

SAR TEST REPORT

HCT CO., LTD

EUT Type:	Printer with Symbol	LA5127 802.11b/g M	odule
FCC ID:	GU66039LA5127	1502A-LA5127	
Model:	6039	Trade Name	Paxar Americas, Inc.
Date of Issue:	Feb. 5 , 2008		-
Test report No.:	HCT-SAR08-0116		
Test Laboratory:	HCT CO., LTD. SAN 136-1, AMI-RI, BUE TEL: +82 31 639 8565		YOUNGKI-DO, 467-701, KOREA
Applicant :	Paxar Americas, Inc. 170 Monarch Lane Miam Tel: (937)865-2123 Fax	a construction of a second second	
Testing has been carried out in accordance with:	47CFR §2.1093 FCC OET Bulletin 65(Ed ANSI/ IEEE C95.1 – 200 IEEE 1528-2003		t C (Edition 01-01)
Test result:	subject to the test. The	test results and stateme	nents in respect of all parameters ants relate only to the items tested n full, without written approval of the
Signature	Report prepared by : Sun-Hee Kim	<u> </u>	Approved by : Nam-Wook Kang
	Test Engineer of SA	R Part	Manager of SAR Part

Table of Contents

1. INTRODUCTION		3
2. DESCRIPTION OF DEVICE		4
3. DESCRIPTION OF TEST EQUIPMENT		5
3.1 SAR MEASUREMENT SETUP		5
3.2 DASY E-FIELD PROBE SYSTEM		
3.3 PROBE CALIBRATION PROCESS		
3.4 SAM Phantom		
3.5 Device Holder for Transmitters		
3.6 Brain & Muscle Simulating Mixture Characterization		
3.7 SAR TEST EQUIPMENT		
4. SAR MEASUREMENT PROCEDURE		
5. DESCRIPTION OF TEST POSITION	1	3
5.1 HEAD POSITION	1	3
5.2 Body Holster/Belt Clip Configurations	1	4
6. MEASUREMENT UNCERTAINTY	1	5
7. ANSI/ IEEE C95.1 - 2005 RF EXPOSURE LIMITS	1	6
8. SYSTEM VERIFICATION	1	7
8.1 Tissue Verification	1	7
8.2 System Validation	1	7
9. SAR TEST DATA SUMMARY	1	8
9.1 Measurement Results	1	8
10. CONCLUSION	1	9
11.REFERENCES	2	0
Attachment 1. – SAR Test Plots	2	1
Attachment 2. – Dipole Validation Plots	2	8
Attachment 3. – Probe Calibration Data	3	1
Attachment 3. – Probe Calibration Data	3	2
Attachment 4. – Dipole Calibration Data	4	2

1. INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-2005 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (r). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body.

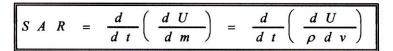


Figure 2. SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

 $\sigma E^2 / \rho$

	SAR	=
where:		

σ	=	conductivity of the tissue-simulant material (S/m)
ρ	=	mass density of the tissue-simulant material (kg/m ³)
E	=	Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

Report No.: HCT-SAR08-0116

2. DESCRIPTION OF DEVICE

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

ЕИТ Туре	Printer with Symbol LA5127 802.11b/g Module
FCC ID	GU66039LA5127
Model(s)	6039
Trade Name	Paxar Americas, Inc
Serial Number(s)	#1
Application Type	Certification
Modulation(s)	CCK/OFDM
Tx Frequency	2 412 — 2 462 MHz
Rx Frequency	2 412 — 2 462 MHz
FCC Classification	Unlicensed Portable Device
Production Unit or Identical Prototype	Prototype , Interatged PCB trace antenna (located below center of keyboard)
Max SAR	0.017 W/kg Body SAR (802.11b)
Date(s) of Tests	Feb. 4, 2008
FCC Rule Part(s):	§2.1093; FCC/ OET Bulletin Supplement C [July 2001]
IC:	1502A-LA5127
IC Rule Part(s):	RSS-102 Issue2

HCT CO, LTD.

Report No.: HCT-SAR08-0116

3. DESCRIPTION OF TEST EQUIPMENT

3.1 SAR MEASUREMENT SETUP

These measurements are performed using the DASY4 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Staubli), robot controller, Pentium III computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure 3.1).

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the HP Pentium IV 3.0GHz computer with Windows XP system and SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

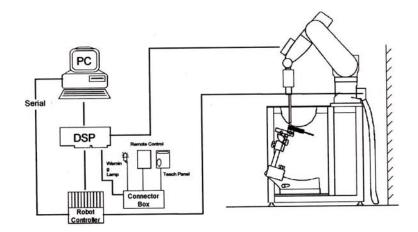


Figure 3.1 HCT SAR Lab. Test Measurement Set-up

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

Report No.: HCT-SAR08-0116

Date of Issue: Feb. 5, 2008

3.2 DASY E-FIELD PROBE SYSTEM

3.2.1 ET3DV6 Probe Specification

Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection System Built-in shielding against static charges
Calibration	In air from 10 MHz to 2.5 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 900 MHz and 1.8 GHz (accuracy.: 8 %)
Frequency	10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)
Directivity	\pm 0.2 dB in brain tissue (rotation around probe axis) \pm 0.4 dB in brain tissue (rotation normal probe axis)
Dynamic	5 <i>µ</i> ⊮/g to > 100 mW/g;
Range Linearity:	\pm 0.2 dB
Surface Detection	\pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces.
Dimensions	Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm
Application	General dissymmetry up to 3 GHz Compliance tests of mobile phones
	Fast automatic scanning in arbitrary phantoms

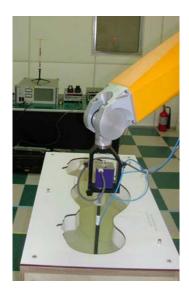


Figure 3.2 Photograph of the probe and the Phantom

Figure 3.3 ET3DV6 E-field Probe

The SAR measurements were conducted with the dosimetric probe ET3DV6, designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches a maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks

software reads the reflection during a software approach and looks for the maximum using a 2^{nd} order fitting. The approach is stopped at reaching the maximum.

