APPLICATION CERTIFICATION On Behalf of ACCO Brands, Inc.

KEYFOLIO EXPERT BLUETOOTH KEYBOARD Model No.: M01147

FCC ID: GV3-M01147

Prepared for : ACCO Brands, Inc.

Address : 333 Twin Dolphin Drive, 6th Floor, Redwood Shores,

California, United States

Prepared by : ACCURATE TECHNOLOGY CO. LTD

Address : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20120132
Date of Test : February 9-21, 2012
Date of Report : February 21, 2012

TABLE OF CONTENTS

Description	Page
1	\mathcal{L}

Test Report Certification

1.	\mathbf{G}	ENERAL INFORMATION	5
	1.1.	Description of Device (EUT)	5
	1.2.	Accessory and Auxiliary Equipment	
	1.3.	Description of Test Facility	
	1.4.	Measurement Uncertainty	
2.	M	IEASURING DEVICE AND TEST EQUIPMENT	
3.		PERATION OF EUT DURING TESTING	
	3.1.	Operating Mode	
	3.2.	Configuration and peripherals	
4.		EST PROCEDURES AND RESULTS	
5.		ODB BANDWIDTH TEST	
	5.1.	Block Diagram of Test Setup	
	5.2.	The Requirement For Section 15.247(a)(1)	
	5.3.	EUT Configuration on Measurement	
	5.4.	Operating Condition of EUT	
	5.5.	Test Procedure	
	5.6.	Test Result	
6.	C	ARRIER FREQUENCY SEPARATION TEST	15
	6.1.	Block Diagram of Test Setup	
	6.2.	The Requirement For Section 15.247(a)(1)	
	6.3.	EUT Configuration on Measurement	
	6.4.	Operating Condition of EUT	
	6.5.	Test Procedure	16
	6.6.	Test Result	16
7.	N	UMBER OF HOPPING FREQUENCY TEST	20
	7.1.	Block Diagram of Test Setup	
	7.2.	The Requirement For Section 15.247(a)(1)(iii)	20
	7.3.	EUT Configuration on Measurement	
	7.4.	Operating Condition of EUT	
	7.5.	Test Procedure	
	7.6.	Test Result	
8.	D	WELL TIME TEST	25
	8.1.	Block Diagram of Test Setup	25
	8.2.	The Requirement For Section 15.247(a)(1)(iii)	25
	8.3.	EUT Configuration on Measurement	
	8.4.	Operating Condition of EUT	
	8.5.	Test Procedure	
	8.6.	Test Result	
9.	M	IAXIMUM PEAK OUTPUT POWER TEST	
	9.1.	Block Diagram of Test Setup	
	9.2.	The Requirement For Section 15.247(b)(1)	
	9.3.	EUT Configuration on Measurement	
	9.4.	Operating Condition of EUT	30

9.6. Test Result	35
	35
10.1. Block Diagram of Test Setup	
10.2. The Requirement For Section 15.247(d)	
10.3. EUT Configuration on Measurement	35
10.4. Operating Condition of EUT	36
10.5. Test Procedure	36
10.6. Test Result	37
11. RADIATED SPURIOUS EMISSION TEST	48
11.1. Block Diagram of Test Setup	48
11.2. The Limit For Section 15.247(d)	48
11.3. Restricted bands of operation	49
11.4. Configuration of EUT on Measurement	49
11.5. Operating Condition of EUT	50
11.6. Test Procedure	
11.7. The Field Strength of Radiation Emission Measurement Results	51
12. CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST	72
12.1. Block Diagram of Test Setup	72
12.2. The Requirement For Section 15.247(d)	72
12.3. EUT Configuration on Measurement	72
12.4. Operating Condition of EUT	73
12.5. Test Procedure	73
12.6. Test Result	73
13. AC POWER LINE CONDUCTED EMISSION FOR FCC PART 15 S	SECTION 15.207(A)77
13.1. Block Diagram of Test Setup	77
13.2. The Emission Limit	77
13.3. Configuration of EUT on Measurement	78
13.4. Operating Condition of EUT	78
13.5. Test Procedure	78
13.6. Power Line Conducted Emission Measurement Results	79
14. ANTENNA REQUIREMENT	82
14.1. The Requirement	82
14.2. Antenna Construction	

Test Report Certification

Applicant : ACCO Brands, Inc.

Manufacturer : Shenzhen Doking Electronic Technology Co., Ltd.EUT Description : KEYFOLIO EXPERT BLUETOOTH KEYBOARD

(A) MODEL NO.: M01147

(B) SERIAL NO.: N/A

(C) POWER SUPPLY: DC 3.7V(Li-ion battery 1x)

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.4: 2003

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test :	February 9-21, 2012	
Prepared by :	Apple Lu	
	(Engineer)	
Approved & Authorized Signer :	Searle)	
	(Manager)	

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : KEYFOLIO EXPERT BLUETOOTH KEYBOARD

Model Number : M01147

Frequency Band : 2402MHz-2480MHz

Number of Channels : 79

Antenna Gain : 0dBi

Power Supply : DC 3.7V(Li-ion battery 1x)

Applicant : ACCO Brands, Inc.

Address : 333 Twin Dolphin Drive, 6th Floor, Redwood Shores,

California, United States

Manufacturer : Shenzhen Doking Electronic Technology Co., Ltd.

Address : Dingfeng Hi-tech Estate, Shapu, Songgang Town, Baoan

District, Shenzhen, Guangdong, China

Date of sample received: February 9, 2012

Date of Test : February 9-21, 2012

1.2. Accessory and Auxiliary Equipment

PC Manufacturer: DELL

(CE, FCC: DOC, M/N: DMC VCCI) S/N: HZXLM1

LCD Monitor : Manufacturer: DELL (CE, FCC: DOC, M/N: 1704FPTt

VCCI)

1.3.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.4. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated date	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 7, 2012	Jan. 7, 2013
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 7, 2012	Jan. 7, 2013
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 7, 2012	Jan. 7, 2013
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 7, 2012	Jan. 7, 2013
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 7, 2012	Jan. 7, 2013
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 7, 2012	Jan. 7, 2013
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 7, 2012	Jan. 7, 2013
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 7, 2012	Jan. 7, 2013
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 7, 2012	Jan. 7, 2013
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 7, 2012	Jan. 7, 2013

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

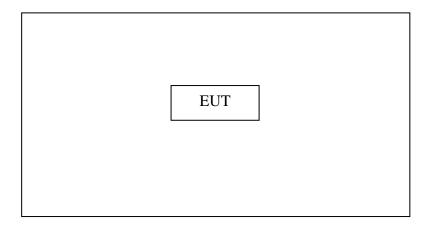
The mode is used: Transmitting mode

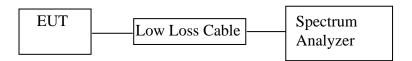
Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz

Hopping

Charging (Connect to PC)

3.2.Configuration and peripherals




Figure 1 Setup: Transmitting mode

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.247(d)	Conducted Spurious Emission Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. 20DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

(EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD)

5.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3.1.KEYFOLIO EXPERT BLUETOOTH KEYBOARD (EUT)

Model Number : M01147 Serial Number : N/A

Manufacturer : Shenzhen Doking Electronic Technology Co., Ltd.

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX(Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

5.5.Test Procedure

- 5.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 30kHz and VBW to 100kHz.
- 5.5.3. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

5.6.Test Result

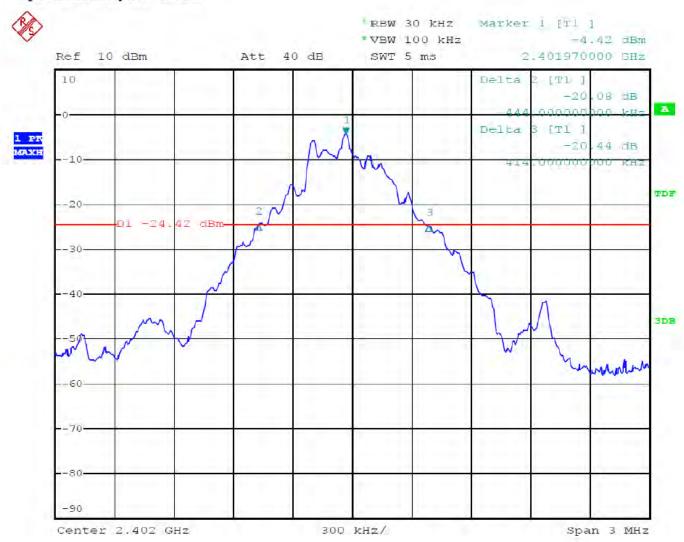
PASS.

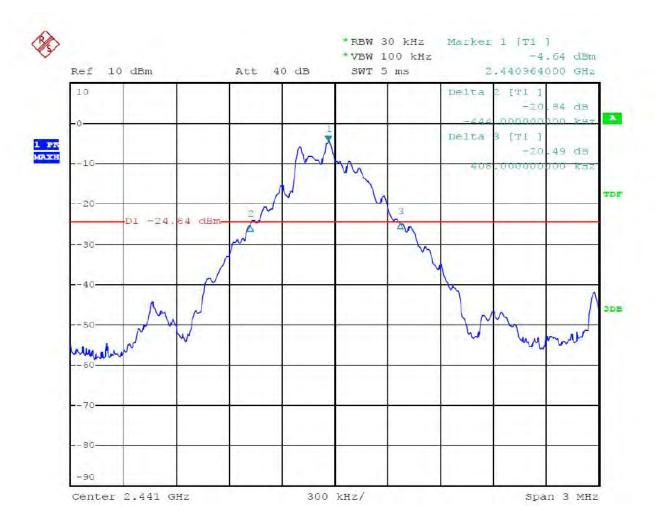
Date of Test: February 14, 2012 Temperature: 25°C

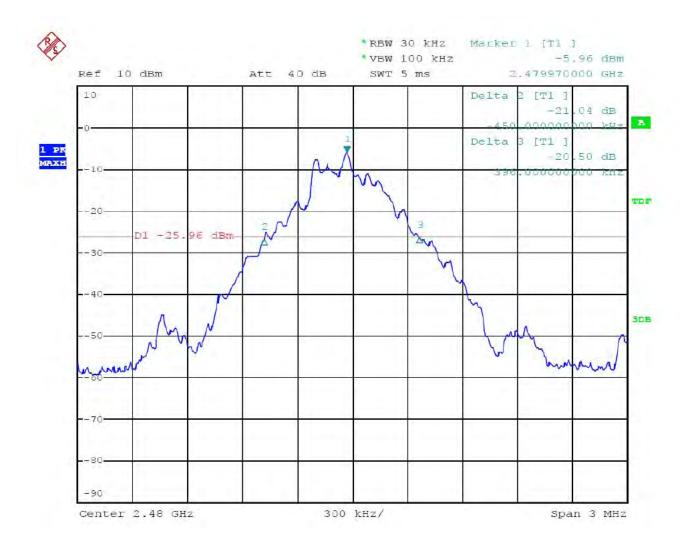
KEYFOLIO EXPERT

EUT: BLUETOOTH KEYBOARD Humidity: 50%

Model No.: M01147 Power Supply: DC 3.7V


Test Mode: TX Test Engineer: Kai


Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Limit (MHz)
Low	2402	0.858	N/A
Middle	2441	0.852	N/A
High	2480	0.846	N/A


Note: N/A: 1) The 20 dB bandwidth of the hopping channel is not limit.

