FCC PART 15.227 EMI MEASUREMENT AND TEST REPORT

For

Acco Brands Inc.

Gatehouse Road, Aylesbury, Bucks, England.

FCC ID: GV31500153

This Report Co	oncerns:	Equipment Type:				
🛛 Original Rep	ort	Transmitter, Wireless Mouse				
	ŀ	FANG?				
Test Engineer:	Hang Tan	A				
Report No.:	R0408268					
Report Date:	2004-09-28					
		Sec. 1				
Reviewed By:	Daniel Deng					
Prepared By:	Bay Area Compli	ance Laboratory Corporation				
	230 Commercial Street					
	Sunnyvale, CA 94085					
	Tel: (408) 732-9162					
	Fax: (408) 732-91	.64				

Note: The test report is specially limited to the above company and the product model only. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the US Government.

Acco Brands Inc. TABLE OF CONTENTS

GENERAL INFORMATION	3
DODITED TO CONTRACT CONTRACT LINDED TEST (EUT)	2
ODIECTIVE	2
	2
TEST METHODOLOGY	3
TEST FACILITY.	.3
SYSTEM TEST CONFIGURATION	4
JUSTIFICATION	4
SCHEMATICS AND BLOCK DIAGRAM	.4
Equipment Modifications	.4
TEST SETUP CONFIGURATION	4
SUMMARY OF TEST RESULTS	.5
\$15.203 - ANTENNA REQUIREMENT	.6
STANDARD APPLICABLE	.6
\$15.205. \$15.209. \$15.227(B) - RADIATED EMISSIONS TEST	7
Meassidement I incert a intro	7
EUT SETUP	7
Test Fourment List and Detail's	.7
Test Procedure	.8
CORRECTED AMPLITUDE & MARGIN CALCULATION	.9
SUMMARY OF TEST RESULTS	.9
RADIATED EMISSIONS TEST RESULT DATA, 3 METER1	0
§15.227(B) - OUT OF BAND EMISSION	1
TEST EQUIPMENT LIST AND DETAILS	1
TEST RESULT	1

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The Acco Brands Inc.'s product, model number:1500153 or the "EUT" as referred to in this report is the Transmitter, Wireless mouse. The EUT measures approximately 10.7cm L x 5.5cm W x 3.5cm H.

* The test data gathered are from production sample, serial number: A0432000001, provided by the manufacturer.

Objective

This Type approval report is prepared on behalf of Acco Brands Inc. in accordance with Part 2, Subpart J, and Part 15, Subparts A, B and C of the Federal Communication Commissions rules.

The objective to determine compliance with FCC rules, sec 15.203, 15.205, 15.209 and sec 15.227.

Related Submittal(s)/Grant(s)

No Related Submittals.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2001, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Open Area Test site used by Bay Area Compliance Laboratory Corporation to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Sunnyvale, California, USA.

Test site at Bay Area Compliance Laboratory Corporation has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the test methods and procedures set forth in ANSI C63.4-2001.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-1298 and R-1234. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratory Corporation is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (NVLAP). The scope of the accreditation covers the FCC Method - 47 CFR Part 15 - Digital Devices, CISPR 22: 2002, and AS/NZS 3548: Electromagnetic Interference - Limits and Methods of Measurement of Information Technology Equipment test methods under NVLAP Lab Code 200167-0.

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to ANSI C63.4-2001.

Schematics and Block Diagram

Please refer to Exhibit D.

Equipment Modifications

No modifications were made to the EUT.

Test Setup Configuration

Transmitter Mouse

SUMMARY OF TEST RESULT S

Results reported relate only to the product tested, serial number: A0432000001.

FCC RULES	DESCRIPTION OF TEST	RESULT		
§15.203	Antenna requirement	Compliant		
§15.205	Restricted Band	Compliant		
§15.209	Radiated Emission Limit	Compliant		
§15.227	Frequency of Operation	Compliant		
§15.227(a)	Field Strength	Compliant		
§15.227(b)	Band Edge	Compliant		

§15.203 - ANTENNA REQUIREMENT

Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

The antenna for this device is an integral antenna that the end user cannot access.

§15.205, §15.209, §15.227(b) - RADIATED EMISSIONS TEST

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at BACL is ± 4.0 dB.

EUT Setup

The radiated emission tests were performed in the open area 3-meter test site, using the setup accordance with the ANSI C63.4-2001. The specification used was the FCC Part 15 Subpart C limits.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Frequency Range	RBW	Video B/W
Below 30MHz	10KHz	10KHz
30 – 1000MHz	100KHz	100KHz
Above 1000MHz	1MHz	1MHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date
HP	Adapter, Quasi-Peak	85650A	3107A01505	2003-09-30
Agilent	Amplifier, Pre	8447D	2944A10187	2003-09-23
HP	Analyzer, Spectrum, RF	8566B	2332A02816	2004-08-13
HP	Analyzer, Spectrum, Display	85662A	2332A02816	2004-08-13
ETS	Antenna, Loop, H-Field, Passive	6512	34167	2004-03-26
EMCO	Antenna, Biconical	3110B	9309-1165	2003-10-11
EMCO	Antenna, Log-Periodic	3146	2101	2003-11-08
Rohde & Schwarz	Signal Generator	SM1Q03	DE23746	2004-07-03
HP	Plotter	7475A	2517A05739	N/R
Sunol Sciences	System Controller	SC99V	011003-1	N/R

* **Statement of Tr aceability:** BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions in the described configurations.