HCT-SAR08-0116 FCC ID:

3.3 PROBE CALIBRATION PROCESS

3.3.1 E-Probe Calibration

Report No.:

Each probe is calibrated according to a dosimetric assessment procedure with an accuracy better than \pm 10 %. The spherical isotropy was evaluated with the proper procedure and found to be better than \pm 0.25 dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe is tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

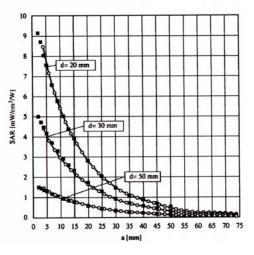
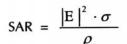
where:

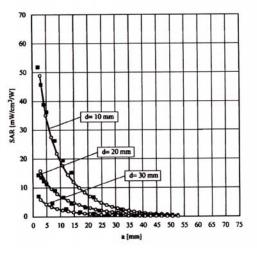
 Δt = exposure time (30 seconds),

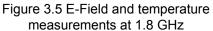
C = heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T / \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;


Figure 3.4 E-Field and Temperature measurements at 900 MHz



where:

 σ = simulated tissue conductivity,

= Tissue density $(1.25 \text{ g/cm}^3 \text{ for brain tissue})$

Feb. 5, 2008

3.3.2 Data Extrapolation

The DASY4 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

$$V_{i} = U_{i} + U_{i}^{2} \cdot \frac{cf}{dcp_{i}}$$
 with V_{i} = compensated signal of channel i (i=x,y,z)
 U_{i} = input signal of channel i (i=x,y,z)
 Cf = crest factor of exciting field (DASY parameter)
 dcp_{i} = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_{i} = \sqrt{\frac{V_{i}}{\frac{V}}{\frac{V_{i}}}{\frac{V_{i}}}{\frac{$

$$E_{i} = \sqrt{\frac{V_{i}}{Norm_{i} \cdot ConvF}}$$
ConvF = sensitivity of enhancement in solution
E_{i} = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

 $E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$

The primary field data are used to calculate the derived field units.

$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$	with	SAR E _{tot}	 local specific absorption rate in W/g total field strength in V/m 		
<i>p</i> 1000		σ	= conductivity in [mho/m] or [Siemens/m]		
		ρ	= equivalent tissue density in g/cm ³		

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{proc} = \frac{E_{tot}^{2}}{3770}$$
 with
$$P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^{2}$$
$$= \text{total electric field strength in V/m}$$

HCT-SAR08-0116

FCC ID: GU66039LA5127

3.4 SAM Phantom

The SAM Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90 % of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Figure 3.6 SAM Phantom

Shell Thickness Filling Volume Dimensions

2.0 mm about 30 L 810 mm x 1 000 mm x 500 mm (H x L x W)

3.5 Device Holder for Transmitters

In combination with the SAM Phantom V 4.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatable positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, and flat phantom).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations. To produce the Worst-case condition (the hand absorbs antenna output power),

the hand is omitted during the tests.

Figure 3.7 Device Holder

3.6 Brain & Muscle Simulating Mixture Characterization

The brain and muscle mixtures consist of a viscous gel using hydrox-ethyl cellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bacteriacide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Hartsgrove.

Ingredients		Frequency (MHz)								
(% by weight)	45	50	83	35	915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7

Salt:	99 % Pure Sodium Chloride	Sugar:	98 % Pure Sucrose		
Water:	De-ionized, 16 M resistivity	HEC:	Hydroxyethyl Cellulose		
DGBE:	99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]				
Triton X-100(ultra pure):	Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether				

Table 3.1 Composition of the Tissue Equivalent Matter

Feb. 5, 2008

3.7 SAR TEST EQUIPMENT

Manufacturer	Type / Model	S/N	Calib. Date	Calib.Interval	Calib.Due
SPEAG	SAM Phantom	-	N/A	N/A	N/A
Staubli	Robot RX90L	F01/5K09A1/A/01	N/A	N/A	N/A
Staubli	Robot ControllerCS7MB	F99/5A82A1/C/01	N/A	N/A	N/A
HP	Pavilion t000_puffer	KRJ51201TV	N/A	N/A	N/A
SPEAG	Light Alignment Sensor	265	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	D221340.01	N/A	N/A	N/A
SPEAG	DAE4V1	447	Sep.13, 2007	Annual	Sep.13, 2008
SPEAG	E-Field Probe ES3DV3	3085	Nov.19, 2007	Annual	Nov.19, 2008
SPEAG	E-Field Probe ET3DV6	1607	Feb.21, 2007	Annual	Feb.21, 2008
SPEAG	E-Field Probe ET3DV6	1609	Aug.30, 2007	Annual	Aug.30, 2008
SPEAG	Validation Dipole D450V2	1007	Mar.15, 2007	Annual	Mar.15, 2008
SPEAG	Validation Dipole D835V2	481	May 24, 2007	Annual	May 24, 2008
SPEAG	Validation Dipole D2450V2	746	Feb.20, 2007	Annual	Feb.20, 2008
SPEAG	Validation Dipole D900V2	121	Feb.19, 2007	Annual	Feb.19, 2008
SPEAG	Validation Dipole D1800V2	2d066	May 23, 2007	Annual	May 23, 2008
SPEAG	Validation Dipole D1900V2	5d032	Feb.20, 2007	Annual	Feb.20, 2008
Agilent	Power Meter(F) E4419B	MY40330223	Nov.08, 2007	Annual	Nov.08, 2008
Agilent	Power Sensor(G) 8481	MY41090870	Nov.21, 2007	Annual	Nov.21, 2008
HP	Dielectric Probe Kit 85070C	00721521	N/A	N/A	N/A
HP	Dual Directional Coupler	16072	Nov.09, 2007	Annual	Nov.09, 2008
R&S	Base Station CMU200	838207/050	Nov.14, 2007	Annual	Nov.14, 2008
Agilent	Base Station E5515C	GB44400269	Feb.11, 2007	Annual	Feb.11, 2008
HP	Signal Generator E4438C	MY45092381	Feb.07, 2007	Annual	Feb.07, 2008
HP	Network Analyzer 8753ES	JP39240221	Apr.11, 2007	Annual	Apr.11, 2008
EM POWER	Power Amp BBS3Q7ELU	1013-D/C-0127	Apr.17, 2007	Annual	Apr.17, 2008

NOTE:

The E-field probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Validation measurement is performed by HCT Lab. before each test. The brain simulating material is calibrated by HCT using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material.

HCTCO,LTD

Report No.: HCT-SAR08-0116

4. SAR MEASUREMENT PROCEDURE

The evaluation was performed with the following procedure:

- 1. The SAR value at a fixed location above the ear point was measured and was used as a reference value for assessing the power drop.
- 2. The SAR distribution at the exposed side of the head was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 20 mm x 20 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.
- 3. Around this point, a volume of 32 mm x 32 mm x 34 mm was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:
 - a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x,y, and z directions. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR value, at the same location as procedure #1, was re-measured. If the value changed by more than 5 %, the evaluation is repeated.

