

Certification Test Report

FCC ID: GV3-20Z3X00 IC: 6128A-20Z3X00

FCC Rule Part: 15.247 ISED Canada's Radio Standards Specification: RSS-247

TÜV SÜD Report Number: RD72159794.103

Manufacturer: ACCO Brands USA, LLC Model: Z-2500; Z-3500

> Test Begin Date: May 20, 2020 Test End Date: July 16, 2020

Report Issue Date: September 2, 2020

A2LA Cert. No. 2955.18

This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, ANSI, or any agency of the Federal Government.

Prepared by:

Chris Gormley RF Wireless Engineer TÜV SÜD America Inc.

Reviewed by:

Kirby Munroe Technical Manager, US Wireless TÜV SÜD America, Inc.

This test report shall not be reproduced except in full. This report may be reproduced in part with prior written consent of TÜV SÜD America Inc. The results contained in this report are representative of the sample(s) submitted for evaluation.

Report: RD72159794.103

TÜV SÜD America Inc.

Page 1 of 31

2320 Presidential Dr Suite 101, Durham NC 27703-8077, Ph: 919-748-4615

TABLE OF CONTENTS

GENERAL	3
1.1 PURPOSE	3
1.2 PRODUCT DESCRIPTION	
1.3 TEST METHODOLOGY AND CONSIDERATIONS	4
TEST FACILITIES	5
2.1 LOCATION	. 5
2.3 RADIATED EMISSIONS TEST SITE DESCRIPTION	
2.3.1 Semi-Anechoic Chamber Test Site	
2.4 CONDUCTED EMISSIONS TEST SITE DESCRIPTION	7
APPLICABLE STANDARD REFERENCES	8
LIST OF TEST FOURPMENT	8
SUPPORT EQUIPMENT	9
EOUIPMENT UNDER TEST SETUP BLOCK DIAGRAM	9
SUMMARY OF TESTS	.10
7.1 ANTENNA REQUIREMENT – FCC: 15.203	.10
7.2 POWER LINE CONDUCTED EMISSIONS – FCC: 15.207; ISED CANADA: RSS-GEN 8.8	.10
7.2.1 Measurement Procedure	.10
7.2.2 Measurement Results	
 7.4 FUNDAMENTAL EMISSION OUTPUT POWER – FCC: 15.247(B)(3); ISED CANADA: RSS-247 5.4(L 16))
7.4.1 Measurement Procedure	
	.16
7.5.2.1 Measurement Procedure	
7.5.2.2 Duty Cycle Correction	
CONCLUSION	.31
	1.1 PURPOSE. 1.2 PRODUCT DESCRIPTION. 1.3 TEST METHODOLOGY AND CONSIDERATIONS TEST FACILITIES. 2.1 LOCATION 2.2 LABORATORY ACCREDITATIONS/RECOGNITIONS/CERTIFICATIONS 2.3.1 Semi-Anechoic Chamber Test Site. 2.3.1 Semi-Anechoic Chamber Test Site. 2.4 CONDUCTED EMISSIONS TEST STET DESCRIPTION. APPLICABLE STANDARD REFERENCES. LIST OF TEST EQUIPMENT. EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM. SUMMARY OF TESTS. 7.1 ANTENNA REQUIRIMENT – FCC: 15.203. 7.2 POWER LINE CONDUCTED EMISSIONS – FCC: 15.207, ISED CANADA: RSS-GEN 8.8. 7.2.1 Measurement Procedure. 7.2.2 Measurement Results 7.3 Measurement Results 7.4 FUNDAMENTAL EMISSION OUTPUT POWER – FCC: 15.247(b)(3); ISED CANADA: RSS-247 5.4(16 7.4 Measurement Results 7.5 EMISSION LEVELS – FCC: 15.247(D), 15.205, 15.209; ISED CANADA RSS-247 5.5, RSS-GEN 8/8.10

Report: RD72159794.103

TÜV SÜD America Inc.

1 GENERAL

1.1 Purpose

The purpose of this report is to demonstrate compliance with Part 15 Subpart C of the FCC's Code of Federal Regulations and Innovation, Science and Economic Development Canada Radio Standards Specification: RSS-247 Certification.

1.2 Product Description

The Z-2500 and Z-3500 is a line of air purifiers which receive air quality data over-the-air from the SensorPod-M. The purifier contains an integral 2.4GHz proprietary radio as well as a preapproved GT-Tronics radio (FCC ID:B4OEC86XFPX, Model:EC864FPA) with both BLE and WiFi onboard. Each of the GT-Tronics radios can transmit simultaneously with the integral 2.4GHz proprietary radio. The simultaneous transmissions of these radios was evaluated and documented in the integration verification report of the GT-Tronics radio.

Technical Information:

Detail	Description
Frequency Range	2402 – 2480MHz
Channel Spacing	2MHz
Number of Channels	39
Modulation Format	GFSK
Rated RF Output Power	-3dBm (Conducted)
Operating Voltage	120Vac/60Hz
Antenna Type / Gain	PCB Trace Antenna / 2.0 dBi
Hardware Version	Z3500_1.0
Software Release	Z3500_1.0

Manufacturer Information: ACCO Brands USA, LLC 4 Corporate Drive Lake Zurich, IL 60047

EUT Serial Numbers: T2/004

Test Sample Condition: The test samples were provided in good working order with no visible defects.

1.3 Test Methodology and Considerations

The EUT was configured with special firmware to allow selection of operating frequency.

The Z-2500 and Z-3500 are electrically identical and differ only in the scale of the enclosure. The Z-3500 was declared worst case and all testing was performed on that variant.