2) The data of 20 dB bandwidth of the hopping channel is limit of carrier frequencies separated

"Spectrum analyzer" is R/S

6. CARRIER FREQUENCY SEPARATION TEST

6.1.Block Diagram of Test Setup

(EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD)

6.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.3.1.KEYFOLIO EXPERT BLUETOOTH KEYBOARD (EUT)

Model Number : M01147 Serial Number : N/A

Manufacturer : Shenzhen Doking Electronic Technology Co., Ltd.

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

6.5. Test Procedure

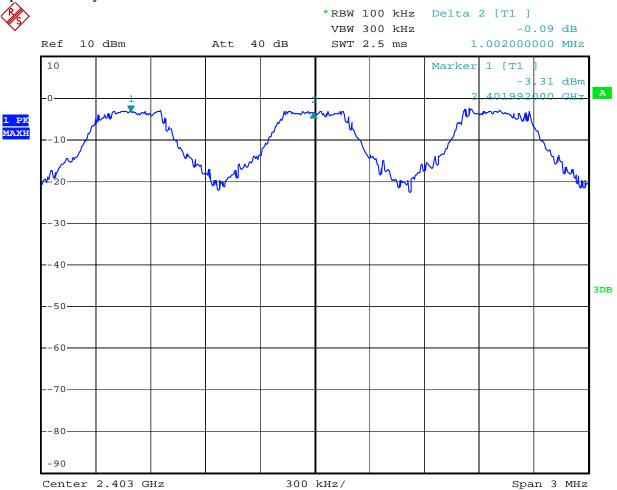
- 6.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz. Adjust Span to 3 MHz.
- 6.5.3.Set the adjacent channel of the EUT maxhold another trace.
- 6.5.4. Measurement the channel separation

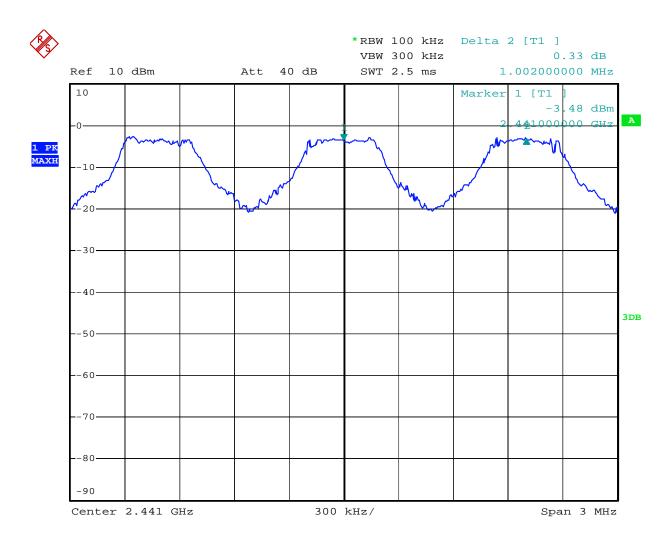
6.6.Test Result

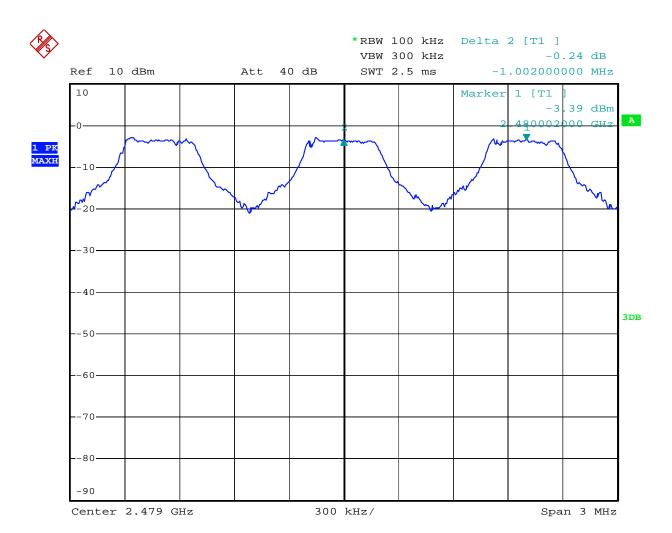
PASS.

Date of Test: February 14, 2012 Temperature: 25°C

KEYFOLIO EXPERT

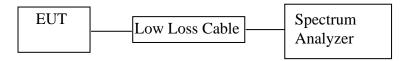

EUT: BLUETOOTH KEYBOARD Humidity: 50%


Model No.: M01147 Power Supply: DC 3.7V


Test Mode: Hopping Test Engineer: Kai

	Channel Frequency	Channel separation	
Channel			Limit
	(MHz)	(MHz)	
Low	2402	1.002	> the 20dB Bandwidth or 25kHz
Low	2402	1.002	(whichever is greater)
M: JJI.	2441	1.002	> the 20dB Bandwidth or 25kHz
Middle	2441	1.002	(whichever is greater)
High	2490	1 002	> the 20dB Bandwidth or 25kHz
High	2480	1.002	(whichever is greater)

Spectrum analyzer" is R/S



7. NUMBER OF HOPPING FREQUENCY TEST

7.1.Block Diagram of Test Setup

(EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD)

7.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.3.1.KEYFOLIO EXPERT BLUETOOTH KEYBOARD (EUT)

Model Number : M01147 Serial Number : N/A

Manufacturer : Shenzhen Doking Electronic Technology Co., Ltd.

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it.

7.5.Test Procedure

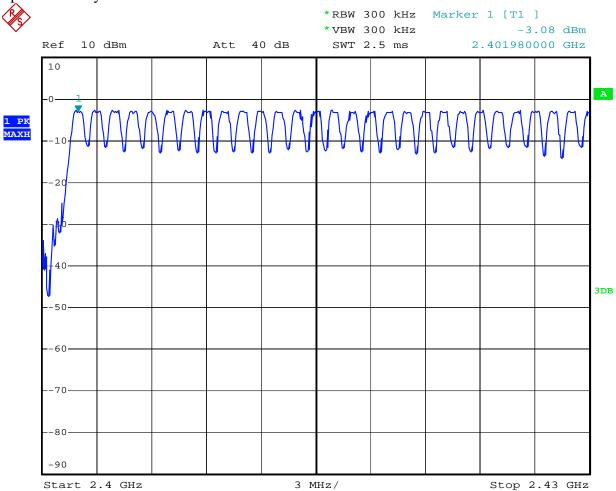
- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set the spectrum analyzer as Span=30MHz, RBW=300kHz, VBW=300kHz.
- 7.5.3.Max hold, view and count how many channel in the band.

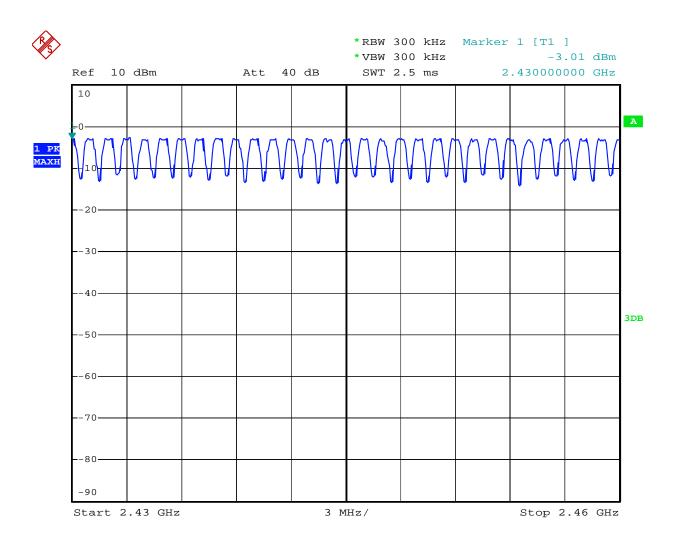
7.6.Test Result

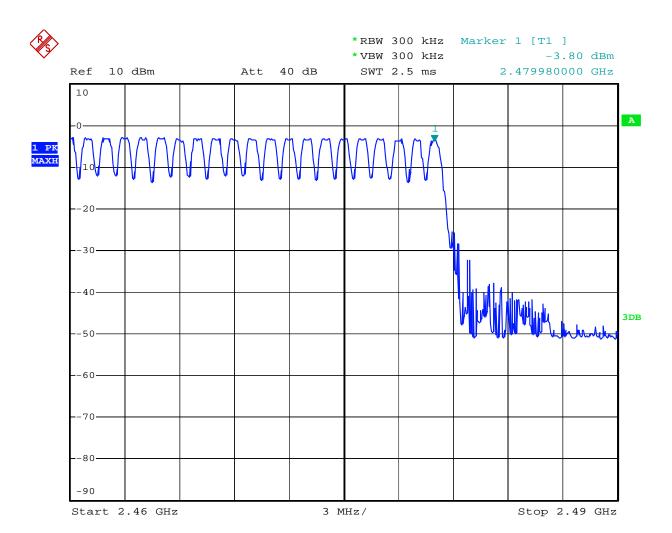
PASS.

Date of Test: February 14, 2012 Temperature: 25°C

KEYFOLIO EXPERT

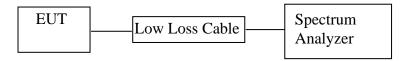

EUT: BLUETOOTH KEYBOARD Humidity: 50%


Model No.: M01147 Power Supply: DC 3.7V


Test Mode: Hopping Test Engineer: Kai

	Measurement result	Limit
Total number of	(CH)	(CH)
hopping channel	79	>15

Spectrum analyzer" is R/S



8. DWELL TIME TEST

8.1.Block Diagram of Test Setup

(EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD)

8.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.3.1.KEYFOLIO EXPERT BLUETOOTH KEYBOARD (EUT)

Model Number : M01147 Serial Number : N/A

Manufacturer : Shenzhen Doking Electronic Technology Co., Ltd.

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

8.5.Test Procedure

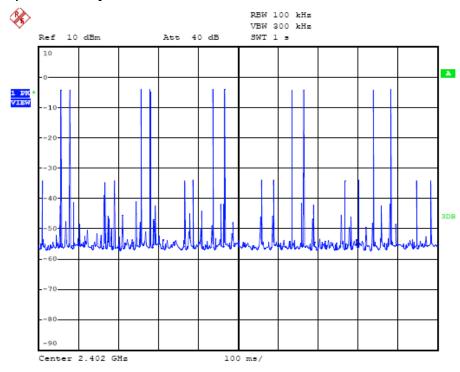
- 8.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 8.5.3.Set the spectrum analyzer as RBW=100kHz, VBW=300kHz, Span=0Hz, Adjust Sweep=1s. Get the burst (in 1 sec.).
- 8.5.4.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=2ms. Get the pulse time.
- 8.5.5.Repeat above procedures until all frequency measured were complete.

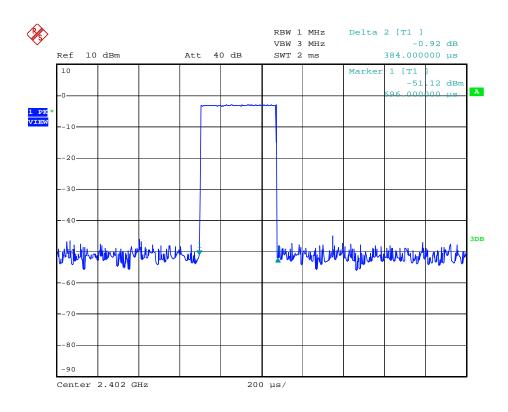
8.6.Test Result

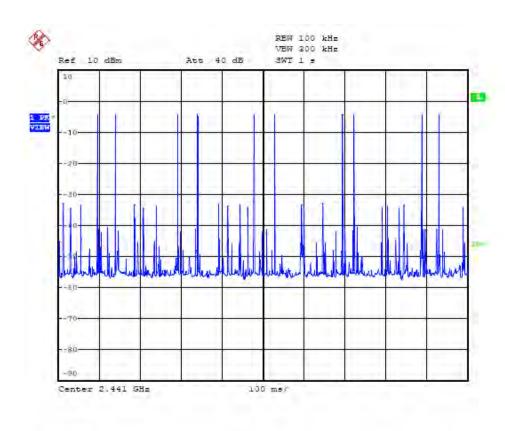
PASS.

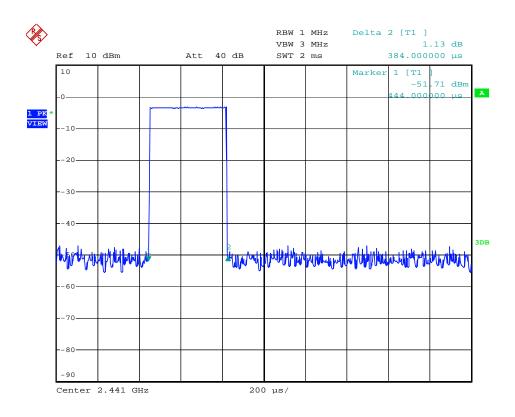
Date of Test: February 14, 2012 Temperature: 25°C

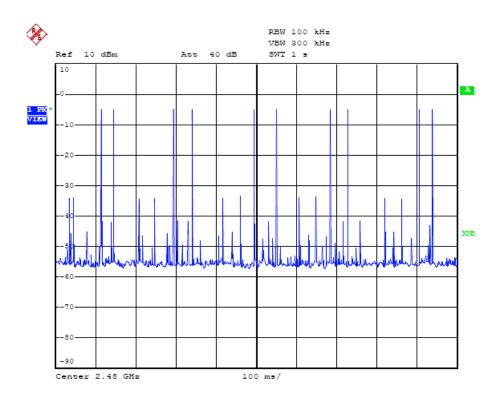
KEYFOLIO EXPERT

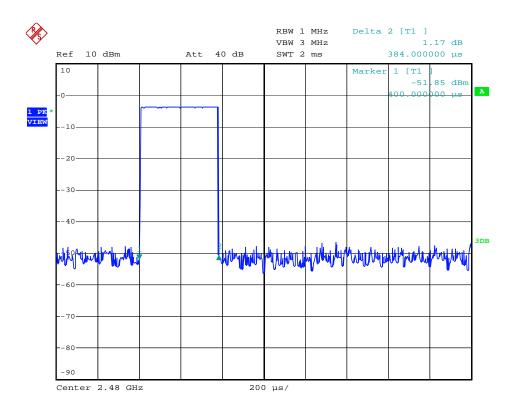

EUT: BLUETOOTH KEYBOARD Humidity: 50%

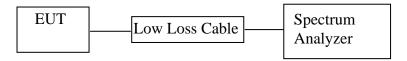

Model No.: M01147 Power Supply: DC 3.7V


Test Mode: Hopping Test Engineer: Kai


A period transmit time = $0.4 \times 79 = 31.6$					
Dwell time = p	oulse time × burst (in 1	sec.)×31.6			
Channel	Channel Frequency	Pulse Time	Burst	Dwell Time	Limit
	(MHz)	(ms)	(in 1 sec.)	(ms)	(ms)
Low	2402	0.384	10	121.3	400
Middle	2441	0.384	10	121.3	400
High	2480	0.384	10	121.3	400


"Spectrum analyzer" is R/S





9. MAXIMUM PEAK OUTPUT POWER TEST

9.1.Block Diagram of Test Setup

(EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD)

9.2. The Requirement For Section 15.247(b)(1)

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.3.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.3.1.KEYFOLIO EXPERT BLUETOOTH KEYBOARD (EUT)

Model Number : M01147 Serial Number : N/A

Manufacturer : Shenzhen Doking Electronic Technology Co., Ltd.

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

9.5.Test Procedure

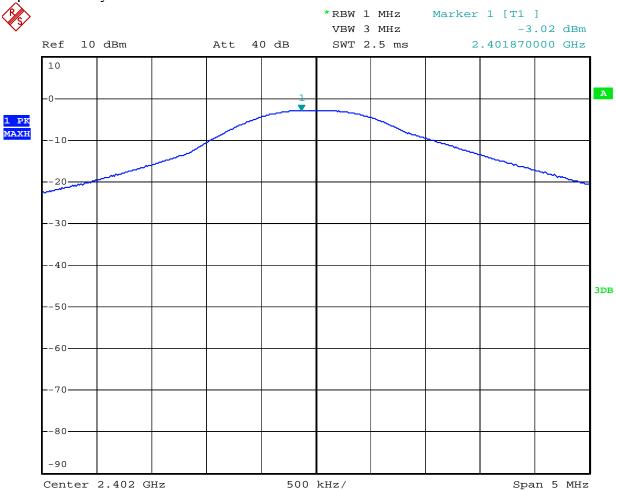
- 9.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz.
- 9.5.3.Measurement the maximum peak output power.

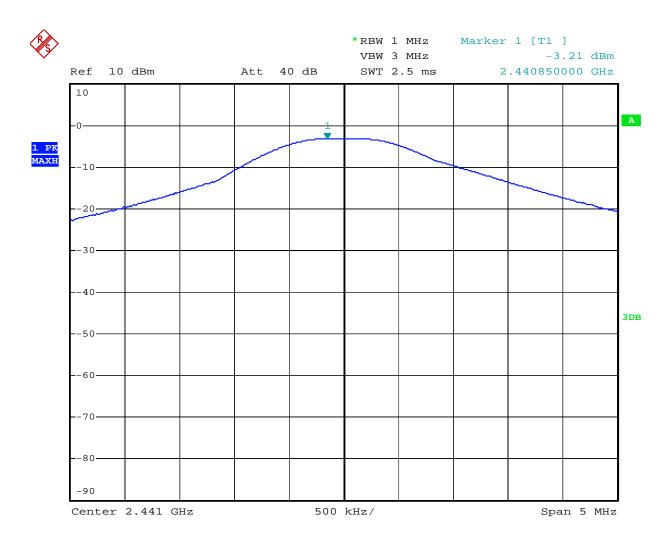
9.6.Test Result

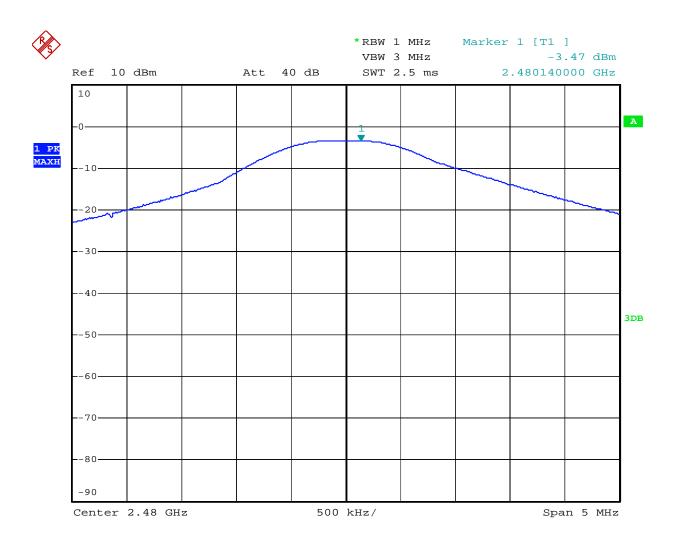
PASS.

Date of Test: February 14, 2012 Temperature: 25°C

KEYFOLIO EXPERT

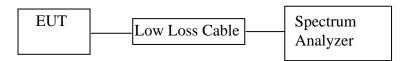

EUT: BLUETOOTH KEYBOARD Humidity: 50%


Model No.: M01147 Power Supply: DC 3.7V


Test Mode: TX Test Engineer: Kai

Channel	Frequency (MHz)	Peak Output Power (dBm)	Peak Output Power (mW)	Limits dBm / W
Low	2402	-3.02	0.499	30 dBm / 1 W
Middle	2441	-3.21	0.478	30 dBm / 1 W
High	2480	-3.47	0.450	30 dBm / 1 W

"Spectrum analyzer" is R/S



10.BAND EDGE COMPLIANCE TEST

10.1.Block Diagram of Test Setup

(EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD)

10.2.The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.3.1.KEYFOLIO EXPERT BLUETOOTH KEYBOARD (EUT)

Model Number : M01147 Serial Number : N/A

Manufacturer : Shenzhen Doking Electronic Technology Co., Ltd.

10.4. Operating Condition of EUT

- 10.4.1. Setup the EUT and simulator as shown as Section 10.1.
- 10.4.2. Turn on the power of all equipment.
- 10.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

10.5.Test Procedure

Conducted Band Edge:

- 10.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 10.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz.

Radiate Band Edge:

- 10.5.3. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- 10.5.4. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 10.5.5.EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 10.5.6.Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

10.5.7. The band edges was measured and recorded.

10.6.Test Result

Pass

Conducted test

Date of Test: February 14, 2012 Temperature: 25°C

KEYFOLIO EXPERT

EUT: BLUETOOTH KEYBOARD Humidity: 50%

Model No.: M01147 Power Supply: DC 3.7V

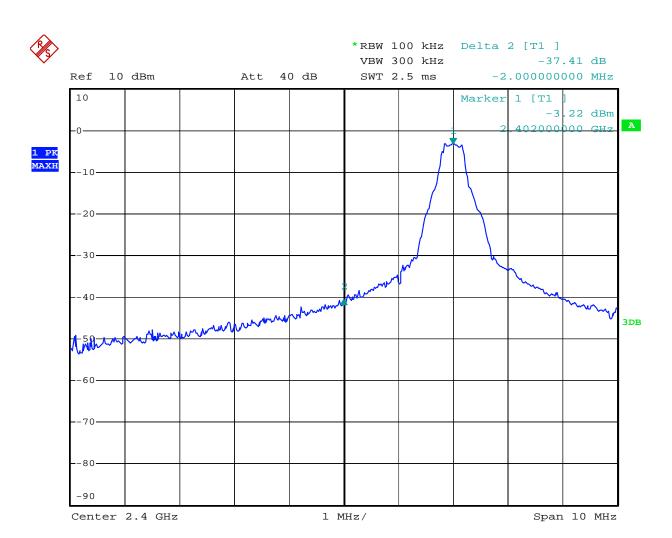
Test Mode: TX (Hopping off) Test Engineer: Kai

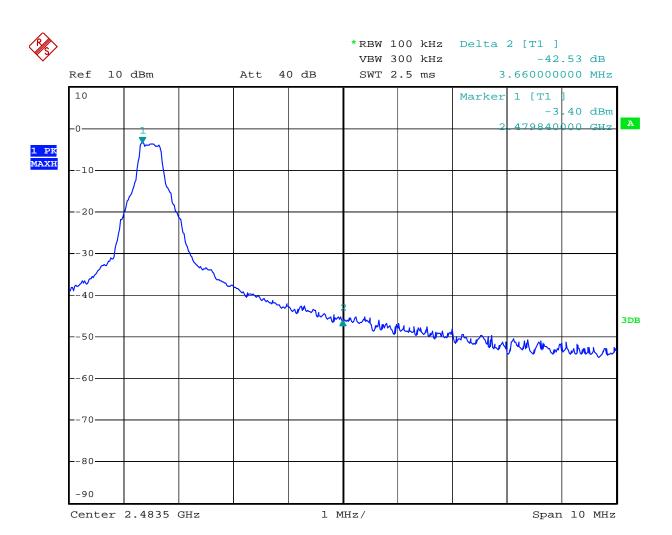
Conducted test

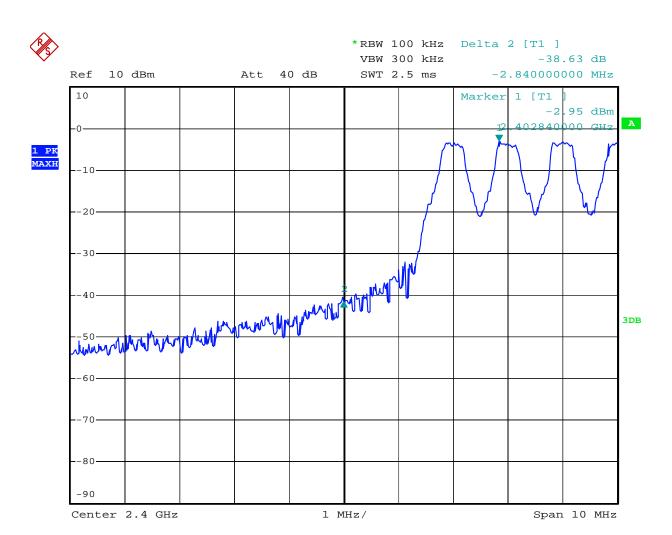
Frequency	Result of Band Edge (dBc)	Limit of Band Edge (dBc)
(MHz)		` /
2402	37.41	> 20dBc
2480	42.53	> 20dBc

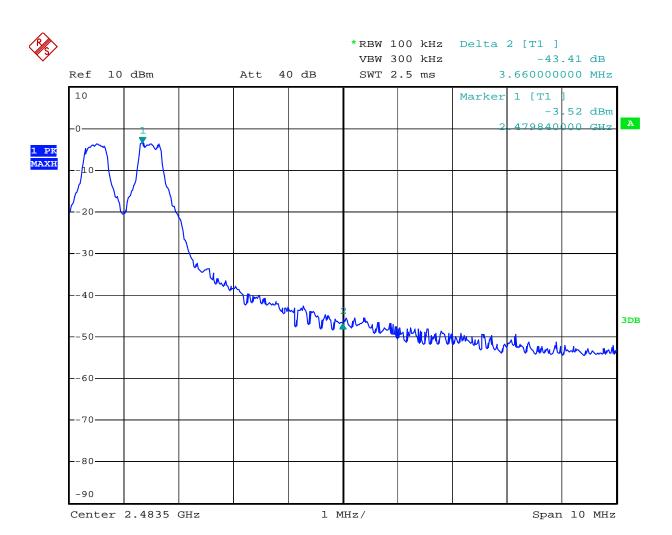
Date of Test: February 14, 2012 Temperature: 25°C

KEYFOLIO EXPERT


EUT: BLUETOOTH KEYBOARD Humidity: 50%


Model No.: M01147 Power Supply: DC 3.7V


Test Mode: TX (Hopping on) Test Engineer: Kai


Conducted test

Frequency	Result of Band Edge (dBc)	Limit of Band Edge (dBc)
(MHz)		
2402	38.63	> 20dBc
2480	43.41	> 20dBc

Radiated Band Edge Result

Date of Test: February 14, 2012 Temperature: 25°C

KEYFOLIO EXPERT BLUETOOTH

EUT: KEYBOARD Humidity: 50%

Model No.: M01147 Power Supply: DC 3.7V
Test Mode: TX (2402MHz) Test Engineer: Kai

Frequency	Reading(dBμV/m)		Factor(dB)	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
-	_	-	-	-	-	-	-	1	-	Vertical
-	_	-	-	-	-	-	-	ı	-	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

3. Display the measurement of peak values.

Date of Test: February 14, 2012 Temperature: 25°C

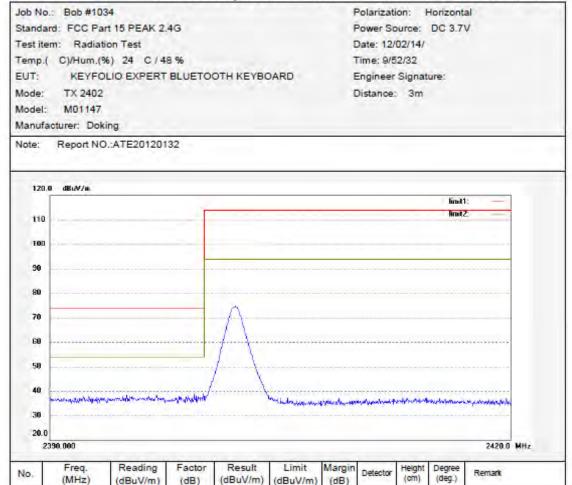
KEYFOLIO EXPERT BLUETOOTH

EUT: KEYBOARD Humidity: 50%

Model No.: M01147 Power Supply: DC 3.7V
Test Mode: TX (2480MHz) Test Engineer: Kai

Frequency	Reading	Reading(dBµV/m) Fact		Result(dBµV/m)		Limit(d)	BμV/m)	Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
-	_	-	-	-	_	-	_	_	_	Vertical
-	_	-	-	-	_	-	-	-	_	Horizontal

Note:


- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

 Result = Reading + Corrected Factor
- 3. Display the measurement of peak values.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

(dBuV/m)

(dBuV/m)

(dB)

Height (cm)

Remark

Detector

(dB)

No.

(MHz)

(dBuV/m)

(dBuV/m)

(dB)

(dBuV/m)

(dBuV/m)

(dB)

(cm)

(deg.)

ACCURATE TECHNOLOGY CO., LTD.

Site: 966 chamber

F1,Bldg,A,Changyuan New Material Port Keyuan Rd,
Science & Industry Park,Nanshan Shenzhen,P,R.China
Fax:+86-0755-26503396 Polarization: Vertical Standard: FCC Part 15 PEAK 2.4G Power Source: DC 3.7V Date: 12/02/14/ Test item: Radiation Test Temp.(C)/Hum.(%) 24 C / 48 % Time: 9/56/21 EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD Engineer Signature: TX 2402 Distance: 3m Mode: Model: M01147 Manufacturer: Doking Report NO.:ATE20120132 120.0 dBuW/m limet1: 110 100 90 70 50 30 20.0 2390.000 2420.0 MHz Reading Factor Result Limit Margin Height Degree No. Detector

Remark

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1038 Polarization: Horizontal Standard: FCC Part 15 PEAK 2.4G Power Source: DC 3.7V Test item: Radiation Test Date: 12/02/14/ Temp.(C)/Hum.(%) 24 C / 48 % Time: 10/02/59 EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD Engineer Signature: Mode: TX 2480 Distance: 3m M01147 Model: Manufacturer: Doking Note: Report NO.:ATE20120132 120.0 dBuV/m firmt1: 110 90 78 60 50 30 20.0 2460.000 2490.0 MHz Reading Factor Result Limit Margin Degree Freq. Height

(dBuV/m)

(dBuV/m)

Detector

(dB)

No.

(MHz)

(dBuV/m)

(dB)

Remark

(deg.)

(MHz)

(dBuV/m)

(dB)

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd,

F1,Bldg,A,Changyuan New Material Port Keyuan Rd,

Fax:+86-0755-26503290

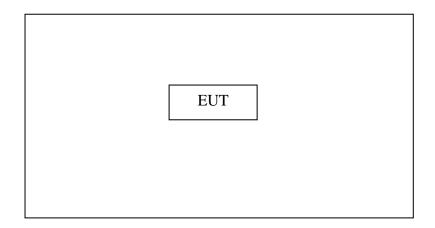
Fax:+86-0755-26503396 Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber

Job No.: Bob #1037 Polarization: Vertical Standard: FCC Part 15 PEAK 2.4G Power Source: DC 3.7V Test item: Radiation Test Date: 12/02/14/ Temp.(C)/Hum.(%) 24 C / 48 % Time: 9/58/36 EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD Engineer Signature: Mode: TX 2480 Distance: 3m Model: M01147 Manufacturer: Doking Note: Report NO.:ATE20120132 120.0 dBuV/m limit1 110 100 90 70 60 50 and at a second and a second of the best of 38 20.0 2460.000 2490.0 MHz Reading Factor Result Limit Margin Freq. Degree Height Detector Remark No.

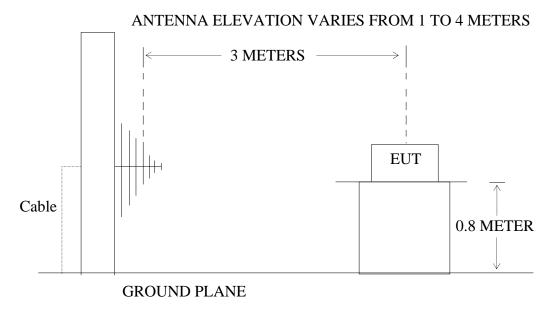
(dBuV/m)

(dBuV/m)


(dB)

(deg.)

11. RADIATED SPURIOUS EMISSION TEST


11.1.Block Diagram of Test Setup

11.1.1.Block diagram of connection between the EUT and simulators

(EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD)

11.1.2.Semi-Anechoic Chamber Test Setup Diagram

(EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD)

11.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.Restricted bands of operation

11.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

perii	inted in any of the freque	ncy bands fisted below.	
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$(^2)$
13.36-13.41			

Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

11.4.Configuration of EUT on Measurement

²Above 38.6

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4.1.KEYFOLIO EXPERT BLUETOOTH KEYBOARD (EUT)

Model Number : M01147 Serial Number : N/A

Manufacturer : Shenzhen Doking Electronic Technology Co., Ltd.

11.5. Operating Condition of EUT

- 11.5.1.Setup the EUT and simulator as shown as Section 11.1.
- 11.5.2. Turn on the power of all equipment.
- 11.5.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

11.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver (R&S ESI26) is set at 120kHz in 30-1000MHz. and set at 1MHz in above 1000MHz.

The frequency range from 30MHz to 25000MHz is checked.

The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

11.7.The Field Strength of Radiation Emission Measurement Results **PASS.**

Date of Test: February 11-14, 2012 Temperature: 25°C

KEYFOLIO EXPERT BLUETOOTH

EUT: KEYBOARD Humidity: 50%
Model No.: M01147 Power Supply: DC 3.7V

Test Mode: TX (2402MHz) Test Engineer: Kai

For 30MHz-1000MHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading	Factor	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP	(dB)	QP	QP	QP	
143.7760	14.30	14.48	28.78	43.50	-14.72	
189.1076	14.89	46.00	30.89	43.50	-12.61	Vertical
236.7928	16.23	16.54	32.77	46.00	-13.23	
143.7760	22.66	14.48	37.14	43.50	-6.36	
236.7928	22.56	16.80	39.36	46.0	-6.64	Horizontal
285.2611	16.11	18.46	34.57	46.00	-11.43	

For 1GHz-25GHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

- 0											
	Frequency	Reading(dBµV/m)		Factor	Result(c	lBμV/m)	Limit(d)	BμV/m)	Margin(d	dBμV/m)	Polarizati
	(MHz)	AV	PEAK	Corr. (dB)	AV	PEAK	AV	PEAK	AV	PEAK	on
	2402.000	57.43	70.18	-7.45	49.98	62.73	-	-	-	-	Vertical
	2402.000	55.66	66.66	-7.45	48.21	59.21	-	-	-	-	Horizontal

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. *: Denotes restricted band of operation.

Date of Test: February 11-14, 2012 Temperature: 25°C

KEYFOLIO EXPERT BLUETOOTH

EUT: KEYBOARD Humidity: 50%
Model No.: M01147 Power Supply: DC 3.7V

Test Mode: TX (2441MHz) Test Engineer: Kai

For 30MHz-1000MHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

	1	actor caere	zess mipi			ı
Frequency	Reading	Factor	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP	(dB)	QP	QP	QP	
143.7760	15.89	14.48	30.37	43.50	-13.13	
189.1076	14.75	16.00	30.75	43.50	-12.75	Vertical
236.7928	17.12	16.54	33.66	46.00	-12.34	
143.7760	22.02	14.48	36.50	43.50	-7.00	
236.7928	22.30	16.80	39.10	46.00	-6.90	Horizontal
285.2611	15.63	18.46	34.09	46.00	-11.91	

For 1GHz-25GHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Frequenc	Reading(dBμV/m)	Factor	Factor Result(dBµV/m)		Limit(d	BμV/m)	Margin(d	dBμV/m)	Polarizati
y	AV	PEAK	Corr. (dB)	AV	PEAK	AV	PEAK	AV	PEAK	on
(MHz)										
2441.000	55.41	66.37	-7.35	48.06	59.02	ı	-	-	-	Vertical
2441.000	58.37	72.03	-7.35	51.02	64.68	-	-	-	-	Horizontal

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. *: Denotes restricted band of operation.

Date of Test: February 11-14, 2012 Temperature: 25°C

KEYFOLIO EXPERT BLUETOOTH

EUT: KEYBOARD Humidity: 50%
Model No.: M01147 Power Supply: DC 3.7V

Test Mode: TX (2480MHz) Test Engineer: Kai

For 30MHz-1000MHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

		actor cacie		Tier Guin		
Frequency	Reading	Factor	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP	(dB)	QP	QP	QP	
143.7760	15.98	14.48	30.46	43.50	-13.04	
189.1076	14.19	16.00	30.19	43.50	-13.31	Vertical
236.7928	16.18	16.54	32.72	46.00	-13.28	
143.7760	20.30	14.48	34.78	43.50	-8.72	
189.1076	19.19	16.06	35.25	43.50	-8.25	Horizontal
236.7928	18.70	16.80	35.50	46.00	-10.50	

For 1GHz-25GHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Frequenc	Reading((dBµV/m) Factor				Result(c	dBμV/m)	Limit(d	BμV/m)	Margin(o	dBμV/m)	Polarizati
У	AV	PEAK	Corr. (dB)	AV	PEAK	AV	PEAK	AV	PEAK	on		
(MHz)												
2480.000	57.48	69.06	-7.37	50.11	61.69	-	-	-	-	Vertical		
2480.000	58.34	71.54	-7.37	50.97	64.17	-	-	-	-	Horizontal		

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

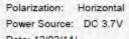
2. *: Denotes restricted band of operation.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1022

Standard: FCC Class B 3M Radiated


Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

KEYFOLIO EXPERT BLUETOOTH KEYBOARD EUT:

Mode: TX 2402 Model: M01147 Manufacturer: Doking

Note: Report NO.:ATE20120132

Date: 12/02/14/ Time: 9/06/21 Engineer Signature: Distance: 3m

-6.64

-11.43

46.00

QP

QP

2

3

236,7928

285.2611

16.11

16.80

18.46

39.36

34.57

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1023

Standard: FCC Class B 3M Radiated

Test item: Radiation Test Temp.(C)/Hum.(%) 24 C / 48 %

KEYFOLIO EXPERT BLUETOOTH KEYBOARD EUT:

14.89

16.23

16.54

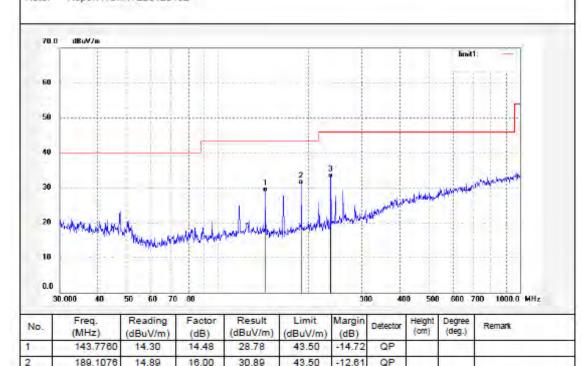
32.77

46.00

236,7928

TX 2402 Model: M01147 Manufacturer: Doking

Note: Report NO.:ATE20120132


Polarization: Vertical Power Source: DC 3.7V

Date: 12/02/14/ Time: 9/09/12 Engineer Signature: Distance: 3m

QP

QP

-13.23

2

3

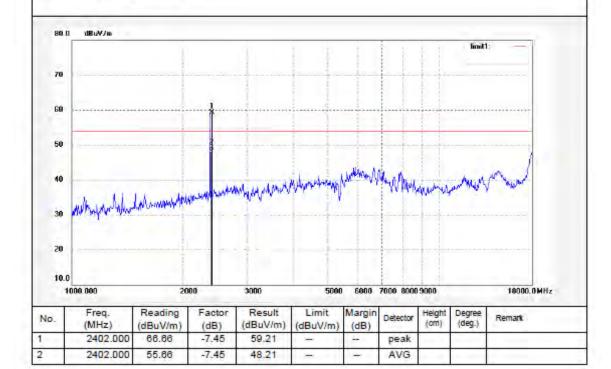
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Standard: FCC Class B 3M Radiated Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