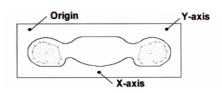
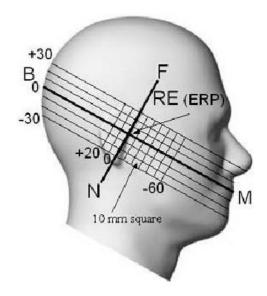


Figure 4.1 SAR Measurement Point in Area Scan


Report No.: HCT-SAR08-0116 FCC ID:

D: GU66039LA5127

5. DESCRIPTION OF TEST POSITION

5.1 HEAD POSITION

The device was placed in a normal operating position with the Point A on the device, as illustrated in following drawing, aligned with the location of the RE(ERP) on the phantom. With the ear-piece pressed against the head, the vertical center line of the body of the handset was aligned with an imaginary plane consisting of the RE, LE and M. While maintaining these alignments, the body of the handset was gradually moved towards the cheek until any point on the mouth-piece or keypad contacted the cheek. This is a cheek/touch position. For ear/tilt position, while maintain the device aligned with the BM and FN lines, the device was pivot against ERP back for 15° or until the device antenna touch the phantom. Please refer to IEEE 1528-2003 illustration below.

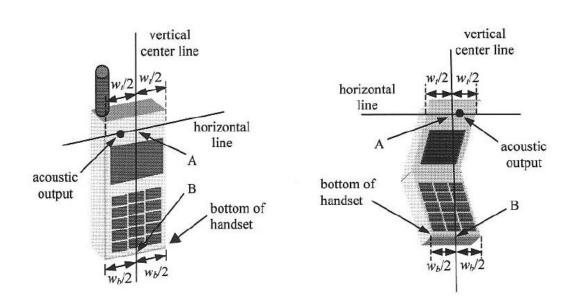


Figure 5.2 Handset vertical and horizontal reference lines

Report No.: HCT-SAR08-0116

5.2 Body Holster/Belt Clip Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some Devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used.

Since this EUT does not supply any body worn accessory to the end user a distance of 0 cm from the EUT back surface to the liquid interface is configured for the generic test.

"See the Test SET-UP Photo"

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), Including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worst-case positioning is then documented and used to perform Body SAR testing.

Report No.: HCT-SAR08-0116

6. MEASUREMENT UNCERTAINTY

Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environmental. However, we estimate the measurement uncertainties in SAR to be less than 15 % - 25 %.

According to ANSI/IEEE C95.3, the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of 1 to \pm 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least \pm 2 dB can be expected.

According to CENELEC, typical worst-case uncertainty of field measurements is 5 dB. For well-defined modulation characteristics the uncertainty can be reduced to \pm 3 dB.

Error Description	Uncertainty value [%]	Probability Distribution	Divisor	ci	ci^2	Stan dard Un certaint y [%]	Stand Uncert°2	(Stand Uncert°2) X (ci°2)	Vi & Ve
1. Measurement System							• •		
Probe Calibration	5.5	Normal	1.00	1	1	5.50	30.25	30.25	8
Axial Isotropy	4.7	Rectangular	1.73	0.7	0.49	2.71	7.36	3.61	8
Hemispherical Isotropy	9.6	Rectangular	1.73	0.7	0.49	5.54	30.72	15.05	8
Linearity	4.7	Rectangular	1.73	1	1	2.71	7.36	7.36	
System Detection limits	1.0	Rectangular	1.73	1	1	0.58	0.33	0.33	
Boundary effect	1.0	Rectangular	1.73	1	1	0.58	0.33	0.33	8
Response time	0.8	Rectangular	1.73	1	1	0.46	0.21	0.21	
RF Ambient conditions	3.0	Rectangular	1.73	1	1	1.73	3.00	3.00	
Readout Electronics	0.3	Normal	1.00	1	1	0.30	0.09	0.09	
Integration time	2.6	Rectangular	1.73	1	1	1.50	2.25	2.25	8
Probe positioner	0.4	Rectangular	1.73	1	1	0.23	0.05	0.05	
Probe positionering	2.9	Rectangular	1.73	1	1	1.67	2.80	2.80	8
Maximum SAR evaluation	1.0	Rectangular	1.73	1	1	0.58	0.33	0.33	8
2.Test Sample Related		.0				Sub Totz	ıl	65.69	
Device Positioning	1.8	Normal	1.00	1	1	1.77	3.13	3.13	9
Device Holder	3.6	Normal	1.00	1	1	3.60	12.96	12.96	8
PowerDrift	5.0	Rectangular	1.73	1	1	2.89	8.33	8.33	8
. Phantom and Setup		54856. XX				Sub Totz	ı il	24.43	
Phantom Uncertainty	4.0	Rectangular	1.73	1	1	2.31	5.33	5.33	8
Liquid conductivity (target)	5.0	Rectangular	1.73	0.5	0.25	2.89	8.33	2.08	
Liquid conductivity (measurement error)	2.5	Normal	1.00	0.5	0.25	2.50	6.25	1.56	
Liquid permittivity (target)	5.0	Rectangular	1.73	0.5	0.25	2.89	8.33	2.08	8
Liquid permittivity (measurement error)	2.5	Normal	1.00	0.5	0.25	2.50	6.25	1.56	
						Sub Totz	1	12.63	
Combined standard uncertainty [%]						10.14		102.74	

Table 6.1 Breakdown of Errors

7. ANSI/ IEEE C95.1 - 2005 RF EXPOSURE LIMITS

HUMAN EXPOSURE	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)
SPATIAL PEAK SAR * (Brain)	1.60	8.00
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.00

Table 7.1 Safety Limits for Partial Body Exposure

NOTES:

- * The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole-body.
- *** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

8. SYSTEM VERIFICATION

8.1 Tissue Verification

Freq. [MHz]	Date	Liquid	Liquid Temp[°C]	Parameters	Target Value	Measured Value	Deviation [%]	Limit [%]
2 450	Feb. 4,	Head	21.1	εr	39.2	38.8	- 1.02	± 5
	2008			σ	1.80	1.80	0	± 5
	Feb. 4,	Dedu	24.4	εr	52.7	52.47	- 0.44	± 5
	2008	Body	21.1	σ	1.95	2.0	+ 2.56	± 5

