

FCC - TEST REPORT

Report Number : **68.910.22.0023.01** Date of Issue: 2022-10-20

Model : SensorPod-M

Product Type : SensorPod

Applicant : ACCO Brands, Inc.

Address : 4 Corporate Drive Lake Zurich Illinois United States 60047

Manufacturer : ACCO Brands, Inc.

Address : 4 Corporate Drive Lake Zurich Illinois United States 60047

Test Result : n Positive O Negative

Total pages including

Appendices : 24

Any use for advertising purposes must be granted in writing. This technical report may only be quoted in full. This report is the result of a single examination of the object in question and is not generally applicable evaluation of the quality of other products in regular production. For further details, please see testing and certification regulation chapter A-3.4.

1 Table of Contents

1 Table of Contents	
2 Details about the Test Laboratory	
3 Description of the Equipment Under Test	
4 Summary of Test Standards	
5 Summary of Test Results	
6 General Remarks	
7 Test setups	
8 Technical Requirement	
8.1 Conducted Emission	
8.2 Field strength of emissions and Restricted bands	12
8.3 Out of Band Emissions	
8.4 20dB Bandwidth & 99% Occupied Bandwidth	19
9 Test equipment lists	23
10 System Measurement Uncertainty	24

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12&13, Zhiheng Wisdomland Business Park,

Nantou Checkpoint Road 2, Nanshan District,

Shenzhen City, 518052,

P. R. China

FCC Registration

Number:

514049

Telephone: 86 755 8828 6998 Fax: 86 755 8828 5299

3 Description of the Equipment Under Test

Description of the Equipment Under Test

Product: SensorPod

Model no: SensorPod-M

FCC ID: GV3-22SP0M1

Options and accessories: NIL

Ratings: 7.5V-12VDC, 0.5A (Supplied by AC/DC Adapter)

Adapter information Model 1: IVP0900-0500W

Input: 100-240VAC, 50/60Hz, 0.5A

Output: 9VDC, 0.5A

Model 2: R062-0900500UC

Input: 100-240VAC, 50/60Hz, 0.3A

Output: 9VDC, 0.5A

The adaptors form two suppliers are with the same input and output parameters. Adaptor from same supplier share the same circuit and materials. Other differences are the model numbers

and plug construction.

RF Transmission

Frequency:

2469MHz-2479MHz

Antenna Type: PCB Antenna

Antenna Gain: 2.0dBi

Description of the EUT: The product is a SensorPod that operated at 2.4GHz,

The TX and RX range is 2469MHz-2479MHz

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	RATINGS	MODEL NO.

4 Summary of Test Standards

Test Standards					
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES				
10-1-2021 Edition	Subpart C - Intentional Radiators				

All the test methods were according to ANSI C63.10-2013.

5 Summary of Test Results

Technical Requirements									
FCC Part 15 Subpart C 15.249									
Test Condition	Test Site	Te	st Res	ult					
	rest site	Pass	Fail	N/A					
15.207	Site 1								
Conducted emission AC power port	Sile i								
§15.205(a), §15.209(a), §15.249(a), §15.249(c) &	Site 1								
Field strength of emissions and Restricted bands	Sile i								
§15.249(d)	Site 1								
Out of band emissions	Site i								
FCC §15.215(c) 20dB bandwidth	Site 1								
& 99% Occupied Bandwidth	Site i								
§15.203	See note 1								
Antenna requirement	See note 1								

Remark 1: N/A- Not Applicable;

Note 1: The EUT used an PCB antenna, which gain is 2.0dBi. According to §15.203, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: GV3-22SP0M1 complies with Section 15.207, 15.205, 15.209, 15.249 of the FCC Part 15, Subpart C Rules;

SUMMARY:

All tests according to the regulations cited on page 5 were

- n Performed
- O Not Performed

The Equipment Under Test

- n Fulfills the general approval requirements.
- O **Does not** fulfill the general approval requirements.

Sample Received Date: 2022-05-07

Testing Start Date: 2022-05-07

Testing End Date: 2022-10-10

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

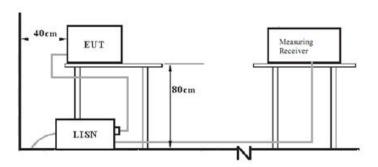
Reviewed by:

Prepared by:

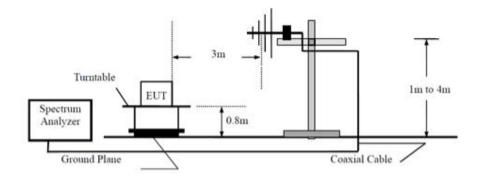
Tested by:

SUD

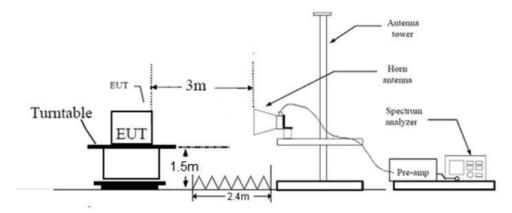
John Zhi Project Manager Mark Chen
Project Engineer


Mark chen

Carry Cai Test Engineer


7 Test setups

7.1 AC Power Line Conducted Emission test setups



7.2 Radiated test setups

Below 1GHz

Above 1GHz

8 Technical Requirement

8.1 Conducted Emission

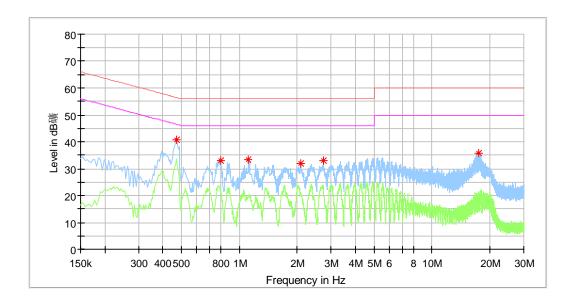
Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

Frequency	QP Limit	AV Limit
MHz	dΒμV	dΒμV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

^{*}Decreasing linearly with logarithm of the frequency.


Conducted Emission

Product Type : SensorPod M/N : SensorPod-M

Operating Condition : Normal working with transmitting

Test specification : Live

Comment : AC 120V/60Hz

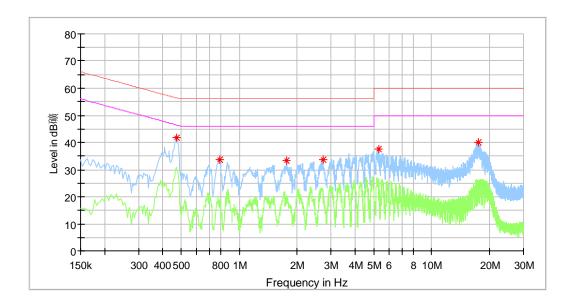
Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB/m)
0.470000	40.77		56.51	15.75	L1	9.65
0.798000	32.96		56.00	23.04	L1	9.66
1.114000	33.16		56.00	22.84	L1	9.66
2.086000	32.04		56.00	23.96	L1	9.69
2.726000	33.06		56.00	22.94	L1	9.72
17.458000	35.80		60.00	24.20	L1	10.32

Remark:

Level=Reading Level + Correction Factor Correction Factor=Cable Loss + LISN Factor

(The Reading Level is recorded by software which is not shown in the sheet)



Conducted Emission

Product Type : SensorPod M/N : SensorPod-M

Operating Condition : Normal working with transmitting

Test specification : Neutral Comment : AC 120V/60Hz

Critical_Freqs

-		9 -					
	Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB/m)
	0.474000	41.83		56.44	14.61	N	9.68
	0.794000	33.61		56.00	22.39	N	9.69
	1.762000	33.24		56.00	22.76	N	9.73
	2.730000	33.83		56.00	22.17	N	9.76
	5.294000	37.57		60.00	22.43	N	9.89
	17.434000	40.05		60.00	19.95	N	10.47

Remark:

Level=Reading Level + Correction Factor Correction Factor=Cable Loss + LISN Factor

(The Reading Level is recorded by software which is not shown in the sheet)

8.2 Field strength of emissions and Restricted bands

Test Method

- 1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3-meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2: The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5: Use the following spectrum analyzer settings According to C63.10:

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Note:

- 1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.
- 3: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log (1/duty cycle)).
- 4: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.

Field strength of emissions and Restricted bands

Limits

According to §15.249 (a) the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)		
902–928 MHz	50	500		
2400–2483.5 MHz	50	500		
5725–5875 MHz	50	500		
24.0–24.25 GHz	250	2500		

According to §15.249 (c), Field strength limits are specified at a distance of 3 meters. According to §15.249 (d), Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

Frequency	Field Strength	Field Strength	Detector
MHz	μV/m	dBµV/m	
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

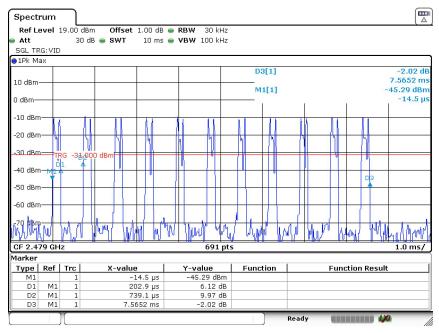
Field strength of emissions and Restricted bands

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Fundamental test result as below:

2469MHz-2479MHz Test Result

	Radiated Emission										
Value	Emissions Frequency MHz	E-Field Polarity	PK Emission dBµV/m	Corr.	Average Factor dB	AV Emission dBµV/m	Limit dBµV/m	Margin	Emission Type		
PK	2469	Н	91.57	-2.25	0.00	/	114.00	22.43	Fundamental		
AV	2469	Н	91.57	/	-11.21	80.36	94.00	13.64	Fundamental		
PK	2469	V	94.16	-2.25	0.00	/	114.00	19.84	Fundamental		
AV	2469	V	94.16	/	-11.21	82.95	94.00	11.05	Fundamental		
PK	2474	Н	90.31	-2.63	0.00		114.00	23.69	Fundamental		
AV	2474	Н	90.31	/	-11.21	79.10	94.00	14.90	Fundamental		
PK	2474	V	86.78	-2.63	0.00		114.00	27.22	Fundamental		
AV	2474	V	86.78	/	-11.21	75.57	94.00	18.43	Fundamental		
PK	2479	Н	96.57	-2.22	0.00	/	114.00	17.43	Fundamental		
AV	2479	Н	96.57	/	-11.21	85.36	94.00	8.64	Fundamental		
PK	2479	V	82.40	-2.22	0.00	/	114.00	31.60	Fundamental		
AV	2479	V	82.40	/	-11.21	71.19	94.00	22.81	Fundamental		


Transmitting spurious emission test result as below:

Test Result

	Radiated Emission								
Value	Emissions Frequency MHz	E-Field Polarity	PK Emission dBµV/m	Corr.	Average Factor dB	AV Emission dBµV/m	Limit dBµV/m	Margin	Emission Type
Below	1GHz								
PK	874.654444	Н	35.29	31.45	0.00	/	46	10.71	Spurious
PK	47.998889	V	31.75	20.92	0.00	/	40	8.25	Spurious
Above 1	IGHz (2469MHz)								
PK	5468	Н	48.79	5.35	0.00	/	74.00	25.21	Spurious
PK	5726.5	V	49.61	4.30	0.00	/	74.00	24.39	Spurious
Above 1	IGHz (2474MHz)								
PK	4948	Н	49.34	3.97	0.00	/	74.00	24.66	Spurious
AV	4948	Н	49.34		-11.21	38.09	54.00	15.91	Spurious
PK	4948	V	53.57	3.97	0.00	/	74.00	20.43	Spurious
AV	4948	V	53.57	/	-11.21	42.36	54.00	11.64	Spurious
Above 1	IGHz (2479MHz)			•				•	
PK	4756.0	Н	48.50	3.70	0.00	/	74.00	25.50	Spurious
PK	5370	V	49.17	5.14	0.00	/	74.00	24.83	Spurious

Duty cycle=0.2029ms/0.7392ms=0.275 Peak to average duty cycle correction factor =20log(duty cycle)=-11.21

Date: 8.OCT.2022 18:32:29

Remark:

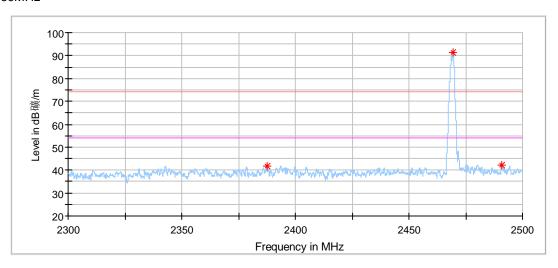
- (1) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 10dB below the permissible limits or the field strength is too small to be measured.
- (2) Corrected Amplitude= Read level + Corrector factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Pre-amplifier Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)
- (3) AV Emission = Average Reading Level + Correction Factor (for duty cycle ≤ 98%)

8.3 Out of Band Emissions

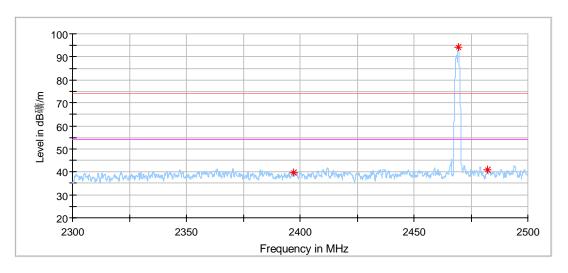
Test Method

- 1 Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold.
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

Limits


According to §15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

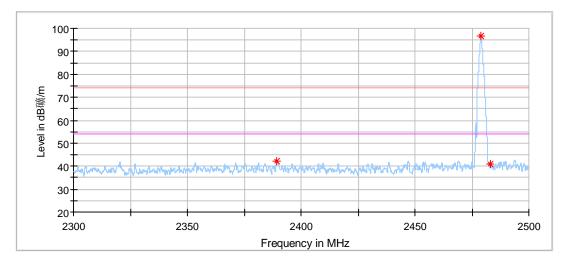
According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.