KEYFOLIO EXPERT BLUETOOTH KEYBOARD EUT:


Mode: TX 2402 Model: M01147 Manufacturer: Doking

Report NO.:ATE20120132

Polarization: Horizontal Power Source: DC 3.7V

Date: 2012/02/13 Time: 12:52:17 Engineer Signature:

Distance: 3m

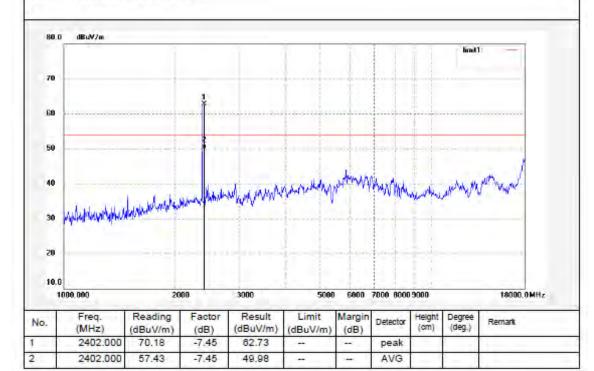
F1.Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %


EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD

Mode: TX 2402 Model: M01147 Manufacturer: Doking

Note: Report NO.:ATE20120132

Polarization: Vertical Power Source: DC 3.7V

Date: 2012/02/13 Time: 12:56:05 Engineer Signature: Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1238 Standard: FCC Class B 3M Radiated

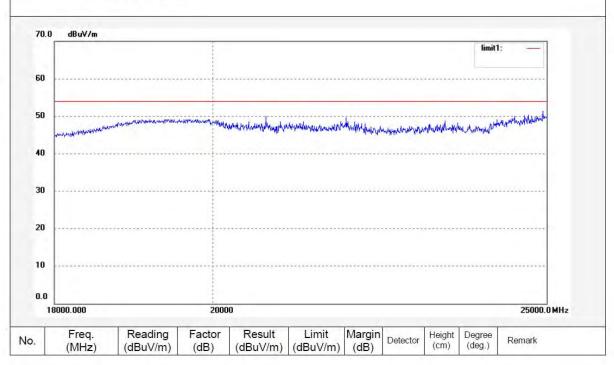
Test item: Radiation Test Temp.(C)/Hum.(%) 24 C / 48 %

EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD

Mode: TX 2402MHz Model: M01147 Manufacturer: Doking

Polarization: Horizontal

Power Source: DC 3.7V


Engineer Signature: Bob

Date: 2012/2/11

Time: 5/47/15

Distance:

Report No.:ATE20120132 Note:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

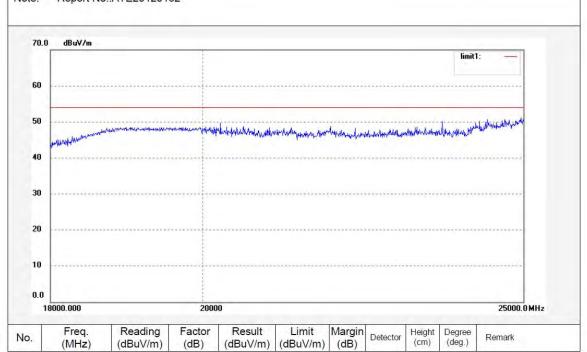
Job No.: Bob #1239
Standard: FCC Class B 3M Radiated
Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD

Mode: TX 2402MHz

Model: M01147 Manufacturer: Doking


Note: Report No.:ATE20120132

Polarization: Vertical Power Source: DC 3.7V

Date: 2012/2/11 Time: 5/49/05

Engineer Signature: Bob

Distance:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

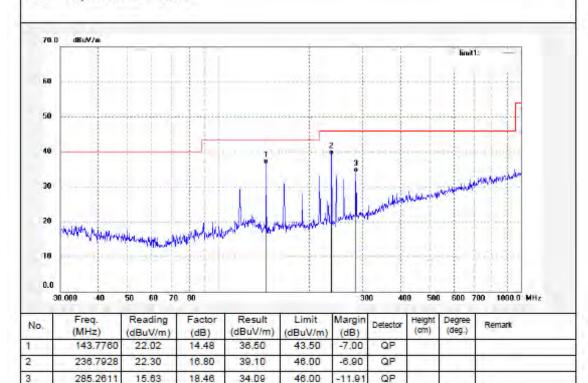
Job No.: Bob #1025 Standard: FCC Class B 3M Radiated

Test item: Radiation Test Temp.(C)/Hum.(%) 24 C / 48 %

EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD

Model: M01147 Manufacturer: Doking

TX 2441


Mode:

Note: Report NO.:ATE20120132

Polarization: Horizontal

Power Source: DC 3.7V

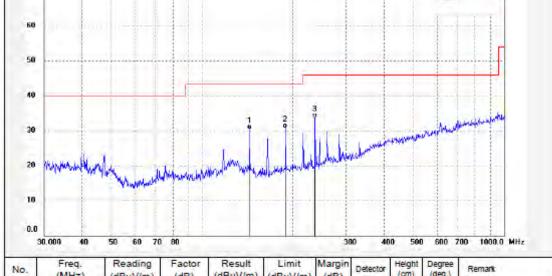
Date: 12/02/14/ Time: 9/18/50 Engineer Signature: Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1024 Standard: FCC Class B 3M Radiated

Test item: Radiation Test
Temp.(C)/Hum.(%) 24 C / 48 %

EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD


Mode: TX 2441 Model: M01147 Manufacturer: Doking

Note: Report NO.:ATE20120132

Polarization: Vertical Power Source: DC 3.7V

Date: 12/02/14/ Time: 9/13/10 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	143.7760	15.89	14.48	30.37	43.50	-13.13	QP				- 4 -
2	189.1076	14.75	16.00	30.75	43.50	-12.75	QP				
3	236,7928	17.12	16.54	33.66	46.00	-12.34	QP				

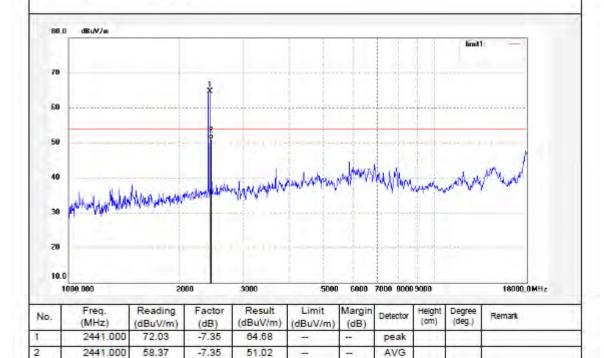
F1.Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #992

Standard: FCC Class B 3M Radiated

Test item: Radiation Test Temp.(C)/Hum.(%) 24 C / 48 %

EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD


Mode: TX 2441 Model: M01147 Manufacturer: Doking

lote: Report NO.:ATE20120132

Polarization: Horizontal

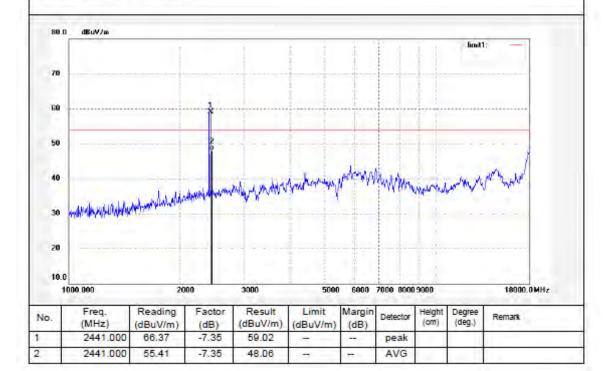
Power Source: DC 3.7V Date: 2012/02/13

Time: 13:07:52 Engineer Signature: Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #991 Standard: FCC Class B 3M Radiated

Test item: Radiation Test Temp.(C)/Hum.(%) 24 C / 48 %


EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD

Mode: TX 2441 Model: M01147 Manufacturer: Doking

Note: Report NO.:ATE20120132

Polarization: Vertical Power Source: DC 3.7V

Date: 2012/02/13 Time: 13:05:27 Engineer Signature: Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1241 Standard: FCC Class B 3M Radiated

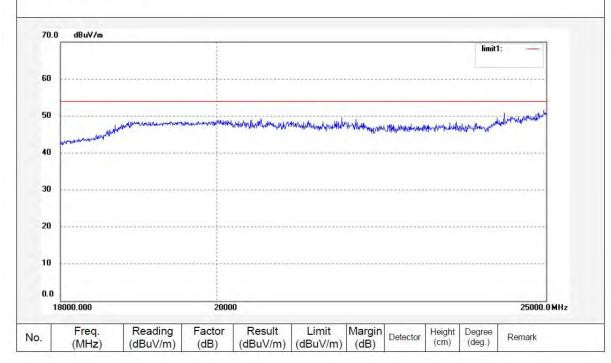
Test item: Radiation Test Temp.(C)/Hum.(%) 24 C / 48 %

EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD

Mode: TX 2441MHz Model: M01147 Manufacturer: Doking

Distance:

Date: 2012/2/11


Time: 5/53/01

Polarization: Horizontal

Power Source: DC 3.7V

Engineer Signature: Bob

Report No.:ATE20120132 Note:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1240

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD

Mode: TX 2441MHz Model: M01147

Manufacturer: Doking


te: Report No.:ATE20120132

Polarization: Vertical Power Source: DC 3.7V

Date: 2012/2/11 Time: 5/51/02

Engineer Signature: Bob

Distance:

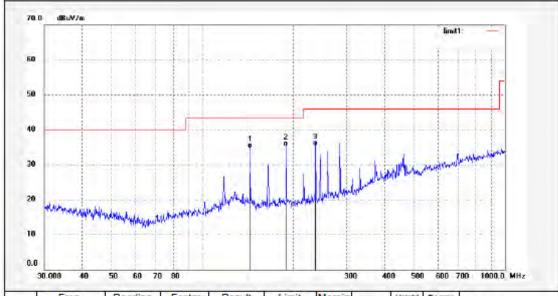
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1026