According to FCC rules 15.33 (c) Unless otherwise specified, e.g. §15.255(b), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

According to FCC rules 15.33 (c) and ANSI C63.4-2001 Annex I.4, when average detector function limits are specified for a pulse-modulated transmitter, the average level of emission may be found by measuring the peak level of the emissions and correcting them with the duty cycle as follows:

- 1) Turn on the transmitter, and set it to transmit the pulse train continuously.
- 2) Tune a spectrum analyzer to the transmitter, carrier frequency, and set the spectrum analyzer resolution bandwidth wide enough to encompass all significant spectral components. The video bandwidth should be at least as wide as the resolution bandwidth.
- 3) Set the spectrum analyzer vertical scale (amplitude) to the linear mode and the analyzer frequency scan to 0Hz.
- 4) Calculate the duty cycle = Tx on / 100 ms
- 5) Multiply the peak-detector field strength (expressed in uV/m) of an emission from a transmitter using pulsed modulation by the duty cycle just measured to determine the average detector field strength of that emission for comparison to the average detector limit.

Please refer to the plots in next page for duty cycle.

The pulse train of the EUT is 88.20ms (Please refer to the following plot) which is not longer than 0.1s, so duty cycle = 0.882, the average value = peak value * duty cycle.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Limit

Summary of Test Results

According to the final data in following table, the EUT <u>complied with the FCC 15.227 and FCC 15.209</u> standards, and had the worst margin of:

-14.50dB at 324.49MHz in the Horizontal polarization, 3 Meter

Environmental Conditions

Temperature:	24° C
Relative Humidity:	61%
ATM Pressure:	1013 mbar

* The testing was performed by Hang Tan on 2004-09-13.

Acco Brands Inc.

INDICA	ATED	TABLE	ANTE	INNA	Corre	ECTION F.	ACTOR	CORRECTE AMPLITUD	Ι	FCC SUBPA	rt C
Frequency	Ampl.	Angle	Height	Pola r	Antenna	Cable	Amp.	Corr. Ampl.	Limit	Margin	Comment
MHz	dBµV/ m	Degree	Meter	H/ V	dB	dB	dB	dBµV/m	dBµV /m	dB	
324.49	41.6	0	1.4	Н	13.7	3.8	27.6	31.5	46	-14.50	Peak
54.09	41.6	0	1.1	V	10.5	1.6	28.6	25.1	40	-14.90	Peak
81.14	40.8	0	1.2	V	9.6	1.9	28.6	23.7	40	-16.30	Peak
351.55	37.9	0	1.3	Н	15.1	4.2	27.7	29.5	46	-16.50	Peak
351.55	37.0	0	1.2	V	15.1	4.2	27.7	28.6	46	-17.40	Peak
378.58	37.1	0	1.1	V	15.1	4.1	27.9	28.4	46	-17.60	Peak
324.49	38.4	0	1.1	V	13.7	3.8	27.6	28.3	46	-17.70	Peak
108.18	39.5	0	1.1	V	11.4	2.1	28.3	24.7	43.5	-18.80	Peak
297.47	38.1	0	1.4	Н	12.7	3.7	27.3	27.2	46	-18.80	Peak
81.14	37.5	0	1.4	Н	9.6	1.9	28.6	20.4	40	-19.60	Peak
270.45	38.0	0	1.3	V	12.0	3.4	27.5	25.9	46	-20.10	Peak
54.09	35.8	0	1.5	Н	10.5	1.6	28.6	19.3	40	-20.70	Peak
297.47	35.3	0	1.3	V	12.7	3.7	27.3	24.4	46	-21.60	Peak
378.58	33.1	0	1.3	Н	15.1	4.1	27.9	24.4	46	-21.60	Peak
270.45	36.2	0	1.5	Н	12.0	3.4	27.5	24.1	46	-21.90	Peak
135.23	33.2	0	1.5	Н	12.9	2.4	28.3	20.2	43.5	-23.30	Peak
135.23	32.9	0	1.1	V	12.9	2.4	28.3	19.9	43.5	-23.60	Peak
108.18	33.9	0	1.4	Н	11.4	2.1	28.3	19.1	43.5	-24.40	Peak
27.045	(Ave = Peak * Duty Cycle = $171.79 \mu V/m * 0.882 = 151.52 \mu V/m$)				43.6	80	-36.39	Fund/Ave			
27.045	(Ave = Pe	ak * Duty	aty Cycle = $301.99 \mu V/m * 0.882 = 266.36 \mu V/m$)			48.5	80	-31.49	Fund/Ave		
27.045	62.4	0	1.2	V	15.3	0.4	28.5	49.6	100	-50.40	Fund/Peak
27.045	57.5	0	1.2	Н	15.3	0.4	28.5	44.7	100	-55.30	Fund/Peak

Radiated Emissions Test Result Data, 3 Meter

The transmitter was placed in continuous transmit mode for all tests.

Since the test result of peak data are below the average limit, the average data are not necessarily provided.

The EUT was tested in all 3 orthogonal planes.

§15.227(b) - Out of Band Emission

Manufacturer	Description	Model	Serial Number	Cal. Date	
HP	Adapter, Quasi-Peak	85650A	3107A01505	2003-09-30	
Agilent	Amplifier, Pre	8447D	2944A10187	2003-09-23	
HP	Analyzer, Spectrum, RF	8566B	2332A02816	2004-08-13	
HP	Analyzer, Spectrum, Display	85662A	2332A02816	2004-08-13	
EMCO	Antenna, Biconical	3110B	9309-1165	2003-10-11	
EMCO	Antenna, Log-Periodic	3146	2101	2003-11-08	
Rohde & Schwarz	Signal Generator	SM1Q03	DE23746	2004-07-03	
HP	Plotter	7475A	2517A05739	N/R	
Sunol Sciences	System Controller	SC99V	011003-1	N/R	

Test Equipment List and Details

* **Statement of Traceability:** BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Test Result

The result has been complied with the 15.227(b), see the following plot:

