Shenzhen CTA Testing Technology Co., Ltd.
Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

TEST REPORT

The test report merely corresponds to the test sample.
It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

TEST STANDARDS 4
2 SUMMARY 5
2.1 General Remarks 5
2.2 Product Description 5
2.3 Equipment Under Test 5
2.4 Short description of the Equipment under Test (EUT) 5
2.5 EUT operation mode 6
2.6 Block Diagram of Test Setup 6
2.7 Related Submittal(s) / Grant (s) 6
2.8 Modifications 6
3 TEST ENVIRONMENT 7
3.1 Address of the test laboratory 7
3.2 Test Facility 7
3.3 Environmental conditions 7
3.4 Summary of measurement results 8
3.5 Statement of the measurement uncertainty 8
3.6 Equipments Used during the Test 9
4 TEST CONDITIONS AND RESULTS 10
4.1 AC Power Conducted Emission 10
4.2 Radiated Emission 13
4.3 Maximum Peak Output Power 19
4.4 20dB Bandwidth 20
4.5 Frequency Separation 24
4.6 Number of hopping frequency 26
$4.7 \quad$ Time of Occupancy (Dwell Time) 28
$4.8 \quad$ Out-of-band Emissions 32
4.9 Pseudorandom Frequency Hopping Sequence 41
4.10 Antenna Requirement 42
5 TEST SETUP PHOTOS OF THE EUT 43
$6 \quad$ PHOTOS OF THE EUT 44

1 TESTSTANDARDS

The tests were performed according to following standards:
FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, $2400-2483.5 \mathrm{MHz}$, and $5725-5850 \mathrm{MHz}$.
ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

2 SUMMARY

2.1 General Remarks

Date of receipt of test sample	$:$	Aug. 02, 2022
Testing commenced on	$:$	Aug. 02, 2022
Testing concluded on	$:$	Aug. 10, 2022

2.2 Product Description

Product Name:	Thermal Printer
Model/Type reference:	GL2120TJ
Power supply:	DC 12.0V From external circuit
PC information (Auxiliary test supplied by testing Lab)	Model:E70C Trade:Thinkpad
PC Adapter information (Auxiliary test supplied by testing Lab)	Model: ADLX45NCC3A Input:AC 100-240V 50/60Hz Output:DC 20V 2.5A
Adapter information:	Model:GM53-120400-F Input:100-240V~50/60Hz 2.0A Output:12.0V-4.0A 48.0W
Hardware version:	V1.0
Software version:	V1.0
Testing sample ID:	CTA220802006-1\# (Engineer sample) CTA220802006-2\# (Normal sample)
Bluetooth :	Bluetooth BR/EDR
Supported Type:	GFSK, m/4DQPSK, 8DPSK
Modulation:	$2402 M H z \sim 2480 M H z$
Operation frequency:	79
Channel number:	PCB antenna
Channel separation:	1 MHz
Antenna type:	2.00 dBi
Antenna gain:	Pa

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	$:$	O	$230 \mathrm{~V} / 50 \mathrm{~Hz}$	O	$120 \mathrm{~V} / 60 \mathrm{~Hz}$
		$O 12 \mathrm{~V} \mathrm{DC}$	O	24 V DC	
		O	Other (specified in blank below)		

2.4 Short description of the Equipment under Test (EUT)

This is a Thermal Printer.
For more details, refer to the user's manual of the EUT.

2.5 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98\%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

Operation Frequency:

Channel	Frequency (MHz)
00	2402
01	2403
\vdots	\vdots
38	2440
39	2441
40	2442
\vdots	\vdots
77	2479
78	2480

2.6 Block Diagram of Test Setup

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.
Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,Fuhai Street, Bao 'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

ISED\#: 27890 CAB identifier: CN0127
Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The $3 m$-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:
Radiated Emission:

Temperature:	$24^{\circ} \mathrm{C}$
Humidity:	45%
Atmospheric pressure:	$950-1050 \mathrm{mbar}$

AC Power Conducted Emission:

Temperature:	$25^{\circ} \mathrm{C}$
Humidity:	46%
Atmospheric pressure:	$950-1050 \mathrm{mbar}$

Conducted testing:

Temperature:	$25^{\circ} \mathrm{C}$
Humidity:	44%
Atmospheric pressure:	$950-1050 \mathrm{mbar}$