The sensor pod was placed on the floor of the chamber in the corner and the acknowledgement packets from the purifier were then maximized during radiated emissions.

The sensor pod was attenuated and connected to the antenna port via a coupler to communicate with the purified board for conducted measurements. Measurements were taken after allowing a period of time for the acknowledgement packets to maximize the output signal from the purifier board.

The power level was set to -6dB for all testing.

2 TEST FACILITIES

2.1 Location

The radiated and conducted emissions test sites are located at the following address:

TÜV SÜD America Inc. 2320 Presidential Drive, Suite 101 Durham, NC 27703 Phone: (919) 748-4615

2.2 Laboratory Accreditations/Recognitions/Certifications

TÜV SÜD America Inc. (Durham) is accredited to ISO/IEC 17025 by A2LA accreditation program, and has been issued certificate number 2955.18 in recognition of this accreditation. Unless otherwise specified, all tests methods described within this report are covered under the ISO/IEC 17025 scope of accreditation.

The Semi-Anechoic Chamber Test Site and Conducted Emissions Site have been fully described, submitted to, and accepted by the FCC and Innovation, Science and Economic Development (ISED) Canada.

FCC Designation Number: US1245 FCC Test Firm Registration Number: 238628 ISED Canada Company Number: 20446

2.3 Radiated Emissions Test Site Description

2.3.1 Semi-Anechoic Chamber Test Site

The Semi-Anechoic Chamber Test Site consists of a 18' x 28' x 18' shielded enclosure. The chamber is lined with Samwha Electronics Co. LTD Ferrite Absorber, model number SFA300 (HSN-1). The ferrite tile is 10cm x 10 cm and weighs approximately 1.4lbs. These tiles are mounted on steel panels and installed directly on the inner walls of the chamber. On top of the ferrite tiles is DMAS HT-45 (Dutch Microwave Absorber Solutions) hybrid absorber on all walls except the wall behind the antenna mast which has a shorter DMAS HT-25 absorber.

The turntable is 1.50m in diameter and is located 150cm from the back wall of the chamber. The chamber is grounded via 1 - 8' copper ground rod, installed at the center of the back wall, it is bound to the ground plane using short #6 copper wire. The turntable is all steel, flush mounted table installed in an all steel frame. The table is remotely operated from inside the control room located 25' from the turntable. The turntable is electrically bonded to the surrounding ground plane via steel fingers installed on the edge of the turn table. The steel fingers make constant contact with the ground plane.

Behind the turntable is a 2' x 6' x 1.5' deep shielded pit used for support equipment if necessary. The pit is equipped with 2 - 4" PVC chase from the turntable to the pit that allow for cabling to the EUT if necessary. The underside of the turntable can be accessed from the pit so cables can be supplied to the EUT from the pit.

A diagram of the Semi-Anechoic Chamber Test Site is shown in Figure 2.3-1 below:

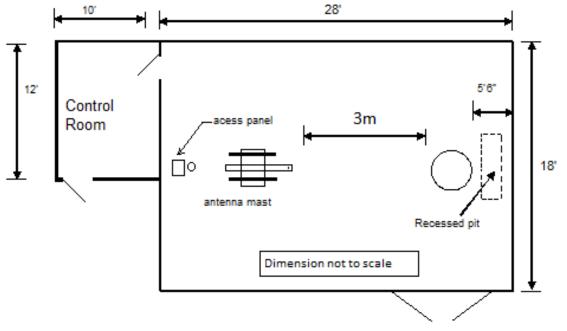


Figure 2.3-1: Semi-Anechoic Chamber Test Site

2.4 Conducted Emissions Test Site Description

The AC mains conducted EMI site is located in the main EMC lab. It consists of an 8' x 10' sheet galvanized steel horizontal ground reference plane (GRP) bonded every 6" to an 8' X 8' aluminum vertical ground plane.

A diagram of the room is shown below in figure 2.4-1:

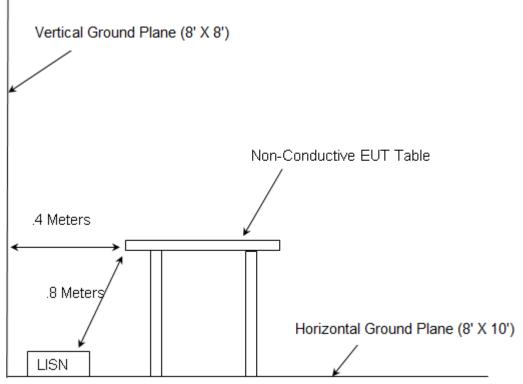


Figure 2.4-1: AC Mains Conducted EMI Site

3 APPLICABLE STANDARD REFERENCES

The following standards were used:

- ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
- US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures, 2020
- US Code of Federal Regulations (CFR): Title 47, Part 15, Subpart C: Radio Frequency Devices, Intentional Radiators, 2020
- FCC 558074 D01 15.247 Meas Guidance v05r02 Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC Rules, April 2, 2019
- ISED Canada Radio Standards Specification: RSS-247, Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices, Issue 2, February 2017
- ISED Canada Radio Standards Specification: RSS-GEN General Requirements for Compliance of Radio Apparatus, Issue 5, Amendment 1, March 2019

4 LIST OF TEST EQUIPMENT

The calibration interval of test equipment is annually or the manufacturer's recommendations. Where the calibration interval deviates from the annual cycle based on the instrument manufacturer's recommendations, it shall be stated below.

Asset ID	Manufacturer	Model #	Equipment Type	Serial #	Last Calibration Date	Calibration Due Date
DEMC3002	Rohde & Schwarz	ESU40	Receiver	100346	1/22/2020	1/22/2021
DEMC3006	Rohde & Schwarz	TS-PR18	Amplifier	122006	1/23/2020	1/23/2021
DEMC3007	Rohde & Schwarz	TS-PR26	Amplifier	100051	1/23/2020	1/23/2021
DEMC3012	Rohde & Schwarz	EMC32-EB	Software	100731	NCR	NCR
DEMC3016	Fei Teng Wireless Technology	HA-07M18G- NF	Antenna	2013120203	4/8/2020	4/8/2021
DEMC3027	Micro-Tronics	BRM50702	2.4GHz Notch Filter	175	1/27/2020	1/27/2021
DEMC3032	Hasco, Inc.	HLL142-S1- S1-192/WA	Cable	3075	1/23/2020	1/23/2021
DEMC3038	Florida RF Labs	NMSE-290AW- 60.0-NMSE	Cable Set	1448	1/27/2020	1/27/2021
DEMC3039	Florida RF Labs	NMSE-290AW- 396.0-NMSE	Cable Set	1447	1/27/2020	1/27/2021
DEMC3055	Rohde & Schwarz	3005	Cable	3055	1/23/2020	1/23/2021
DEMC3085	Rohde & Schwarz	FSW43	Spectrum Analyzer	103997	1/22/2020	1/22/2021
DEMC3161	TESEQ	CBL-6112D	Antenna	51323	2/18/2020	2/18/2021

Table 4-1: Test Equipment

NCR = No Calibration Required

DMAS MT-25 RF absorber material was used on the floor for all final measurements above 1 GHz. Asset DEMC3002: Firmware Version: ESU40 is 4.73 SP4

Asset DEMC3002. Fillinware Version. ES040 is 4.73 SF4

Asset DEMC3012: Software Version: EMC32-B is 10.50.00

5 SUPPORT EQUIPMENT

Item	Equipment Type	Manufacturer	Model Number	Serial Number								
1	EUT	ACCO Brands USA, LLC	Z-2500; Z-3500	See Section 1.2								

 Table 5-1:
 Support Equipment

Notes:

6 EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM

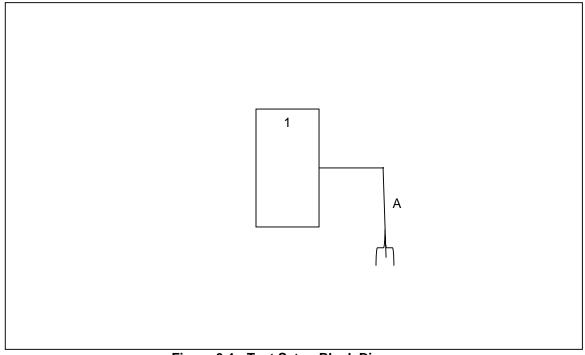


Figure 6-1: Test Setup Block Diagram

Table 6-1	: Cable	Description

Cable #	Cable Type	Cable Type Length		Termination
А	AC Power Cable	1.9m	No	1 to AC

7 SUMMARY OF TESTS

Along with the tabular data shown below, plots were taken of all signals deemed important enough to document.

7.1 Antenna Requirement – FCC: 15.203

The antenna is integral to the device and cannot be removed or replaced by the end user. The peak gain of the antenna is 2.0 dBi.

7.2 Power Line Conducted Emissions – FCC: 15.207; ISED Canada: RSS-Gen 8.8

7.2.1 Measurement Procedure

ANSI C63.10-2013 section 6 was the guiding document for this evaluation. Conducted emissions were performed from 150kHz to 30MHz with the spectrum analyzer's resolution bandwidth set to 9kHz and the video bandwidth set to 30kHz. The calculation for the conducted emissions is as follows:

Corrected Reading = Analyzer Reading + LISN Loss + Cable Loss Margin = Applicable Limit - Corrected Reading

7.2.2 Measurement Results

Performed by: Chris Gormley

Table 7	Table 7.2.2-1: Conducted EMI Results – Line and Neutral												
Frequency	QuasiPeak	Average	Limit	Margin	Line	Filter	Corr.						
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)			(dB)						
0.195000	57.20		63.82	6.62	Ν	OFF	9.6						
0.195000		39.95	53.82	13.87	Ν	OFF	9.6						
0.253500	48.23		61.64	13.41	L1	OFF	9.7						
0.253500		30.69	51.64	20.96	L1	OFF	9.7						
0.334500	41.47		59.34	17.87	L1	OFF	9.7						
0.334500		33.01	49.34	16.33	L1	OFF	9.7						
0.375000		24.25	48.39	24.14	L1	OFF	9.7						
0.375000	39.07		58.39	19.32	L1	OFF	9.7						
0.393000		23.72	48.00	24.28	Ν	OFF	9.6						
0.393000	38.97		58.00	19.03	Ν	OFF	9.6						
0.748500	38.50		56.00	17.50	Ν	OFF	9.6						
0.748500		24.42	46.00	21.58	Ν	OFF	9.6						
1.266000		19.54	46.00	26.46	L1	OFF	9.7						
1.266000	34.41		56.00	21.59	L1	OFF	9.7						
2.179500		20.42	46.00	25.58	Ν	OFF	9.8						
2.179500	32.74		56.00	23.26	Ν	OFF	9.8						
13.191000		29.12	50.00	20.88	Ν	OFF	10.1						
13.191000	34.62		60.00	25.38	Ν	OFF	10.1						
28.117500		31.11	50.00	18.89	Ν	OFF	10.4						
28.117500	36.79		60.00	23.21	Ν	OFF	10.4						