8.2 System Validation

Prior to assessment, the system is verified to the \pm 10 % of the specifications at 2 450 MHz by using the system validation kit. (Graphic Plots Attached)

* Input Power: 1 W

Freq. [MHz]	Date	Liquid	Liquid Temp [°C]	SAR Average	Target Value (SPEAG) (mW/g)	Measured Value (mW/g)	Deviation [%]	Limit [%]
2 450	Head	Feb. 4, 2008	21.3	1 g	54.1	51.8	- 4.25	± 10

Report No.: HCT-SAR08-0116

9. SAR TEST DATA SUMMARY

9.1 Measurement Results

Frequency		Modulation	Conducted Power (dBm)		Battery	Phantom	SAR(mW/g)
MHz	Channel.		Begin	End		Position	
2 412	1(Low)	802.11b	11.40	11.37	Standard		0.016 00
2 437	6(Middle)	802.11b	11.60	11.64	Standard	BODY	0.017 00
2 462	11(High)	802.11b	11.80	12.00	Standard		0.009 56
2 412	1(Low)	802.11g	10.60	10.61	Standard		0.007 91
2 437	6(Middle)	802.11g	10.90	10.92	Standard		0.007 36
2 462	11(High)	802.11g	11.20	11.15	Standard		0.005 82
	ANSI/ IEEE C95.1 2005 – Safety Limit Spatial Peak Uncontrolled Exposure/ General Population				n		Body W/kg (mW/g) ged over 1 gram

NOTES:

- The test data reported are the worst-case SAR value with the antenna-head position set in a typical 1 configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 ± 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.

5	Battery Type	Standard	□ Extended □ Slim
		Batteries are fully charged	d for all readings.
6	Test Signal Call Mode	⊠Manual Test code	Base Station Simulator
7	Power Measured	☑ Conducted □ EIRP	
8	SAR Configuration	🗆 Head 🖾 Body	Hand

10. CONCLUSION

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the ANSI/ IEEE C95.1 2005.

These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests.

11.REFERENCES

[1] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields, July 2001.

[2] IEEE Standards Coordinating Committee 34 – IEEE Std. 1528-2003, IEE Recommended Practice or Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body from Wireless Communications Devices.

[3] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio frequency Radiation, Aug. 1996.

[4] ANSI/IEEE C95.1 - 1991, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, Aug. 1992

[5] ANSI/IEEE C95.3 - 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, 1992.

[6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.

[7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.

[8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.

[9]K. Pokovi^o, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.

[10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.

[11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.

[12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.

[13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectro magnetics, Canada: 1987, pp. 29-36.

[14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.

[15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.

[16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

[17] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.

[18] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

[19] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.

[20] Prof. Dr. Niels Kuster, ETH, EidgenØssische Technische Hoschschule Zòrich, Dosimetric Evaluation of the Cellular Phone.

Report No.: HCT-SAR08-0116

FCC ID: GU66039LA5127

Date of Issue: Feb. 5, 2008

Attachment 1. – SAR Test Plots

HCT-SAR08-0116

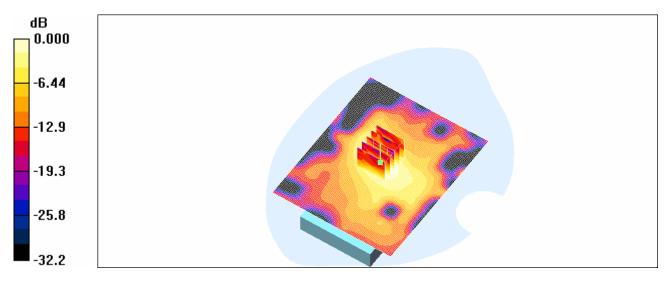
FCC ID: GU66039LA5127

Test Laboratory:	HCT CO., LTD.
EUT Type:	Printer with Symbol LA5127 802.11b/g Module
Liquid Temperature:	21.3 °C
AmbientTemperature:	21.5 °C
Test Date:	Feb. 4, 2008

DUT: PAXAR; Type: Bar Type; Serial: #1

Communication System: 2450MHz FCC; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2412 MHz; σ = 1.94 mho/m; ϵ_r = 53; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 176

DASY4 Configuration:


- Probe: ET3DV6 SN1609; ConvF(4.17, 4.17, 4.17); Calibrated: 2007-08-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn447; Calibrated: 2007-09-13
- Phantom: 1800/1900 Phantom; Type: SAM

802.11b 11Mbit 1ch/Area Scan (91x111x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.017 mW/g

802.11b 11Mbit 1ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.50 V/m; Power Drift = -0.030 dB Peak SAR (extrapolated) = 0.032 W/kg SAR(1 g) = 0.016 mW/g; SAR(10 g) = 0.00769 mW/g

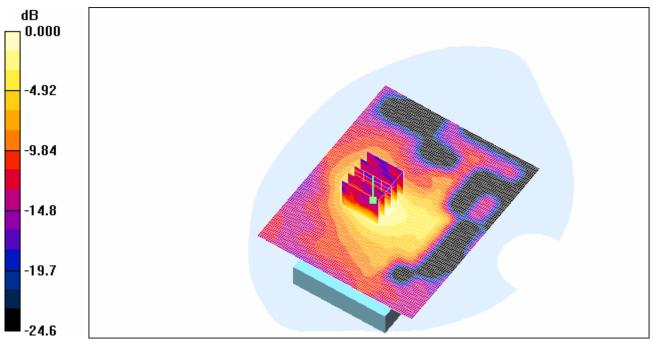
Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.017 mW/g

0 dB = 0.017 mW/g

Test Laboratory:	HCT CO., LTD.
EUT Type:	Printer with Symbol LA5127 802.11b/g Module
Liquid Temperature:	21.3 °C
AmbientTemperature:	21.5 °C
Test Date:	Feb. 4, 2008

Communication System: 2450MHz FCC; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.98 mho/m; ϵ_r = 52.6; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 176

DASY4 Configuration:


- Probe: ET3DV6 SN1609; ConvF(4.17, 4.17, 4.17); Calibrated: 2007-08-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn447; Calibrated: 2007-09-13
- Phantom: 1800/1900 Phantom; Type: SAM

802.11b 11Mbit 6ch/Area Scan (91x111x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.018 mW/g

802.11b 11Mbit 6ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.47 V/m; Power Drift = 0.040 dB Peak SAR (extrapolated) = 0.040 W/kg SAR(1 g) = 0.017 mW/g; SAR(10 g) = 0.00864 mW/g