3．4 Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Recorded In Report		Test result
§15．247（a）（1）	Carrier Frequency separation	GFSK П／4DQPSK 8DPSK	\boxtimes Lowest \boxtimes Middle \boxtimes Highest	$\begin{gathered} \text { GFSK } \\ \Pi / 4 D Q P S K \\ \text { 8DPSK } \end{gathered}$	凹 Middle	Compliant
§15．247（a）（1）	Number of Hopping channels	GFSK П／4DQPSK 8DPSK	\ Full	GFSK	囚 Full	Compliant
§15．247（a）（1）	Time of Occupancy （dwell time）	GFSK П／4DQPSK 8DPSK	\boxtimes Lowest \boxtimes Middle \boxtimes Highest	$\begin{gathered} \text { GFSK } \\ \text { П/4DQPSK } \\ \text { 8DPSK } \end{gathered}$	凹 Middle	Compliant
§15．247（a）（1）	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK П／4DQPSK 8DPSK	$\begin{aligned} & \boxtimes \text { Lowest } \\ & \boxtimes \text { Middle } \\ & \boxtimes \text { Highest } \end{aligned}$	GFSK П／4DQPSK 8DPSK	Lowest \boxtimes Middle \boxtimes Highest	Compliant
§15．247（b）（1）	Maximum output peak power	$\begin{gathered} \text { GFSK } \\ \Pi / 4 \mathrm{DQPSK} \\ \text { 8DPSK } \\ \hline \end{gathered}$	\boxtimes Lowest \boxtimes Middle \boxtimes Highest	$\begin{gathered} \text { GFSK } \\ \Pi / 4 \mathrm{DQPSK} \\ \text { 8DPSK } \\ \hline \end{gathered}$	\boxtimes Lowest \boxtimes Middle \boxtimes Highest	Compliant
§15．247（d）	Band edgecompliance conducted	GFSK П／4DQPSK 8DPSK	Z Lowest Q Highest	$\begin{gathered} \text { GFSK } \\ \text { П/4DQPSK } \\ \text { 8DPSK } \end{gathered}$	Q Lowest囚 Highest	Compliant
§15．205	Band edgecompliance radiated	GFSK П／4DQPSK 8DPSK	Z Lowest Q Highest	$\begin{gathered} \text { GFSK } \\ \Pi / 4 \mathrm{DQPSK} \\ \text { 8DPSK } \end{gathered}$	Q Lowest இ Highest	Compliant
§15．247（d）	TX spuriousemissions	GFSK П／4DQPSK 8DPSK	\boxtimes Lowest \boxtimes Middle \boxtimes Highest	$\begin{gathered} \text { GFSK } \\ \text { /4DQPSK } \\ \text { 8DPSK } \end{gathered}$	இ Lowest \boxtimes Middle ® Highest	Compliant
§15．247（d）	TX spuriousemissions radiated	GFSK П／4DQPSK 8DPSK	\boxtimes Lowest \boxtimes Middle \boxtimes Highest	GFSK	$\begin{aligned} & \boxtimes \text { Lowest } \\ & \boxtimes \text { Middle } \\ & \boxtimes \text { Highest } \end{aligned}$	Compliant
§15．209（a）	TX spurious Emissions radiated Below 1GHz	GFSK П／4DQPSK 8DPSK	Q Lowest M Middle Z Highest	GFSK	凹 Middle	Compliant
$\begin{gathered} \text { §15.107(a) } \\ \$ 15.207 \end{gathered}$	Conducted Emissions $9 \mathrm{KHz}-30 \mathrm{MHz}$	GFSK П／4DQPSK 8DPSK	$\begin{aligned} & \text { Q Lowest } \\ & \boxtimes \text { Middle } \\ & \boxed{Z} \text { Hiahest } \end{aligned}$	GFSK	】 Middle	Compliant

Remark：

1．The measurement uncertainty is not included in the test result．
2．We tested all test mode and recorded worst case in report

3．5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate．The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities．The measurement uncertainty was calculated for all measurements listed in this test report acc．to TR－100028－01＂Electromagnetic compatibility and Radio spectrum Matters（ERM）；Uncertainties in the measurement of mobile radio equipment characteristics；Part 1＂and TR－100028－02＂Electromagnetic compatibility and Radio spectrum Matters （ERM）；Uncertainties in the measurement of mobile radio equipment characteristics；Part 2 ＂and is documented in the Shenzhen CTA Testing Technology Co．，Ltd．quality system acc．to DIN EN ISO／IEC 17025．Furthermore，component and process variability of devices similar to that tested may result in additional deviation．The manufacturer has the sole responsibility of continued compliance of the device．