able 7.2.2-1: Conducted EMI Results – Line and Neutral

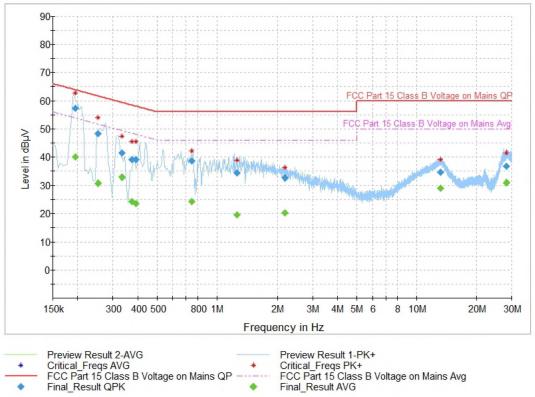


Figure 7.2.2-1: Conducted EMI Emission Plot – Line and Neutral

Preview Result 1-PK+ Critical_Freqs PK+ FCC Part 15 Class B Voltage on Mains Avg Final_Result AVG

7.3 6dB / 99% Bandwidth – FCC: 15.247(a)(2); ISED Canada: RSS-247 5.2(a), RSS-Gen 6.7

7.3.1 Measurement Procedure

The 6dB bandwidth was measured in accordance with the FCC KDB 558074 D01 15.247 Meas Guidance v05r02. The Resolution Bandwidth (RBW) of the spectrum analyzer was set to 100 kHz. The Video Bandwidth (VBW) was set to \geq 3 times the RBW. The trace was set to max hold with a peak detector active. The marker-delta function of the spectrum analyzer was utilized to determine the 6 dB bandwidth of the emission.

The occupied bandwidth measurement function of the spectrum analyzer was used to measure the 99% bandwidth. The span of the analyzer was set to capture all products of the modulation process, including the emission sidebands. The resolution bandwidth was set to 1% to 5% of the occupied bandwidth. The video bandwidth was set to 3 times the resolution bandwidth.

7.3.2 Measurement Results

Performed by: Chris Gormley

Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)								
2402	0.8242	2.007								
2440	0.8741	2.019								
2480	0.7292	1.990								

Table 7.3.2-1: 6dB / 99% Bandwidth

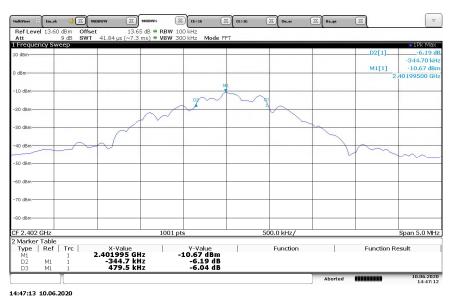
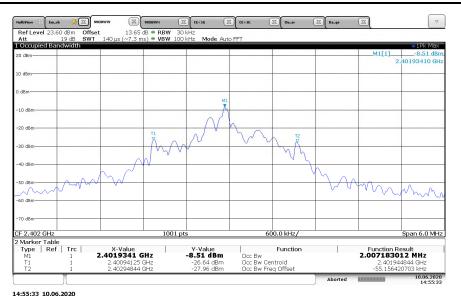
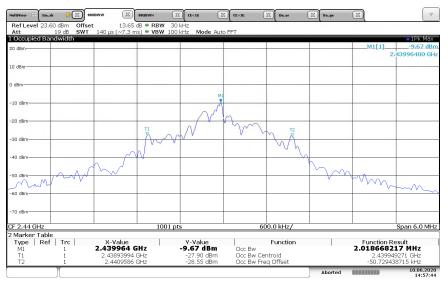


Figure 7.3.2-1: 6dB Bandwidth Low Channel




Figure 7.3.2-2: 99% Bandwidth Low Channel

14:37:59 10.06.2020

Figure 7.3.2-3: 6dB Bandwidth Mid Channel

FCC ID: GV3-20Z3X00

14:57:44 10.06.2020

14:43:18 10.06.2020

Figure 7.3.2-5: 6dB Bandwidth High Channel

FCC ID: GV3-20Z3X00

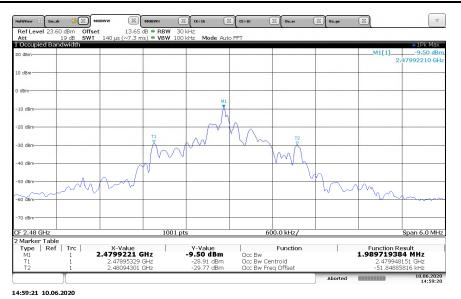


Figure 7.3.2-6: 99% Bandwidth High Channel

7.4 Fundamental Emission Output Power – FCC: 15.247(b)(3); ISED Canada: RSS-247 5.4(d)

7.4.1 Measurement Procedure

The maximum peak conducted output power was measured in accordance with FCC KDB 558074 D01 15.247 Meas Guidance v05r02 utilizing the spectrum analyzer RBW>DTS bandwidth method. The RF output of the equipment under test was directly connected to the input of the spectrum analyzer applying suitable attenuation.