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.019 mW/g

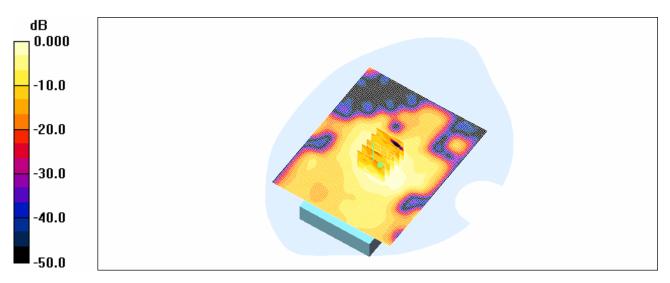
0 dB = 0.019 mW/g

Test Laboratory:	HCT CO., LTD.
EUT Type:	Printer with Symbol LA5127 802.11b/g Module
Liquid Temperature:	21.3 °C
AmbientTemperature:	21.5 °C
Test Date:	Feb. 4, 2008

Communication System: 2450MHz FCC; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; σ = 2.03 mho/m; ϵ_r = 52.3; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 176

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(4.17, 4.17, 4.17); Calibrated: 2007-08-30


Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn447; Calibrated: 2007-09-13
Phantom: 1800/1900 Phantom; Type: SAM

802.11b 11Mbit 11ch/Area Scan (91x111x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.011 mW/g

802.11b 11Mbit 11ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.51 V/m; Power Drift = 0.195 dBPeak SAR (extrapolated) = 0.019 W/kgSAR(1 g) = 0.00956 mW/g; SAR(10 g) = 0.00481 mW/g

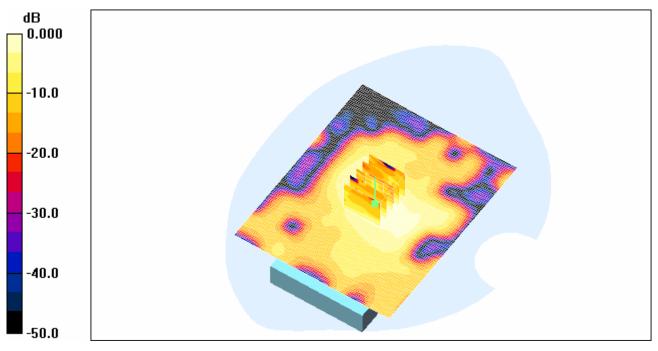
Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.011 mW/g

 $0 \, dB = 0.011 \, mW/g$

Test Laboratory:	HCT CO., LTD.
EUT Type:	Printer with Symbol LA5127 802.11b/g Module
Liquid Temperature:	21.3 °C
AmbientTemperature:	21.5 °C
Test Date:	Feb. 4, 2008

Communication System: 2450MHz FCC; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2412 MHz; σ = 1.94 mho/m; ϵ_r = 53; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 176

DASY4 Configuration:


- Probe: ET3DV6 SN1609; ConvF(4.17, 4.17, 4.17); Calibrated: 2007-08-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn447; Calibrated: 2007-09-13
- Phantom: 1800/1900 Phantom; Type: SAM

802.11g 54Mbit 1ch/Area Scan (91x111x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.009 mW/g

802.11g 54Mbit 1ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.69 V/m; Power Drift = 0.007 dB Peak SAR (extrapolated) = 0.014 W/kg SAR(1 g) = 0.00791 mW/g; SAR(10 g) = 0.00392 mW/g

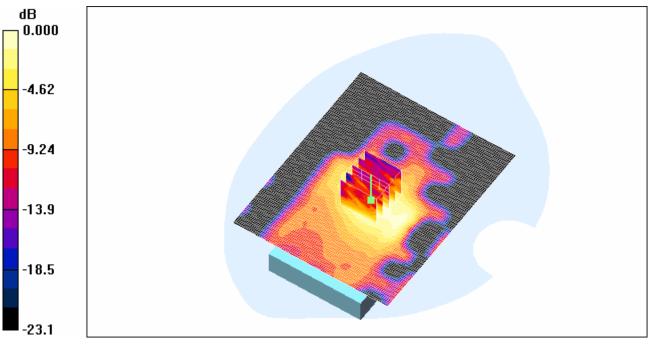
Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.009 mW/g

0 dB = 0.009 mW/g

Test Laboratory:	HCT CO., LTD.
EUT Type:	Printer with Symbol LA5127 802.11b/g Module
Liquid Temperature:	21.3 °C
AmbientTemperature:	21.5 °C
Test Date:	Feb. 4, 2008

Communication System: 2450MHz FCC; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.98 mho/m; ϵ_r = 52.6; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 176

DASY4 Configuration:


- Probe: ET3DV6 SN1609; ConvF(4.17, 4.17, 4.17); Calibrated: 2007-08-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn447; Calibrated: 2007-09-13
- Phantom: 1800/1900 Phantom; Type: SAM

802.11g 54Mbit 6ch/Area Scan (91x111x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.008 mW/g

802.11g 54Mbit 6ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.17 V/m; Power Drift = 0.016 dB Peak SAR (extrapolated) = 0.015 W/kg SAR(1 g) = 0.00736 mW/g; SAR(10 g) = 0.00373 mW/g

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.008 mW/g

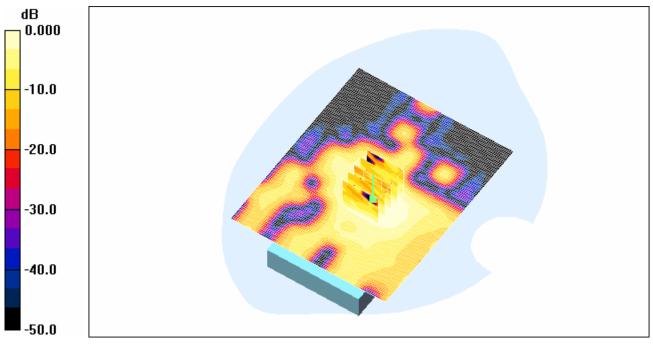
0 dB = 0.008 mW/g

Test Laboratory:	HCT CO., LTD.
EUT Type:	Printer with Symbol LA5127 802.11b/g Module
Liquid Temperature:	21.3 °C
AmbientTemperature:	21.5 °C
Test Date:	Feb. 4, 2008

Communication System: 2450MHz FCC; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; σ = 2.03 mho/m; ϵ_r = 52.3; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 176

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(4.17, 4.17, 4.17); Calibrated: 2007-08-30


Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn447; Calibrated: 2007-09-13
Phantom: 1800/1900 Phantom; Type: SAM

