	57.76	-16.24	52.98	74.00	4.22	33.10	32.54	PEAK		
3	4804.000	28.39	-25.61	23.62	54.00	4.22	33.10	32.54	Average		
4	7204.000	61.00	-13.00	52.14	74.00	5.31	35.90	32.35	PEAK		



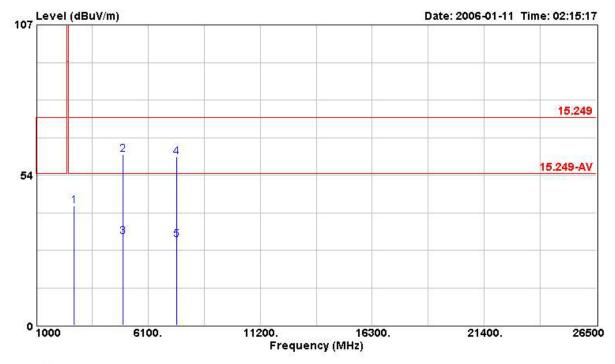
			Over	Read	Limit	Cable.	Antenna	Preamp		Table	Ant
	Freq	Level	Limit	Level	Line	Loss	Factor	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB/m	dB		deg	cm
1	2718.000	42.67	-31.33	43.51	74.00	3.01	29.14	32.99	Peak		
2	4872.000	58.38	-15.62	53.48	74.00	4.25	33.21	32.55	PEAK		
3	4872.000	29.01	-24.99	24.10	54.00	4.25	33.21	32.55	Average		
4	7304.000	57.72	-16.28	48.90	74.00	5.24	36.14	32.56	PEAK		
5	7304.000	28.35	-25.65	19.53	54.00	5.24	36.14	32.56	Average		

Vertical



			Over	Read	Limit	Cable.	Antenna	Preamp		Table	Ant
	Freq	Level	Limit	Level	Line	Loss	Factor	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB/m	dB		deg	cm
1	2718.000	44.68	-29.32	45.52	74.00	3.01	29.14	32.99	Peak		
2	4872.000	61.38	-12.62	56.48	74.00	4.25	33.21	32.55	PEAK		
3	4872.000	32.01	-21.99	27.10	54.00	4.25	33.21	32.55	Average		
40	7304.000	62.69	-11.31	53.87	74.00	5.24	36.14	32.56	PEAK		
5	7304.000	33.32	-20.68	24.50	54.00	5.24	36.14	32.56	Average		

Temperature	25 °C	Humidity	56%
Test Engineer	Vic	Configurations	2470 MHz


Horizontal

			Over	Read	Limit	Cablei	Antenna	Preamp		Table	Ant
	Freq	Level	Limit	Level	Line	Loss	Factor	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB/m	dB		deg	cm
1	2718.000	41.43	-32.57	42.27	74.00	3.01	29.14	32.99	Peak		
2	4940.000	57.45	-16.55	52.43	74.00	4.26	33.32	32.56	PEAK		
3	4940.000	28.08	-25.92	23.06	54.00	4.26	33.32	32.56	Average		
4	7408.000	59.11	-14.89	50.32	74.00	5.16	36.39	32.76	PEAK		
5	7408.000	29.74	-24.26	20.95	54.00	5.16	36.39	32.76	Average		

Vertical

			Over	Read	Limit	Cable.	Antenna	Preamp		Table	Ant
	Freq	Level	Limit	Level	Line	Loss	Factor	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB/m	dB		deg	cm
1	2718.000	42.48	-31.52	43.32	74.00	3.01	29.14	32.99	Peak		
2	4940.000	60.95	-13.05	55.93	74.00	4.26	33.32	32.56	PEAK		
3	4940.000	31.58	-22.42	26.56	54.00	4.26	33.32	32.56	Average		
4	7412.000	59.86	-14.14	51.07	74.00	5.16	36.39	32.76	PEAK		
5	7412.000	30.49	-23.51	21.70	54.00	5.16	36.39	32.76	Average		

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Pol.: V is Vertical Polarization ; H is Horizontal Polarization.