7.4.2 Measurement Results

Performed by: Chris Gormley

Frequency (MHz)	Output Power (dBm)
2402	-5.48
2440	-6.09
2480	-6.74

 Table 7.4.2-1: Maximum Peak Conducted Output Power

Ref Level 13. Att	65 dBm 01 10 dB SV	fset 13.65 VT 1.01 r			le Auto Sv	weep							
Frequency S	weep												😐 1 Pk Max
0 dBm											M1	[1]	-5.48 dBr
5 dbiil												2.	4017450 GH
dBm						M1	_		_				
						- V	 						
10 dBm						-	 -						
												-	
20 dBm													
30 dBm							_			_			
40 dBm						-							
50 dBm													
60 dBm													
70 dBm							 						
80 dBm													
ou ubin-													
F 2.402 GHz			10	001 pts			1.5 M	Hz/				Sp	an 15.0 MH
									Ab	orted			10.06.202 11:00:3

Figure 7.4.2-1: Low Channel

Sweep			Mode Auto Sweep			
		VBN 20 MILZ	Mode Auto Sweep			€1Pk Max
					M1[1]	-6.09 dBn
						2.4396100 GH
			M1			
and (Chrome					1 1 10 m	
No. o.	_					PWPW/TRANS
						- Multiller
_						
		100	1 pts	1.5 MHz/	 	pan 15.0 MHz
					1001 pts 1.5 Mtz/	

11:06:12 10.06.2020

Figure 7.4.2-2: Mid Channel

Att Frequency Sv	10 dB SWT weep	1.01 ms 🖷 🛛	BW 20 MHz	Mode Auto Sweep					●1Pk Max
0 dBm-				_		_		M1[1]	-6.74 dBn
									2,4796850 GH
dBm			-						
				M1					
LO dBm-									
mon	-LAM							Maria	- Martine
30 dBm									
40 dBm			-			-			+
50 dBm									
su ubm									
50 dBm									
70 dBm									
80 dBm									
F 2.48 GHz		1	1001	pts	1	1.5 MHz/	1		Span 15.0 MHz 10.06.2020

Figure 7.4.2-3: High Channel

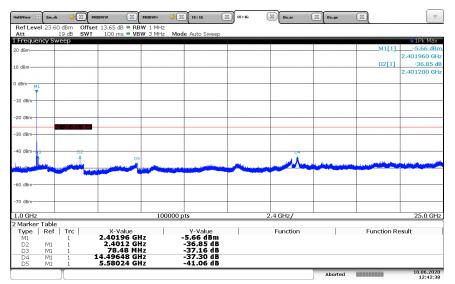
7.5 Emission Levels – FCC: 15.247(d), 15.205, 15.209; ISED Canada RSS-247 5.5, RSS-Gen 8.9/8.10

7.5.1 Emissions into Non-restricted Frequency Bands

7.5.1.1 Measurement Procedure

The unwanted emissions into non-restricted bands were measured conducted in accordance with FCC KDB 558074 D01 15.247 Meas Guidance v05r02. The RF output of the equipment under test was directly connected to the input of the spectrum analyzer applying suitable attenuation. The Resolution Bandwidth (RBW) of the spectrum analyzer was set to 100 kHz. The Video Bandwidth (VBW) was set to \geq 300 kHz. Span was set to 1.5 times the DTS bandwidth. The trace was set to max hold with a peak detector active. The resulting spectrum analyzer peak level was used to determine the reference level with respect to the 20 dBc limit. The spectrum span was then adjusted for the measurement of spurious emissions from 30 MHz to 25GHz, 10 times the highest fundamental frequency. Additionally, a prescan was performed from 9 kHz or the lowest frequency generated to 30 MHz.

Band-edge compliance was determined using the conducted marker-delta method in which the radio frequency power that is produced by the EUT is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power.


7.5.1.2 Measurement Results

Performed by: Chris Gormley

Ref Level 23.60 Att Frequency Sw 20 d8m 10 d8m -10 d8m -20 d8m -30 d8m	19 dB SWT		55 dB ● RBW 10 1 ms) ● VBW 30		uto FFT			M1[1]	• 1Pk Max -57.42 dBm
Prequency Sw 20 d8m		2.55 ms (****		o kinz mode A					-57.42 dBm
10 dBm									
10 dBm									
0 dBm								1 9	42.35780 MHz
0 dBm									
-10 dBm									
-10 dBm									
-20 dBm									
-20 dBm									
-20 dBm	1						1		
						1			
-30 dBm									
-30 dBm									
-40 dBm									
-to ubiii									
-50 dBm								-	
					5 2			4	37 7 6
60 dBm	11	1	distantion and in the	a hadrach lu d		alana ne mat varial	distance della dalla	dependent land Label	وسروقه وفاريقه
and the later of the property of the second s	The Statistical sector	a hangahanna parag	an national lister ha	The second shall be been been stated as	and a fight have such that	at stills such as a such satisfies that	and designed a new plants light data works	preparent provident hall	a fight francis and only
-70 dBm	design of the state of the	alle strates trades alle	and harmonic for the				1.11.11.1		
70 ubm									
30.0 MHz			100000 p	te	0.	7.0 MHz/	I		1.0 GHz
2 Marker Peak L	ict		100000			/10/////2/			210 0112
No	_ist X-Value		Y-Va	lue	No	X-Valu	e	Y-Va	lue
1	942.357800 1		-57,424		5	555.298700		-58.057	
2	583.341400 I	MHz	-57.488	dBm	6	963.416500		-58.074	
3	911.463300		-57.840		7	924.762000	MHz	-58.118	dBm
4	874.545100	MHZ	-57.965	asm					
							Aborted		10.06.2020 12:43:22