802.11g 54Mbit 11ch/Area Scan (91x111x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.007 mW/g

802.11g 54Mbit 11ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0.986 V/m; Power Drift = -0.048 dB Peak SAR (extrapolated) = 0.012 W/kg SAR(1 g) = 0.00582 mW/g; SAR(10 g) = 0.00276 mW/g

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.006 mW/g

 $0 \, dB = 0.006 \, mW/g$

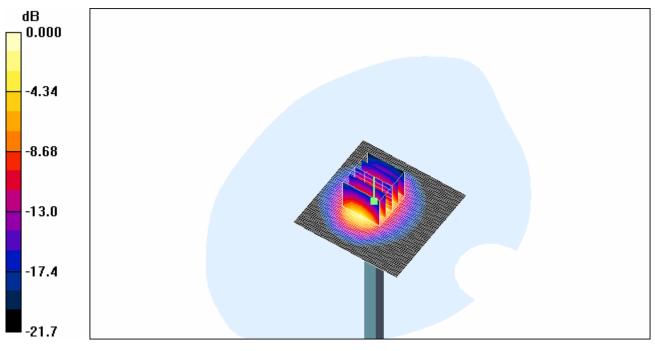
Attachment 2. – Dipole Validation Plots

Validation Data (2450 MHz Body)

Test Laboratory:	HCT CO., LTD.
Input Power	1W (30dBm)
Liquid Temp:	21.3

Test Date: Feb. 4, 2008

DUT: Dipole 2450 MHz; Serial: D2450V2 - SN: 746


Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.8 mho/m; ε_r = 38.8; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 176

DASY4 Configuration:

- Probe: ET3DV6 SN1609; ConvF(4.78, 4.78, 4.78); Calibrated: 2007-08-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn447; Calibrated: 2007-09-13
- Phantom: SAM 1800/1900 MHz; Type: SAM

Validation 2450MHz/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 63.5 mW/g

Validation 2450MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 178.0 V/m; Power Drift = 0.079 dB Peak SAR (extrapolated) = 116.2 W/kg SAR(1 g) = 51.8 mW/g; SAR(10 g) = 24.3 mW/g Maximum value of SAR (measured) = 56.7 mW/g

0 dB = 56.7 mW/g

Report No.: HCT-SAR08-0116

iCT

Date of Issue: Feb. 5, 2008

Title : 2450MHz(HEAD) SubTitle : 6039

February 04, 2008 09:01 AM

e'	e''
39.0697	13.0627
39.0365	13.0599
39.0298	13.0519
38,9979	13.0899
38,9854	13.0978
38,9594	13,1255
38.9551	13.1294
38,9205	13,1562
38,8935	13,1656
38.8975	13.2014
<mark>38.8493</mark>	<mark>13.2178</mark>
38,8280	13.2198
38,8159	13.2584
38.8127	13.2618
38,7876	13.3171
38.7785	13.3421
38.7740	13.3301
38.7470	13.3595
38.7125	13.3927
38,7043	13.3951
38,7505	13,3865
	39.0365 39.0298 38.9979 38.9854 38.9594 38.9551 38.9205 38.8935 38.8935 38.8975 38.8975 38.8127 38.8127 38.7876 38.7785 38.7785 38.7740 38.7740 38.7470 38.7470

HCT-SAR08-0116

FCC ID: GU66039LA5127

Title: 2450MHz(BODY)

SubTitle : 6039 February 04, 2008 09:50 AM

Attachment 3. – Probe Calibration Data

HCT-SAR08-0116 **Report No.:**

FCC ID: GU66039LA5127

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SNISS s С O UBRA S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

	CERTIFICAT						
Object	ET3DV6 - SN:1609						
Calibration procedure(s)		and QA CAL-12.v5 edure for dosimetric E-field probes					
Calibration date:	August 30, 2007						
Condition of the calibrated item	In Tolerance						
The measurements and the unce	rtainties with confidence	tional standards, which realize the physical units of probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C and	e part of the certificale.				
Disease Diseased		Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration				
VIDDBIV Standards			Oniconico Caleratori				
	GB41293874	29-Mar-07 (METAS, No. 217-00670)	Mar-08				
Power meter E4419B	190.0						
Power meter E4419B Power sensor E4412A	GB41293874	29-Mar-07 (METAS, No. 217-00670)	Mar-08				
Power meter E4419B Power sensor E4412A Power sensor E4412A	GB41293874 MY41495277	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00570)	Mar-08 Mar-08 Mar-08 Aug-08				
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	29-Mer-07 (METAS, No. 217-00670) 29-Mer-07 (METAS, No. 217-00670) 29-Mer-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mer-07 (METAS, No. 217-00671)	Mar-08 Mar-08 Mar-08 Aug-08 Mar-08				
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	29-Mer-07 (METAS, No. 217-00670) 29-Mer-07 (METAS, No. 217-00670) 29-Mer-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mer-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720)	Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08				
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2	GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	29-Mer-07 (METAS, No. 217-00670) 29-Mer-07 (METAS, No. 217-00670) 29-Mer-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mer-07 (METAS, No. 217-00671)	Mar-08 Mar-08 Mar-08 Aug-08 Mar-08				
Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	GB41293874 MY41495277 MY41498087 SN: 55054 (3c) SN: 55086 (20b) SN: 55129 (30b) SN: 3013 SN: 654 ID #	29-Mer-07 (METAS, No. 217-00670) 29-Mer-07 (METAS, No. 217-00670) 29-Mer-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mer-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jen-07 (SPEAG, No. ES3-3013_Jen07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house)	Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08 Scheduled Check				
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	GB41293874 MY41495277 MY41498087 SN: 55054 (3c) SN: 55086 (20b) SN: 55129 (30b) SN: 3013 SN: 654 ID # US3642U01700	29-Mer-07 (METAS, No. 217-00670) 29-Mer-07 (METAS, No. 217-00670) 29-Mer-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mer-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jen-07 (SPEAG, No. ES3-3013_Jen07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05)	Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08 Scheduled Check In house check: Nov-07				
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8548C	GB41293874 MY41495277 MY41498087 SN: 55054 (3c) SN: 55086 (20b) SN: 55129 (30b) SN: 3013 SN: 654 ID #	29-Mer-07 (METAS, No. 217-00670) 29-Mer-07 (METAS, No. 217-00670) 29-Mer-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mer-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jen-07 (SPEAG, No. ES3-3013_Jen07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house)	Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08 Scheduled Check				
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	GB41293874 MY41495277 MY41498087 SN: 55054 (3c) SN: 55086 (20b) SN: 55129 (30b) SN: 3013 SN: 654 ID # US3642U01700	29-Mer-07 (METAS, No. 217-00670) 29-Mer-07 (METAS, No. 217-00670) 29-Mer-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mer-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jen-07 (SPEAG, No. ES3-3013_Jen07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05)	Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08 Scheduled Check In house check: Nov-07				
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2 DAE4	GB41293874 MY41495277 MY41498087 SN: 55054 (3c) SN: 55086 (20b) SN: 55129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585	29-Mer-07 (METAS, No. 217-00670) 29-Mer-07 (METAS, No. 217-00670) 29-Mer-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mer-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jen-07 (SPEAG, No. ES3-3013_Jen07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08 Scheduled Check In house check: Nov-07 In house check: Oct-07				
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8548C Network Analyzer HP 8753E	GB41293874 MY41495277 MY41498087 SN: 55054 (3c) SN: 55086 (20b) SN: 55129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585 Name	29-Mer-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00719) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06) Function	Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08 Scheduled Check In house check: Nov-07 In house check: Oct-07				
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	GB41293874 MY41495277 MY41498087 SN: 55054 (3c) SN: 55086 (20b) SN: 55129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585 Name Katja Pokovic	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-0071) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08 Scheduled Check In house check: Nov-07 In house check: Oct-07				