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co．，Ltd．：

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	$30 \sim 1000 \mathrm{MHz}$	4.06 dB	(1)
Radiated Emission	$1 \sim 18 \mathrm{GHz}$	5.14 dB	(1)
Radiated Emission	$18-40 \mathrm{GHz}$	5.38 dB	(1)
Conducted Disturbance	$0.15 \sim 30 \mathrm{MHz}$	2.14 dB	(1)

（1）This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$ ．

Shenzhen CTA Testing Technology Co．，Ltd．
Room 106，Building 1，Yibaolai Industrial Park，Qiaotou Community，Fuhai Street，Bao＇an District，Shenzhen，China Tel：＋86－755 23225875 E－mail：cta＠cta－test．cn Web：http：／／www．cta－test．cn

3.6 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R\&S	ENV216	CTA-308	$2022 / 08 / 03$	$2023 / 08 / 02$
LISN	R\&S	ENV216	CTA-314	$2022 / 08 / 03$	$2023 / 08 / 02$
EMI Test Receiver	R\&S	ESPI	CTA-307	$2022 / 08 / 03$	$2023 / 08 / 02$
EMI Test Receiver	R\&S	ESCI	CTA-306	$2022 / 08 / 03$	$2023 / 08 / 02$
Spectrum Analyzer	Agilent	N9020A	CTA-301	$2022 / 08 / 03$	$2023 / 08 / 02$
Spectrum Analyzer	R\&S	FSP	CTA-337	$2022 / 08 / 03$	$2023 / 08 / 02$
Vector Signal generator	Agilent	N5182A	CTA-305	$2022 / 08 / 03$	$2023 / 08 / 02$
Analog Signal Generator	R\&S	SML03	CTA-304	$2022 / 08 / 03$	$2023 / 08 / 02$
Universal Radio Communication	CMW500	R\&S	CTA-302	$2022 / 08 / 03$	$2023 / 08 / 02$
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	$2022 / 08 / 03$	$2023 / 08 / 02$
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	$2021 / 08 / 07$	$2024 / 08 / 06$
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	$2021 / 08 / 07$	$2024 / 08 / 06$
Loop Antenna	Zhinan	ZN30900C	CTA-311	$2021 / 08 / 07$	$2024 / 08 / 06$
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	$2021 / 08 / 07$	$2024 / 08 / 06$
Amplifier	Schwarzbeck	BBV 9745	CTA-312	$2022 / 08 / 03$	$2023 / 08 / 02$
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	$2022 / 08 / 03$	$2023 / 08 / 02$
Directional coupler	NARDA	$4226-10$	CTA-303	$2022 / 08 / 03$	$2023 / 08 / 02$
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	$2022 / 08 / 03$	$2023 / 08 / 02$
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	$2022 / 08 / 03$	$2023 / 08 / 02$
Automated filter					
bank	Tonscend	JS0806-F	CTA-404	$2022 / 08 / 03$	$2023 / 08 / 02$
Power Sensor	Agilent	U2021XA	CTA-405	$2022 / 08 / 03$	$2023 / 08 / 02$
Amplifier	Schwarzbeck	BBV9719	CTA-406	$2022 / 08 / 03$	$2023 / 08 / 02$

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
2 Support equipment, if needed, was placed as per ANSI C63.10-2013
3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC $240 \mathrm{~V} / 60 \mathrm{~Hz}$ power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
5 All support equipments received AC power from a second LISN, if any.
6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
7 Analyzer / Receiver scanned from 150 KHz to 30 MHz for emissions in each of the test modes.
8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to $\S 15.207$ (a) AC Power Conducted Emission Limits is as following :

Frequency range (MHz)	Quasi-peak	Avimit (dBuV)
	66 to 56^{*}	56 to 46^{*}
$0.15-0.5$	56	46
$0.5-5$	60	50
$5-30$		
* Decreases with the logarithm of the frequency.		