12:43:23 10.06.2020

Figure 7.5.1.2-1: 30 MHz – 1 GHz – LCH

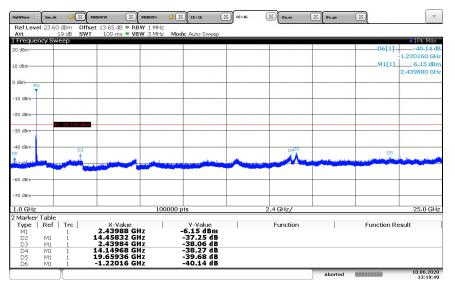
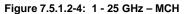
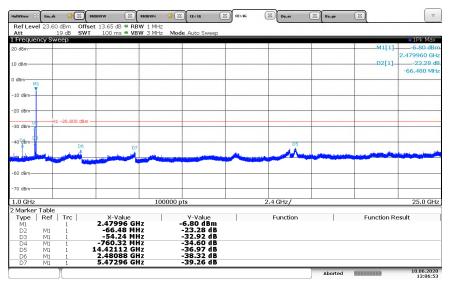

12:42:38 10.06.2020

Figure 7.5.1.2-2: 1 - 25 GHz – LCH


MultiView Em.	sk 🔆 🖾 9908'	ww 🖾	990BWN 🔆 🔀	CE<16 2	(CE>16	Du.er	Bage	X	~
Ref Level 23.			5 dB • RBW 10				_	ì	
Att Frequency S		2.93 ms (~394	ms) 🛡 VBW 30	0 kHz Mode A	uto FFT				1Pk Max
20 dBm-								M1[1]	-57.42 dBm
								9	52.71740 MHz
10 dBm	· · · · · · · · ·								
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
									11
-40 dBm									
-50 dBm									
30 00m									M1
60 dBm	والمتعادية والمتعادية والمتعادية			7	n an an Arristation and Array	a late - a character is a latter	and the second second second	23	รี่มางหม ได้รับเหลื
البرا فيستادون والمالا	aa kaapa ka	The first second at PD [10	and a set of the set o	and the provident provident of the	physical Theorem Indexe	and property of the part of the	a series and the property of the	والمتحد المتجمع ومترعا وإستراح	halo de production de la competencia de
-70 dBm		Long to the second	1.00		1				
30.0 MHz	100000 pts				97.0 MHz/				1.0 GHz
2 Marker Peak No	k List X-Value		Y-Va	huo	No	X-Valu	o	Y-Va	
1	952.717400 N		-57.423	dBm	5	965.579600	MHz	-57.784	dBm
2 3	871.897000 N		-57.671		6	993.893900		-57.823	
3 4	879.055600 N 909.057700 N		-57.695 -57.766		7	458.735200	MHZ	-58.794	asm
	T						Aborted		10.06.2020
							Abarteu		13:20:58

13:20:59 10.06.2020

Figure 7.5.1.2-3: 30 MHz – 1 GHz – MCH


13:19:41 10.06.2020

MultiView EE Em.	sk 🎽 🖾 990BWV	v II	990BWN 🔆		CE>1G	🖾 Ouer 🛛	Bage	X	~
Ref Level 23.			5 dB • RBW 10						
Att Frequency S		93 ms (~394	ms) 🛡 VBW 30	UKHZ MOOLE A	uto FFI				1Pk Max
20 dBm-								M1[1]	-57.53 dBm
20 0800									97.59930 MHz
LO dBm									
dBm									
10 dBm-									
10 abiii									
20 dBm									
30 dBm									
40 dBm									
-to abiii									
50 dBm									
					4			2	7 6 5 3
60 dBm	un i-entralization de la companya de		Lange Alle	a standerkind at a		the shear of the shear	salut reduce of the cold	AN AN LOUIS AND	Collected Marine
"Nellyddytelynau hanna	a konstruction and the part on the part of the second statements of the part o	ente frente (na fra	en de la completa de la completa	Alexandra and a second s	a tobrafilate to a like is a	and a state of the second state of the	Contract descendences	a development of the second second second	and fails and priori all present
70 dBm	toon don't dig to no parte	line managements	and Street and And And Andreas	and the second second	and the second second	and the state of the second	a to the trace of a		
70 ubm									
30.0 MHz			100000 г	te	0.	7.0 MHz/		1	1.0 GHz
Marker Peal	. Link		100000	/63	2	10 0112/			1.0 012
No No	X-Value	1	Y-Va	lue	No	X-Valu	e	Y-Va	lue
1	997.599300 MH	12	-57.531		5	957.286100		-58.369	
2	872.653600 MH	Iz	-58.106	dBm	6	941.319900	MHz	-58.467	dBm
3	970.633300 MH		-58.115		7	911.162600	MHz	-58.726	dBm
4	549.439900 MH	iz	-58.265	dBm					
	T I						Aborted		10.06.2020
							,		13:07:27

13:07:27 10.06.2020

Figure 7.5.1.2-5: 30 MHz - 1 GHz – HCH

13:06:54 10.06.2020

Figure 7.5.1.2-6: 1 - 25 GHz – HCH

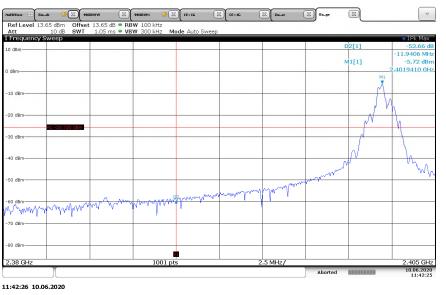
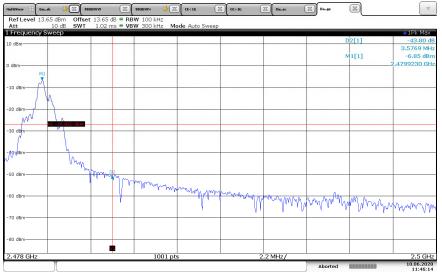



Figure 7.5.1.2-7: Lower Band-edge - LCH

11:46:14 10.06.2020

Figure 7.5.1.2-8: Upper Band-edge - HCH

7.5.2 Emissions into Restricted Frequency Bands

7.5.2.1 Measurement Procedure

The unwanted emissions into restricted bands were measured radiated over the frequency range of 30MHz to 25GHz, 10 times the highest fundamental frequency.