Out of Band Emissions

2469MHz

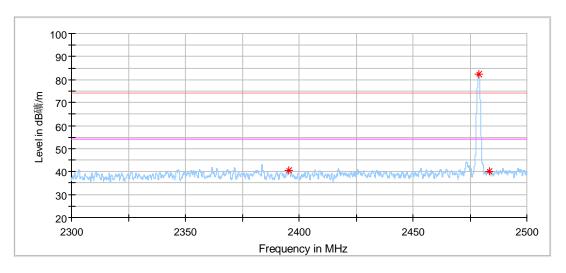
Critical Freqs

Frequency MaxPeak		Limit Margin Heig		Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(cm)		(deg)	(dB/m)
2387.420000	41.80	74.00	32.20	150.0	Н	318.0	-2.96
2469.540000	91.57	74.00	-17.57	150.0	Н	224.0	-2.25
2491.060000	41.96	74.00	32.04	150.0	Н	66.0	-2.17



Critical_Freqs

Frequency	MaxPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(cm)		(deg)	(dB/m)
2397.220000	39.73	74.00	34.27	150.0	٧	348.0	-2.88
2469.460000	94.16	74.00	-20.16	150.0	V	53.0	-2.25
2482.180000	40.94	74.00	33.06	150.0	V	225.0	-2.21



2479MHz

Critical Freqs

Frequency	MaxPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(cm)		(deg)	(dB/m)
2389.400000	42.23	74.00	31.77	150.0	Н	215.0	-2.95
2479.040000	96.57	74.00	-22.57	150.0	Н	341.0	-2.22
2483.220000	40.89	74.00	33.11	150.0	Н	219.0	-2.20

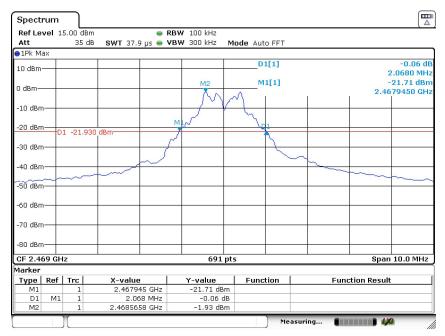
Critical Freqs

<u></u>							
Frequency	MaxPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(cm)		(deg)	(dB/m)
2395.600000	40.39	74.00	33.61	150.0	V	274.0	-2.90
2478.860000	82.40	74.00	-8.40	150.0	٧	222.0	-2.22
2483.500000	40.06	74.00	33.94	150.0	٧	57.0	-2.20

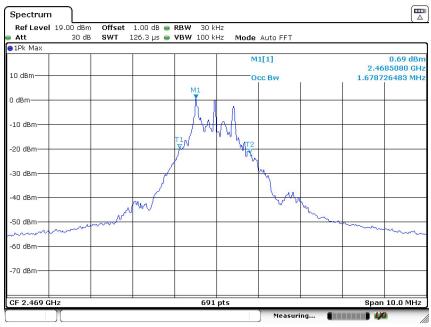
8.4 20dB Bandwidth & 99% Occupied Bandwidth

Test Method

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to spectrum analyser. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.


Limits:

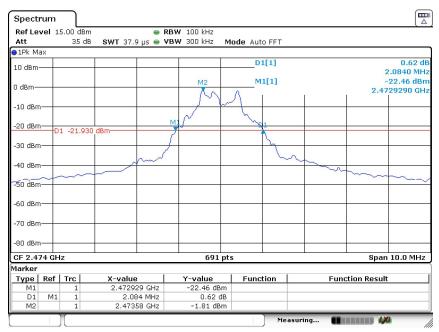
According to 15.215 (c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.