4.5. Band Edge Emissions Measurement

4.5.1. Limit

Band edge emissions radiated outside of the specified frequency bands shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.5.2. Measuring Instruments and Setting

Please refer to section 5 in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RB / VB (emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (other emission)	100 KHz /100 KHz for Peak

4.5.3. Test Procedures

- 1. The test procedure is the same as section 4.2.3, only the frequency range investigated is limited to 2MHz around bandedges.
- 2. In case the emission is fail due to the used RB/VB is too wide, marker-delta method of FCC Public Notice DA00-705 will be followed.

4.5.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.2.4.

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.5.7. Test Result of Band Edge Emissions

Temperature	25° C	Humidity	56%
Test Engineer	Vic	Configurations	X axis

2402 MHz

			Over	Read	Limit	Cable.	Antenna	Preamp		Table	Ant
	Freq	Level	Limit	Level	Line	Loss	Factor	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB/m	dB		deg	cm
1	2348.380	57.88	-16.12	26.97	74.00	2.79	28.12	0.00	Peak		
1	2348.380	28.51	-25.49	-2.40	54.00	2.79	28.12	0.00	Average		

2470 MHz

	Freq	Level	Over Limit	Read Level	Limit Line		Antenna Factor	31	Remark	Table Pos	Ant Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB/m	dB		deg	cm
2 2	2494.490 2494.490		-17.60 -26.97	25.16 -4.21	74.00 54.00	2.84 2.84	28.40 28.40	0.00 0.00	Peak Average		

Note:

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level. Receiving maximum band edge emissions are Vertical Polarization / Horizontal Polarization.

4.6. Antenna Requirements

4.6.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.6.2. Antenna Connector Construction

Please refer to section 3.2 in this test report, all antenna connectors comply with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30 MHz - 1 GHz 3m	Jun. 16, 2005	Radiation (03CH03-HY)
Amplifier	SCHAFFNER	CPA9231A	3565	9 kHz - 2 GHz	Mar. 08, 2005	Radiation (03CH03-HY)
Amplifier	Agilent	8449B	3008A02120	1 GHz - 26.5 GHz	May 31, 2005	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSP40	100004/040	9 kHZ - 40 GHz	Sep. 30, 2005	Radiation (03CH03-HY)
Biconical Antenna	SCHWARZBECK	VHBB 9124	301	30 MHz - 200 MHz	Jul. 22, 2005	Radiation (03CH03-HY)
Log Antenna	SCHWARZBECK	VUSLP 9111	221	200 MHz - 1 GHz	Jul. 22, 2005	Radiation (03CH03-HY)
Horn Antenna	EMCO	3115	6741	1 GHz - 18 GHz	Apr. 22, 2005	Radiation (03CH03-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30 MHz - 1 GHz	Feb. 22, 2005	Radiation (03CH03-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1 GHz - 40 GHz	Dec.01, 2005	Radiation (03CH03-HY)
Turn Table	HD	DS 420	420/650/00	0 - 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
Spectrum analyzer	R&S	FSP30	100023	9kHz ~ 30GHz	Nov. 26, 2005	Conducted (TH01-HY)
Power meter	R&S	NRVS	100444	DC ~ 40GHz	Jul. 06, 2005	Conducted (TH01-HY)
Power sensor	R&S	NRV-Z55	100049	DC ~ 40GHz	Jul. 06, 2005	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z32	100057	30MHz ~ 6GHz	Apr. 28, 2005	Conducted (TH01-HY)
AC power source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	Apr. 21, 2005	Conducted (TH01-HY)
DC power source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Dec. 28, 2005	Conducted (TH01-HY)
Temp. and Humidity Chamber	KSON	THS-C3L	612	N/A	Oct. 01, 2005	Conducted (TH01-HY)
RF CABLE-1m	Jye Bao	RG142	CB034-1m	20MHz ~ 7GHz	Dec. 30, 2005	Conducted (TH01-HY)
RF CABLE-2m	RF CABLE-2m Jye Bao RG142		CB035-2m	20MHz ~ 1GHz	Dec. 30, 2005	Conducted (TH01-HY)
Oscilloscope	Oscilloscope Tektronix TDS1012		CO38515	100MHz / 1GS/s	Apr. 15, 2005	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Dec. 30, 2005	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	May 24, 2004*	Radiation (03CH03-HY)
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15 GHz - 40 GHz	Jun. 09, 2004*	Radiation (03CH03-HY)
Data Generator	Tektronix	DG2030	063-2920-50	0.1Hz~400MHz	Jun. 02, 2005	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is two year.