Standard: FCC Class B 3M Radiated

Test item: Radiation Test
Temp.(C)/Hum.(%) 24 C / 48 %

EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD


Mode: TX 2480 Model: M01147 Manufacturer: Doking Polarization: Horizontal

Power Source: DC 3.7V

Date: 12/02/14/ Time: 9/21/29 Engineer Signature:

Distance: 3m

Note: Report NO.:ATE20120132

No.	Freq. (MHz)	(dBuV/m)	Factor (dB)	(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	(deg.)	Remark	
1	143.7760	20.30	14.48	34.78	43.50	-8.72	QP	11			
2	189.1078	19.19	16.06	35.25	43.50	-8.25	QP	11.1			
3	236.7928	18.70	16.80	35.50	46.00	-10.50	QP	111			

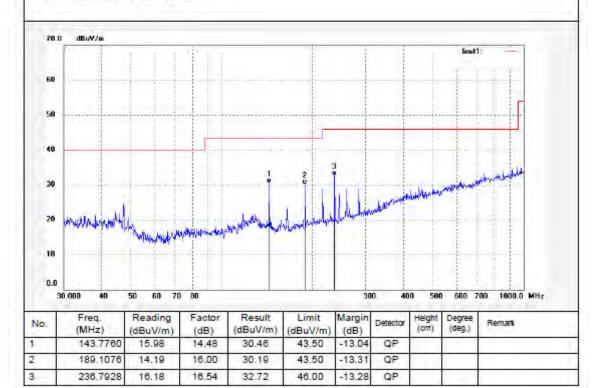
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R.China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Standard: FCC Class B 3M Radiated Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD


TX 2480 Model: M01147 Manufacturer: Doking

Mode:

Report NO.:ATE20120132

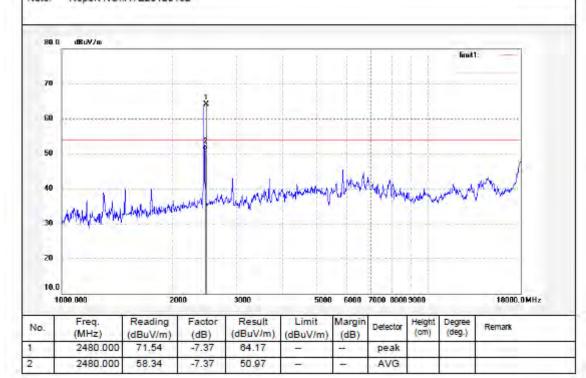
Polarization: Vertical Power Source: DC 3.7V

Date: 12/02/14/ Time: 9/24/11 Engineer Signature: Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Standard: FCC Class B 3M Radiated

Test item: Radiation Test Temp.(C)/Hum.(%) 24 C / 48 %


EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD

Mode: TX 2480 Model: M01147 Manufacturer: Doking

Note: Report NO.:ATE20120132

Polarization: Horizontal Power Source: DC 3.7V

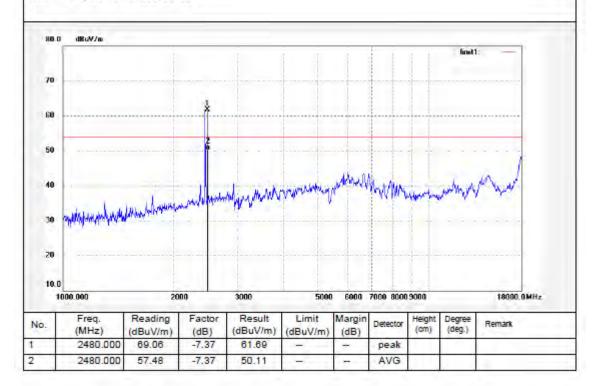
Date: 2012/02/13 Time: 13:14:50 Engineer Signature: Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #996 Standard: FCC Class B 3M Radiated

Test item: Radiation Test
Temp.(C)/Hum.(%) 24 C / 48 %

EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD


Model: TX 2480 Model: M01147 Manufacturer: Doking

Note: Report NO.:ATE20120132

Polarization: Vertical Power Source: DC 3.7V

Date: 2012/02/13 Time: 13:19:24 Engineer Signature:

Engineer Signatu Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1242

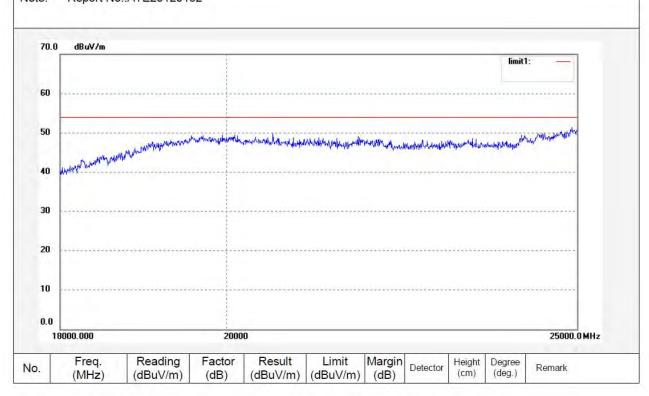
Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD

Mode: TX 2480MHz Model: M01147 Manufacturer: Doking


Note: Report No.:ATE20120132

Polarization: Horizontal Power Source: DC 3.7V

Date: 2012/2/11 Time: 5/55/57

Engineer Signature: Bob

Distance:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

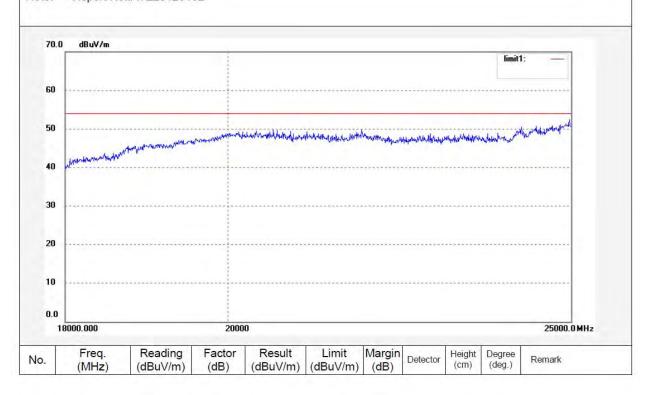
Job No.: Bob #1243 Standard: FCC Class B 3M Radiated

Test item: Radiation Test
Temp.(C)/Hum.(%) 24 C / 48 %

EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD

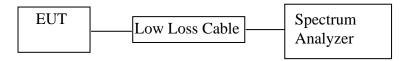
Mode: TX 2480MHz Model: M01147

Manufacturer: Doking


Note: Report No.:ATE20120132

Polarization: Vertical Power Source: DC 3.7V

Date: 2012/2/11 Time: 5/57/43


Engineer Signature: Bob

Distance:

12. CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST

12.1.Block Diagram of Test Setup

(EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD)

12.2.The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

12.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

12.3.1.KEYFOLIO EXPERT BLUETOOTH KEYBOARD (EUT)

Model Number : M01147 Serial Number : N/A

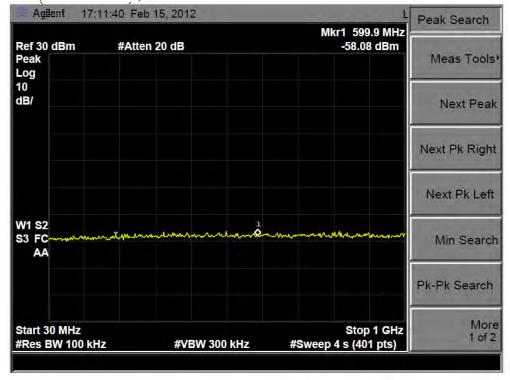
Manufacturer : Shenzhen Doking Electronic Technology Co., Ltd.

12.4. Operating Condition of EUT

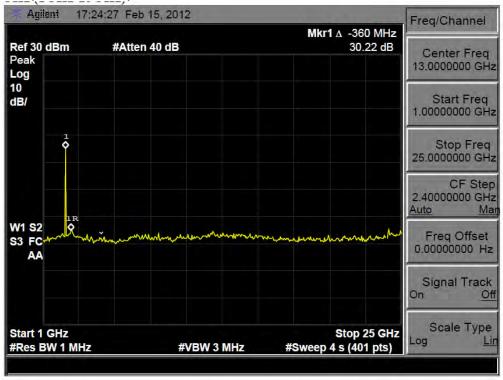
- 12.4.1. Setup the EUT and simulator as shown as Section 12.1.
- 12.4.2.Turn on the power of all equipment.
- 12.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

12.5.Test Procedure

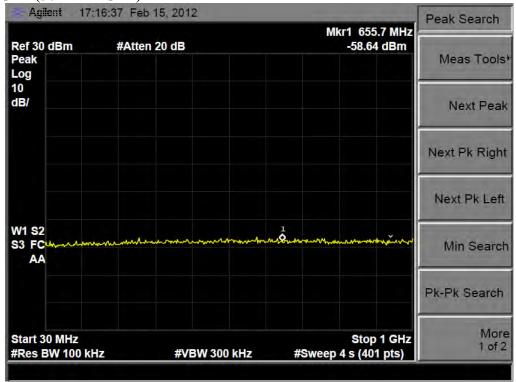
- 12.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 12.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz (below 1GHz). Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz (above 1GHz).
- 12.5.3. The Conducted Spurious Emission was measured and recorded.

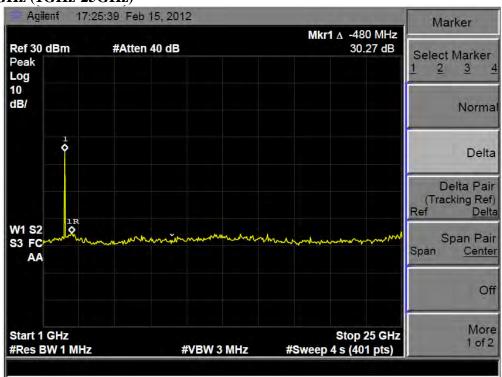

12.6.Test Result

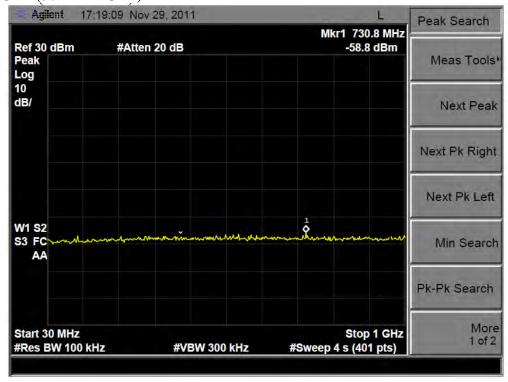
Pass.

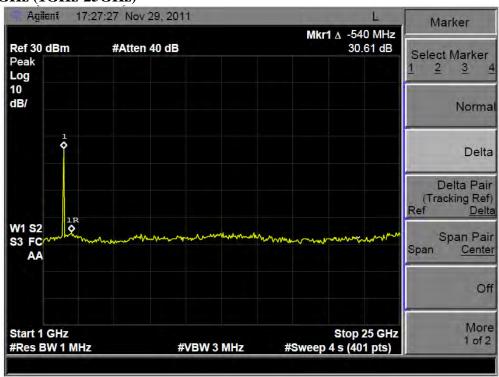

The spectrum analyzer plots are attached as below.

"Spectrum analyzer" is Agilent

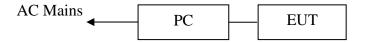

TX 2402GHz (30MHz-1GHz)


TX 2402GHz (1GHz-25GHz)

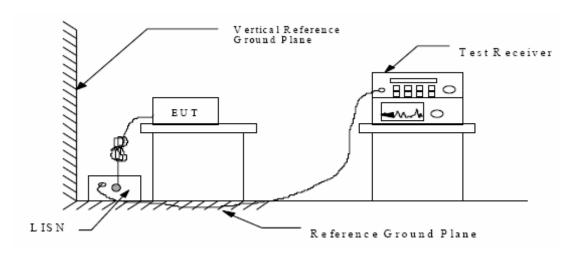

TX 2441GHz (30MHz-1GHz)


TX 2441GHz (1GHz-25GHz)

TX 2480GHz (30MHz-1GHz)


TX 2480GHz (1GHz-25GHz)

13.AC POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION 15.207(A)


13.1.Block Diagram of Test Setup

13.1.1.Block diagram of connection between the EUT and simulators

(EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD)

13.1.2. Shielding Room Test Setup Diagram

(EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD)

13.2. The Emission Limit

13.2.1.Conducted Emission Measurement Limits According to Section 15.207(a)

Frequency	Limit dB(μV)					
(MHz)	Quasi-peak Level	Average Level				
0.15 - 0.50	66.0 - 56.0 *	56.0 – 46.0 *				
0.50 - 5.00	56.0	46.0				
5.00 - 30.00	60.0	50.0				

^{*} Decreases with the logarithm of the frequency.

13.3.Configuration of EUT on Measurement

The following equipment are installed on the Conducted Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

13.3.1.KEYFOLIO EXPERT BLUETOOTH KEYBOARD (EUT)

Model Number : M01147 Serial Number : N/A

Manufacturer : Shenzhen Doking Electronic Technology Co., Ltd.

13.4. Operating Condition of EUT

13.4.1. Setup the EUT and simulator as shown as Section 13.1.

13.4.2. Turn on the power of all equipment.

13.4.3.Let the EUT work in (Charging) mode measure it.

13.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2003 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

13.6.Power Line Conducted Emission Measurement Results

PASS.

The frequency range from 150kHz to 30MHz is checked.

Date of Test: February 11, 2012 Temperature: 25°C **KEYFOLIO EXPERT** EUT: BLUETOOTH KEYBOARD Humidity: 50%

Model No.: M01147 Power Supply: AC 120V/60Hz Test Engineer: Kai Test Mode: Charging

Frequency (MHz)	Result (dBµV)	Limit (dBµV)	Margin (dB)	Detector	Line
0.154868	49.70	65.7	-16.0	QP	
0.195997	46.60	63.8	-17.2	QP	
0.451436	41.40	56.8	-15.4	QP	
0.154868	33.30	55.7	-22.4	AV	Neutral
0.196781	29.40	53.7	-24.3	AV	
0.438995	23.60	47.1	-23.5	AV	
0.157990	48.10	65.6	-17.5	QP	
0.194439	45.40	63.8	-18.4	QP	
0.423503	38.50	57.4	-18.9	QP	T :
0.156109	31.70	55.7	-24.0	AV	Live
0.195216	29.60	53.8	-24.2	AV	
0.432041	24.20	47.2	-23.0	AV	

Emissions attenuated more than 20 dB below the permissible value are not reported. The spectral diagrams are attached as below.

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: KEYFOLIO EXPERT BLUETOOTH KEYBOARD M/N:M01147

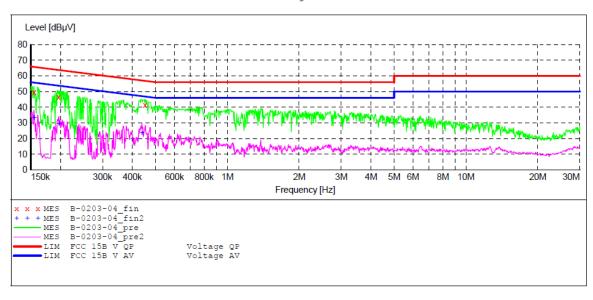
Manufacturer: Doking Operating Condition: On

Test Site: 1#Shielding Room

Operator: Bob

Test Specification: N AC 120V/60Hz Comment: Mains port

Reprot NO.:ATE20120132


SCAN TABLE: "V 150K-30MHz fin"
Short Description: _SUB_STD_VTERM2 1.70

Detector Meas. Start Stop Step IF Transducer

Bandw. Time

Frequency Frequency Width 150.0 kHz 30.0 MHz 0.8 % QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "B-0203-04 fin"

11/2012 10	:56AM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PΕ
MHz	dBµV	dB	dΒμV	dB			
0.154868	49.70	11.0	65.7	16.0	QP	N	GND
0.195997	46.60	11.2	63.8	17.2	QP	N	GND
0.451436	41.40	11.9	56.8	15.4	QP	N	GND
	Frequency MHz 0.154868 0.195997	MHz dBμV 0.154868 49.70 0.195997 46.60	Frequency MHz Level dBμV Transd dB 0.154868 49.70 11.0 0.195997 46.60 11.2	Frequency MHz Level dBμV Transd dB dBμV Limit dBμV 0.154868 49.70 11.0 65.7 0.195997 46.60 11.2 63.8	Frequency MHz Level dBμV Transd dB dBμV Limit dBμV Margin dB 0.154868 49.70 11.0 65.7 16.0 0.195997 46.60 11.2 63.8 17.2	Frequency MHz dBμV dB Limit Margin Detector dBμV dB dBμV dB dB	Frequency MHz Level dBμV Transd dB μV Limit dBμV Margin dB Detector Line dBμV 0.154868 49.70 11.0 65.7 16.0 QP N 0.195997 46.60 11.2 63.8 17.2 QP N

MEASUREMENT RESULT: "B-0203-04 fin2"

2/	11/2012 10:	56AM						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dΒμV	dB	dΒμV	dB			
	0.154868	33.30	11.0	55.7	22.4	AV	N	GND
	0.196781	29.40	11.2	53.7	24.3	AV	N	GND
	0.438995	23.60	11.9	47.1	23.5	AV	N	GND

CONDUCTED EMISSION STANDARD FCC PART 15B

KEYFOLIO EXPERT BLUETOOTH KEYBOARD M/N:M01147 EUT:

Doking Manufacturer: Operating Condition: On

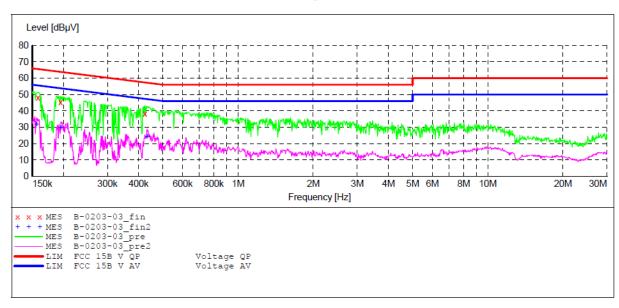
Test Site: 1#Shielding Room

Operator: Bob

Test Specification: L AC 120V/60Hz Mains port Comment:

Reprot NO.:ATE20120132

SCAN TABLE: "V 150K-30MHz fin"


_____SUB_STD_VTERM2 1.70 Short Description:

Stop Start Step Detector Meas. IF Transducer

Bandw. Width Time

Frequency Frequency 150.0 kHz 30.0 MHz 0.8 % QuasiPeak 1.0 s 9 kHz NSLK8126 2008

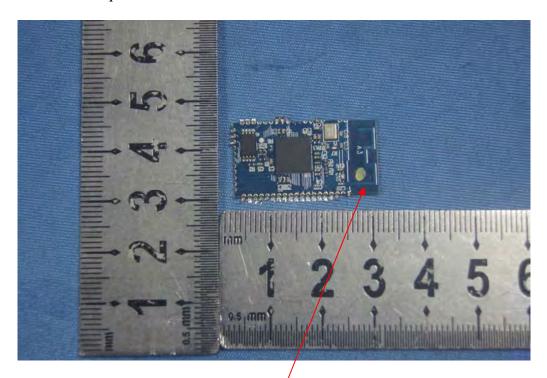
Average

MEASUREMENT RESULT: "B-0203-03 fin"

2/11/2012 10	:52AM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0.157990	48.10	11.0	65.6	17.5	QP	L1	GND
0.194439	45.40	11.2	63.8	18.4	QP	L1	GND
0.423503	38.50	11.9	57.4	18.9	QP	L1	GND

MEASUREMENT RESULT: "B-0203-03 fin2"

2/11/201	12 10:5	52AM						
Frequ	iency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dΒμV	dB	dΒμV	dB			
0.15	56109	31.70	11.0	55.7	24.0	AV	L1	GND
0.19	95216	29.60	11.2	53.8	24.2	AV	L1	GND
0.43	32041	24.20	11.9	47.2	23.0	AV	T.1	GND


14.ANTENNA REQUIREMENT

14.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

14.2.Antenna Construction

Antenna is formed by a copper trace on the PCB. Therefore, the equipment complies with the antenna requirement of Section 15.203.

Antenna