Report No.: HCT-SAR08-0116

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SNISS CRUBRATI

s

C

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization @	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 8 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponde to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1609_Aug07

Page 2 of 9

ET3DV6 SN:1609

August 30, 2007

Probe ET3DV6

SN:1609

Manufactured: Last calibrated: Recalibrated: July 21, 2001 March 23, 2006 August 30, 2007

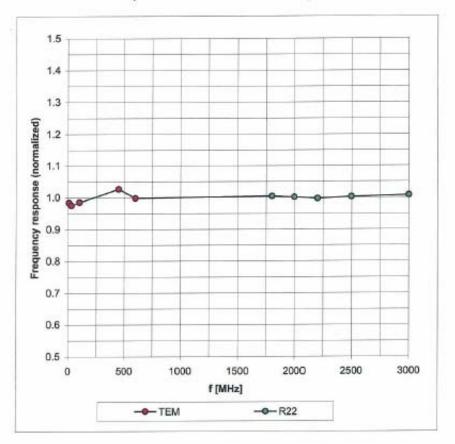
Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1609_Aug07

Page 3 of 9

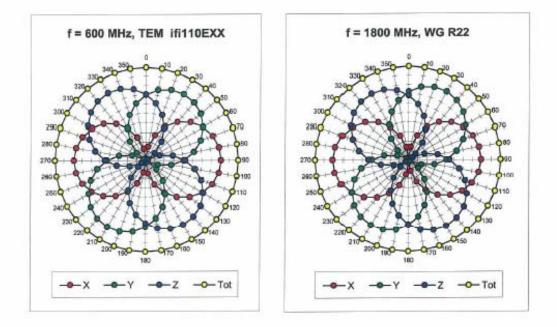
: GU66039LA5127


Sensitivity in Free Space ^A			Diode Compression ^B			
Norm	(10	94 ± 10.1%	μV/(V/m) ²	DCP X	95 mV	
Norm	A. 227		μV/(V/m) ²	DCP Y		
Norm2		9 ± 10.1%	μV/(V/m) ²	DCP Z		
Sensitivity ir	n Tissue Sin	nulating Li	quid (Conve	rsion Factor	s)	
Please see Pag	e 8.					
Boundary E	ffect					
TSL	900 MHz	Typical SA	AR gradlent: 5 %	per mm		
Sensor Center to Phantom Surface Distance			stance	3.7 mm	4.7 mm	
SAR _{be} [%] Withou	t Correction A	Jgorithm	5.3	2.1	
SAR _{be} [%] With Co	orrection Algo	rithm	0.2	0.2	
TSL	1810 MHz	Typical SA	R gradient: 10 %	i per mm		
Sensor	Center to Phanto	om Surface Di	stance	3.7 mm	4.7 mm	
SAR _{be} [%] Withou	t Correction A	Igorithm	13.6	9.0	
SAR _{be} [%] With Co	With Correction Algorithm			0.0	
Sensor Offs	et					
Probe Tip to Sensor Center				2.7 mm		
measurement	multiplied by	the coverag	ent is stated as the factor k=2, w of approximate	hich for a nor	uncertainty of mal distribution	
		2				
	NormX,Y,Z do not a tion parameter: uncer		incertainty inside TSL	(see Page 8).		