The EUT was rotated through 360° and the receive antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. For frequencies below 1000MHz, quasi-peak measurements were made using a RBW of 120 kHz and a VBW of 300 kHz. For frequencies above 1000MHz, peak and average measurements were made with RBW and VBW of 1 MHz and 3 MHz respectively.

Each emission found to be in a restricted band as defined by section 15.205, including any emission at the operational band-edge, was compared to the radiated emission limits as defined in section 15.209.

7.5.2.2 Duty Cycle Correction

The Duty Cycle Correction was not required.

7.5.2.3 Measurement Results

Performed by: Chris Gormley

Level												
Frequency (MHz)	(dBuV)		Antenna Polarity	Turntable Position	Antenna Height	Correction Factors	Corrected Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	
	pk	Qpk/Avg	(H/V)	(o)	(cm)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
Low Channel												
2390	48.37	24.6	Н	165	111	-3.01	45.36	21.59	74.0	54.0	28.64	32.41
4804	56.8	26.5	Н	92	100	3.45	60.25	29.95	74.0	54.0	13.75	24.05
4804	62	30	V	106	134	3.45	65.45	33.45	74.0	54.0	8.55	20.55
4878	46.10	42.30	Н	121	100	3.48	49.58	45.78	74.0	54.0	24.42	8.22
4878	45.90	42.10	V	80	199	3.48	49.38	45.58	74.0	54.0	24.62	8.42
12010	35.70	22.10	Н	0	100	13.36	49.06	35.46	74.0	54.0	24.94	18.54
12010	35.40	22.20	V	0	100	13.36	48.76	35.56	74.0	54.0	25.24	18.44
19216	39.50	26.10	Н	0	150	8.80	48.30	34.90	74.0	54.0	25.70	19.10
19216	40.30	26.00	V	0	150	8.80	49.10	34.80	74.0	54.0	24.90	19.20
Mid Channel												
4880	54.10	29.40	Н	287	268	3.49	57.59	32.89	74.0	54.0	16.41	21.11
4880	55.20	29.90	V	97	100	3.49	58.69	33.39	74.0	54.0	15.31	20.61
7320	43.00	28.50	Н	0	100	8.22	51.22	36.72	74.0	54.0	22.78	17.28
7320	43.00	28.60	V	0	100	8.22	51.22	36.82	74.0	54.0	22.78	17.18
12200	42.00	28.00	Н	0	100	12.62	54.62	40.62	74.0	54.0	19.38	13.38
12200	41.80	28.00	V	0	100	12.62	54.42	40.62	74.0	54.0	19.58	13.38
19520	39.40	25.80	Н	0	150	9.17	48.57	34.97	74.0	54.0	25.43	19.03
19520	39.30	25.80	V	0	150	9.17	48.47	34.97	74.0	54.0	25.53	19.03
					High	n Channel						
2486.51	56.67	26.70	Н	172	100	-3.16	53.51	23.54	74.0	54.0	20.49	30.46
4878	43.70	38.50	Н	106	106	3.48	47.18	41.98	74.0	54.0	26.82	12.02
4878	45.70	41.40	V	28	120	3.48	49.18	44.88	74.0	54.0	24.82	9.12
4960	52.00	26.00	Н	284	100	3.52	55.52	29.52	74.0	54.0	18.48	24.48
4960	53.70	26.30	V	97	136	3.52	57.22	29.82	74.0	54.0	16.78	24.18
7440	44.00	25.20	Н	253	174	8.75	52.75	33.95	74.0	54.0	21.25	20.05
7440	44.90	24.50	V	166	191	8.75	53.65	33.25	74.0	54.0	20.35	20.75
12400	35.90	22.50	Н	0	100	11.84	47.74	34.34	74.0	54.0	26.26	19.66
12400	35.90	22.50	V	0	100	11.84	47.74	34.34	74.0	54.0	26.26	19.66
19840	39.00	25.50	Н	0	150	9.35	48.35	34.85	74.0	54.0	25.65	19.15
19840	38.70	25.50	V	0	150	9.35	48.05	34.85	74.0	54.0	25.95	19.15
22320	37.30	23.70	Н	0	150	11.87	49.17	35.57	74.0	54.0	24.83	18.43
22320	37.30	23.70	V	0	150	11.87	49.17	35.57	74.0	54.0	24.83	18.43

Table 7.5.2.3-1: Radiated Spurious Emissions Tabulated Data

Note: All emissions not listed were attenuated below the noise floor of the measurement instrumentation or greater than 20dB from the limit.