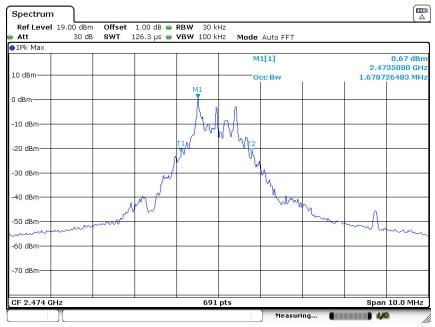
20dB Bandwidth & 99% Occupied Bandwidth

Frequency	20dB Bandwidth	99% Bandwidth	Limit
MHz	MHz	MHz	MHz
2469	2.068	1.68	

Date: 11.AUG.2022 16:04:19

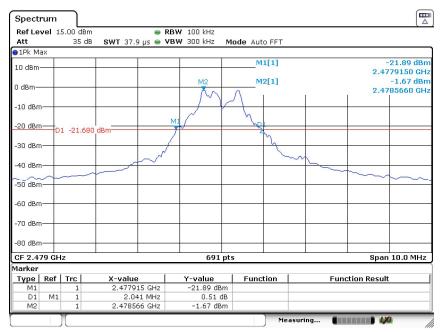


Date: 8.OCT.2022 18:28:54


2469MHz

Frequency	20dB Bandwidth	99% Bandwidth	Limit
MHz	MHz	MHz	MHz
2474	2.084	1.68	

Date: 11.AUG.2022 16:05:45



Date: 8.OCT.2022 18:29:44


2474MHz

Frequency	20dB Bandwidth	99% Bandwidth	Limit
MHz	MHz	MHz	MHz
2479	2.041	1.74	

Date: 11.AUG.2022 16:07:10

Date: 8.OCT.2022 18:30:25

2479MHz

9 Test equipment lists

Conducted Emission 1# Test

Description	Manufacturer	Model no.	Equipment ID	Serial no.	cal interval (year)	cal. due date
EMI Test Receiver	Rohde & Schwarz	ESR 3	68-4-74-14-001	101782	1	2023-5-27
LISN	Rohde & Schwarz	ENV4200	68-4-87-14-001	100249	1	2023-5-27
LISN	Rohde & Schwarz	ENV432	68-4-87-16-001	101318	1	2023-5-27
LISN	Rohde & Schwarz	ENV216	68-4-87-14-002	100326	1	2023-5-27
ISN	Rohde & Schwarz	ENY81	68-4-87-14-003	100177	1	2023-5-27
ISN	Rohde & Schwarz	ENY81-CA6	68-4-87-14-004	101664	1	2023-5-27
High Voltage Probe	Schwarzbeck	TK9420(VT9420)	68-4-27-14-001	9420-584	1	2023-5-27
RF Current Probe	Rohde & Schwarz	EZ-17	68-4-27-14-002	100816	1	2023-5-31
Attenuator	Shanghai Huaxiang	TS2-26-3	68-4-81-16-003	080928189	1	2023-5-27
Test software	Rohde & Schwarz	EMC32	68-4-90-14-003- A10	Version9.15.00	N/A	N/A
Shielding Room	TDK	CSR #1	68-4-90-19-004		3	2022-11-07

Radiated Emission 2# Test

Description	Manufacturer	Model no.	Equipment ID	Serial no.	cal interval (year)	cal. due date
EMI Test Receiver	Rohde & Schwarz	ESR 26	68-4-74-14-002	101269	1	2023-5-28
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9162	68-4-80-19-003	284	1	2023-1-17
Wave Guide Antenna	ETS	3117	68-4-80-19-001	00218954	1	2023-5-9
Pre-amplifier	Rohde & Schwarz	SCU 18F	68-4-29-19-001	100745	1	2023-5-28
Pre-amplifier	Rohde & Schwarz	SCU 18F	68-4-29-19-002	100746	1	2023-5-28
Sideband Horn Antenna	Q-PAR	QWH-SL-18- 40-K-SG	68-4-80-14-008	12827	1	2023-7-12
Pre-amplifier	Rohde & Schwarz	SCU 40A	68-4-29-14-002	100432	1	2023-7-27
Attenuator	Mini-circuits	UNAT-6+	68-4-81-21-002	15542	1	2023-5-27
3m Semi-anechoic chamber	TDK	SAC-3 #2	68-4-90-19-006		2	2023-5-28
Test software	Rohde & Schwarz	EMC32	68-4-90-19-006- A01	Version10.35.02	N/A	N/A

10 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty					
Test Items	Extended Uncertainty				
Uncertainty for Conducted Emission 150kHz-30MHz (for test using AMN ENV432 or ENV4200)	3.15dB				
Uncertainty for Radiated Emission in 3m chamber 30MHz-1000MHz	Horizontal: 4.59dB; Vertical: 4.75dB;				
Uncertainty for Radiated Spurious Emission 1000MHz-18000MHz	Horizontal: 5.08dB; Vertical: 5.09dB;				
Uncertainty for Radiated Spurious Emission 18000MHz-40000MHz	Horizontal: 4.51dB; Vertical: 4.50dB;				