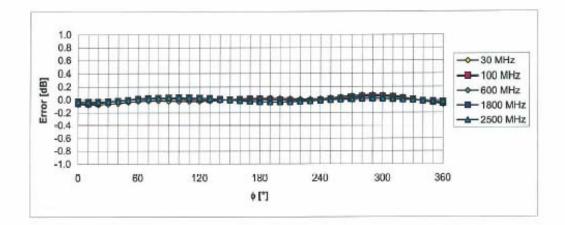
August 30, 2007

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

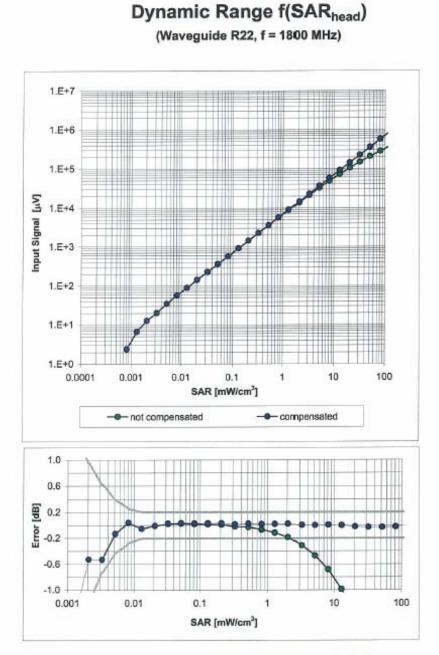

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1609_Aug07


Page 5 of 9

August 30, 2007

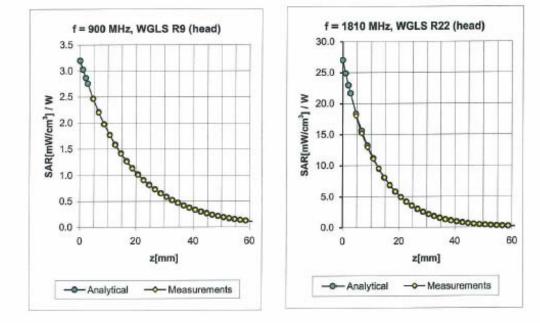
Receiving Pattern (\$), 9 = 0°


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1609_Aug07

Page 6 of 9

August 30, 2007


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1609_Aug07

Page 7 of 9

August 30, 2007

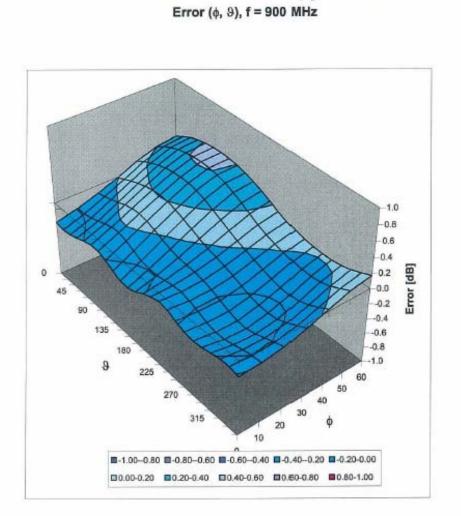
Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
450	± 50 / ± 100	Head	43.5 ± 5%	0.87 ± 5%	0.37	1.85	7.25 ± 13.3% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.36	2.42	6.81 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	$1.40 \pm 5\%$	0.52	2.66	5.36 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	$1.40 \pm 5\%$	0.60	2.50	5.12 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.69	1.89	4.78 ± 11.8% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.31	1.90	7.76 ± 13.3% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.35	2.55	6.49 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.71	2.44	4.74 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.58	2.37	4.17 ± 11.8% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1609_Aug07

Page 8 of 9



FCC ID: GU66039LA5127

Deviation from Isotropy in HSL

ET3DV6 SN:1609

August 30, 2007

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1609_Aug07

Page 9 of 9

Attachment 4. – Dipole Calibration Data

Report No.: HCT-SAR08-0116

FCC ID: GU66039LA5127

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Federal Office of Metrology and Accreditation

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Schweizerischer Kalibrierdienst s Service suisse d'étalonnage С Servizio svizzero di taratura S **Swiss Calibration Service**

Accreditation No.: SCS 108

SWISS

KTL (Dymstec) Certificate No: D2450V2-746_Feb07 Client **CALIBRATION CERTIFICATE** D2450V2 - SN: 746 Object QA CAL-05.v6 Calibration procedure(s) Calibration procedure for dipole validation kits February 20, 2007 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Primary Standards Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 03-Oct-06 (METAS, No. 217-00608) Oct-07 Power sensor HP 8481A US37292783 Oct-07 03-Oct-06 (METAS, No. 217-00608) Reference 20 dB Attenuator SN: 5086 (20g) 10-Aug-06 (METAS, No 217-00591) Aug-07 Reference 10 dB Attenuator SN: 5047.2 (10r) 10-Aug-06 (METAS, No 217-00591) Aug-07 Reference Probe ES3DV3 SN 3025 19-Oct-06 (SPEAG, No. ES3-3025_Oct06) Oct-07 DAE4 SN 601 30-Jan-07 (SPEAG, No. DAE4-601 Jan07) Jan-08 Secondary Standards Scheduled Check ID # Check Date (in house) Power sensor HP 8481A MY41092317 18-Oct-02 (SPEAG, in house check Oct-05) In house check: Oct-07 RF generator Agilent E4421B MY41000675 11-May-05 (SPEAG, in house check Nov-05) In house check: Nov-07 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (SPEAG, in house check Oct-06) In house check: Oct-07 Name Function Signature Laboratory Technician Marcel Fehr Calibrated by: Katja Pokovic Approved by: Technical Manager Issued: February 21, 2007 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-746_Feb07 Page 1 of 6

HCT-SAR08-0116 Report No.:

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

NIS ORP

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura

S **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET). "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole . positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-746 Feb07

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.0 ± 6 %	1.79 mho/m ± 6 %
Head TSL temperature during test	(20.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	13.7 mW/g
SAR normalized	normalized to 1W	54.8 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	54.1 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.32 mW / g
SAR normalized	normalized to 1W	25.3 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	25.0 mW / g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D2450V2-746_Feb07

Page 3 of 6

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.8 Ω + 4.9 jΩ	
Return Loss	– 23.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG		
Manufactured on	December 01, 2003		

Certificate No: D2450V2-746_Feb07

Page 4 of 6

Feb. 5, 2008

DASY4 Validation Report for Head TSL

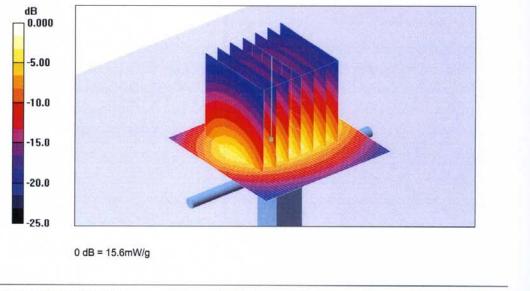
Date/Time: 20.02.2007 15:56:21

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN746

Communication System: CW-2450; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: HSL U10 BB; Medium parameters used: f = 2450 MHz; σ = 1.78 mho/m; ϵ_r = 38.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

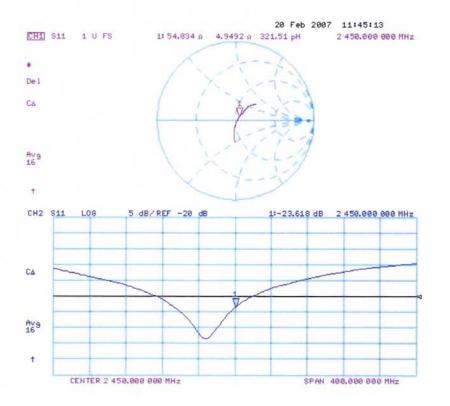

- Probe: ES3DV2 SN3025 (HF); ConvF(4.5, 4.5, 4.5); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2007
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; ;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm 2/Area Scan (51x51x1):

Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 16.1 mW/g

Pin = 250 mW; d = 10 mm 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.8 V/m; Power Drift = 0.044 dB Peak SAR (extrapolated) = 28.7 W/kg SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.32 mW/g Maximum value of SAR (measured) = 15.6 mW/g



Certificate No: D2450V2-746_Feb07

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-746_Feb07

Page 6 of 6