Figure 7.5.2.3-1: Radiated Spurious Emissions Below 1GHz Emission Profile

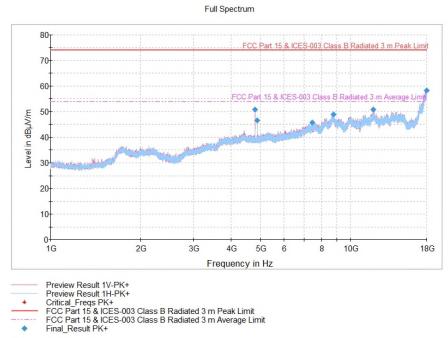


Figure 7.5.2.3-2: Radiated Spurious Emissions Above 1GHz Emission Profile

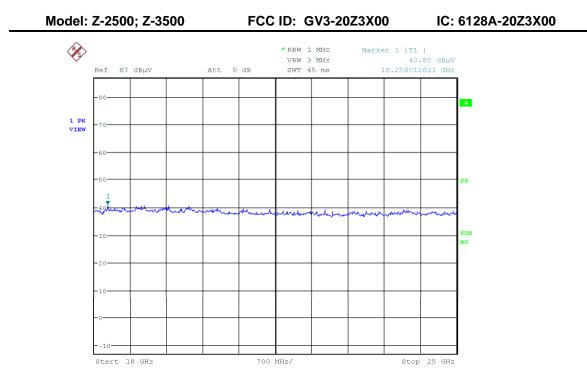
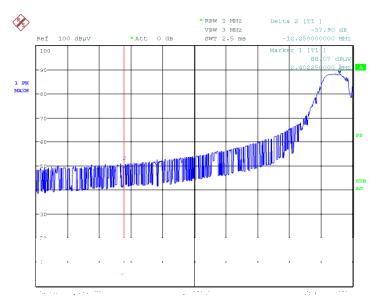



Figure 7.5.2.3-3: Radiated Spurious Emissions Above 18GHz Emission Profile

interaction and the database

Figure 7.5.2.3-4: Radiated Spurious Emissions – Low Channel Band Edge

Figure 7.5.2.3-5: Radiated Spurious Emissions – High Channel Band Edge

7.5.2.4 Sample Calculation:

 $R_C = R_U + CF_T$

Where:

- CF_T = Total Correction Factor (AF+CA+AG)-DC (Average Measurements Only)
- R_U = Uncorrected Reading
- R_C = Corrected Level
- AF = Antenna Factor
- CA = Cable Attenuation
- AG = Amplifier Gain
- DC = Duty Cycle Correction Factor

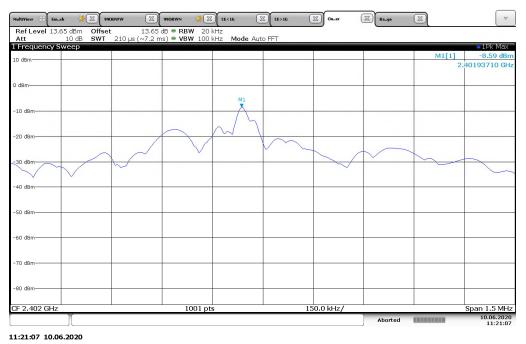
Example Calculation: Peak

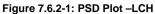
Corrected Level: 62.00 + 3.45 = 65.45dBuV/m Margin: 74dBuV/m - 65.45dBuV/m = 8.55dB

Example Calculation: Average

Corrected Level: 30.00 + 3.45 = 33.45dBuV Margin: 54dBuV - 33.45dBuV = 20.55dB

7.6 Power Spectral Density – FCC: 15.247(e); ISED Canada: RSS-247 5.2(b)

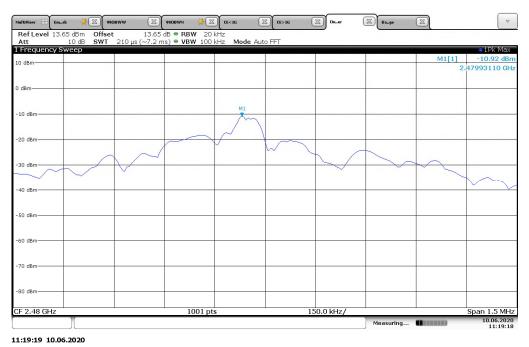

7.6.1 Measurement Procedure

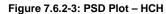

The power spectral density was measured in accordance with the FCC KDB 558074 D01 15.247 Meas Guidance v05r02 utilizing the PKPSD (peak PSD) method. The RF output of the equipment under test was directly connected to the input of the spectrum analyzer applying suitable attenuation. The Resolution Bandwidth (RBW) of the spectrum analyzer was set to 20 kHz. The Video Bandwidth (VBW) was set to 100 kHz. Span was set to 1.5 times the DTS bandwidth. The trace was set to max hold with a peak detector active.

7.6.2 Measurement Results

Performed by: Chris Gormley

Table 7.6.2-1: Peak Power Spectral Density						
Frequency	PSD Level					
(MHz)	(dBm)					
2402	-8.59					
2440	-9.78					
2480	-10.92					





11:24:23 10.06.2020

Figure 7.6.2-2: PSD Plot – MCH

8 MEASUREMENT UNCERTAINTY

The expanded laboratory measurement uncertainty figures (U_{Lab}) provided below correspond to an expansion factor (coverage factor) k = 1.96 which provide confidence levels of 95%.

Parameter	U _{lab}
Occupied Channel Bandwidth	± 0.004%
RF Conducted Output Power	± 0.689 dB
Power Spectral Density	±0.5 dB
Antenna Port Conducted Emissions	± 2.717 dB
Radiated Emissions	± 5.877 dB
Temperature	± 0.860 °C
Radio Frequency	±2.832 x 10-8
AC Power Line Conducted Emissions	±2.85

9 CONCLUSION

In the opinion of TÜV SÜD America Inc. the Z-2500; Z-3500, manufactured by ACCO Brands USA, LLC meets the requirements of FCC Part 15 subpart C and ISED Canada Radio Standards Specification: RSS-247 for the tests documented herein.

END REPORT