6. SPORTON COMPANY PROFILE

SPORTON Lab. was established in 1986 with one shielded room: the first private EMI test facility, offering local manufacturers an alternative EMI test familial apart from ERSO. In 1988, one 3M and 10M/3M open area test site were setup and also obtained official accreditation from FCC, VCCI and NEMKO. In 1993, a Safety laboratory was founded and obtained accreditation from UL of USA, CSA of Canada and TUV (Rhineland & PS) of Germany. In 1995, one EMC lab, including EMI and EMS test facilities was setup. In 1997, SPORTON Group has provided financial expense to relocate the headquarter to Orient Scientific Park in Taipei Hsien to offer more comprehensive, more qualified and better service to local suppliers and manufactures. In 1999, Safety Group and Component Group were setup. In 2001, SPORTON has established 3M/10M chamber in Hwa Ya Technology Park.

6.1. Test Location

SHIJR	ADD	:	6Fl., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL	:	02-2696-2468
	FAX	:	02-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	03-327-3456
	FAX	:	03-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	02-2601-1640
	FAX	:	02-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	02-2631-4739
	FAX	:	02-2631-9740
JUNGHE	ADD	:	7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	02-8227-2020
	FAX	:	02-8227-2626
NEIHU	ADD	:	4FI., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	02-2794-8886
	FAX	:	02-2794-9777
JHUBEI	ADD	:	No.8, Lane 728, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.
	TEL	:	03-656-9065
	FAX	:	03-656-9085

7. NVLAP CERTIFICATE OF ACCREDITATION

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:1999

NVLAP LAB CODE: 200079-0

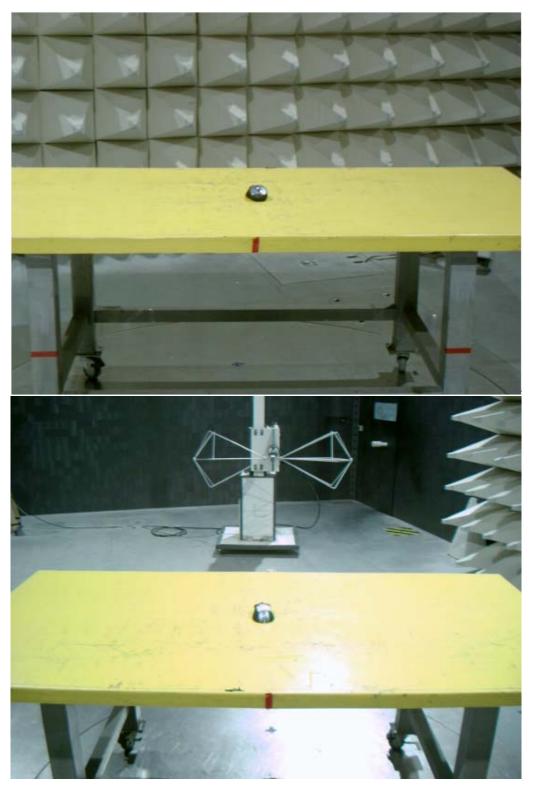
Sporton International, Inc. Hwa Ya EMC Laboratory

Tao Yuan Hsien 333 TAIWAN

is recognized by the National Voluntary Laboratory Accreditation Program for conformance with criteria set forth in NIST Handbook 150:2001 and all requirements of ISO/IEC 17025:1999. Accreditation is granted for specific services, listed on the Scope of Accreditation, for:

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

2006-01-01 through 2006-12-31 Effective dates


For the National Institute of Standards and Technology

Appendix B. Test Photos

1. Photographs of Radiated Emissions Test Configuration

FRONT VIEW

REAR VIEW