TEST RESULTS

Remark:

1. All modes of GFSK, $\Pi / 4$ DQPSK and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:
2. Both $120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ and $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ power supply have been tested, only the worst result of $120 \mathrm{VAC}, 60 \mathrm{~Hz}$ was reported as below:

4.2 Radiated Emission

TEST CONFIGURATION

Frequency range $9 \mathrm{KHz}-30 \mathrm{MHz}$

Frequency range $30 \mathrm{MHz}-1000 \mathrm{MHz}$

Frequency range above $1 \mathrm{GHz}-25 \mathrm{GHz}$

TEST PROCEDURE

1. The EUT was placed on a turn table which is 0.8 m above ground plane when testing frequency range $9 \mathrm{KHz}-1 \mathrm{GHz}$;the EUT was placed on a turn table which is 1.5 m above ground plane when testing frequency range $1 \mathrm{GHz}-25 \mathrm{GHz}$.
2. Maximum procedure was performed by raising the receiving antenna from 1 m to 4 m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
4. Repeat above procedures until all frequency measurements have been completed.
5. Radiated emission test frequency band from 9 KHz to 25 GHz .
6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
$9 \mathrm{KHz}-30 \mathrm{MHz}$	Active Loop Antenna	3
$30 \mathrm{MHz}-1 \mathrm{GHz}$	Ultra-Broadband Antenna	3
$1 \mathrm{GHz}-18 \mathrm{GHz}$	Double Ridged Horn Antenna	3
$18 \mathrm{GHz}-25 \mathrm{GHz}$	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
$9 \mathrm{KHz}-150 \mathrm{KHz}$	$\mathrm{RBW}=200 \mathrm{~Hz} / \mathrm{VBW}=3 \mathrm{KHz}$, Sweep time=Auto	QP
$150 \mathrm{KHz}-30 \mathrm{MHz}$	$\mathrm{RBW}=9 \mathrm{KHz} / \mathrm{VBW}=100 \mathrm{KHz}$, Sweep time=Auto	QP
$30 \mathrm{MHz}-1 \mathrm{GHz}$	$\mathrm{RBW}=120 \mathrm{KHz} / \mathrm{VBW}=1000 \mathrm{KHz}$, Sweep time=Auto	QP
$1 \mathrm{GHz}-40 \mathrm{GHz}$	Peak Value: $\mathrm{RBW}=1 \mathrm{MHz} / \mathrm{VBW}=3 \mathrm{MHz}$, Sweep time $=$ Auto Average Value: RBW $=1 \mathrm{MHz} / \mathrm{VBW}=10 \mathrm{~Hz}$, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:
$F S=R A+A F+C L-A G$

Where \quad FS $=$ Field Strength	$C L=$ Cable Attenuation Factor (Cable Loss)
RA $=$ Reading Amplitude	$\mathrm{AG}=$ Amplifier Gain
$\mathrm{AF}=$ Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247 (d), in any 100 kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dB $\boldsymbol{\mu V / m})$	Radiated ($\boldsymbol{\mu V / m}$)
$0.009-0.49$	3	$20 \log (2400 / \mathrm{F}(\mathrm{KHz}))+40 \log (300 / 3)$	$2400 / \mathrm{F}(\mathrm{KHz})$
$0.49-1.705$	3	$20 \log (24000 / \mathrm{F}(\mathrm{KHz}))+40 \log (30 / 3)$	$24000 / \mathrm{F}(\mathrm{KHz})$
$1.705-30$	3	$20 \log (30)+40 \log (30 / 3)$	30
$30-88$	3	40.0	100
$88-216$	3	43.5	150
$216-960$	3	46.0	200

Above 960	3	54.0	500

TEST RESULTS

Remark:

1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
2. We measured Radiated Emission at GFSK, $\pi / 4$ DQPSK and 8DPSK mode from 9 KHz to 25 GHz and recorded worst case at GFSK DH5 mode.
3. For below 1 GHz testing recorded worst at GFSK DH5 middle channel.
4. Radiated emission test from 9 KHz to 10 th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30 MHz and not recorded in this report.

For 30MHz-1GHz

Note:1).Level $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})=$ Reading $(\mathrm{dB} \mu \mathrm{V})+$ Factor $(\mathrm{dB} / \mathrm{m})$
2). Factor $(\mathrm{dB} / \mathrm{m})=$ Antenna Factor $(\mathrm{dB} / \mathrm{m})+$ Cable loss (dB) - Pre Amplifier gain (dB)
3). Margin $(\mathrm{dB})=\operatorname{Limit}(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})-$ Level $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$

For 1 GHz to $\mathbf{2 5 G H z}$

Note: GFSK , п/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.
GFSK (above 1GHz)

Frequency(MHz):										2402		Polarity:		HORIZONTAL	
Frequency (MHz)	Emission Level $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin (dB)	Raw Value (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor $(\mathrm{dB} / \mathrm{m})$							
4804.00	61.62	PK	74	12.38	65.89	32.33	5.12	41.72	-4.27						
4804.00	45.78	AV	54	8.22	50.05	32.33	5.12	41.72	-4.27						
7206.00	54.45	PK	74	19.55	54.97	36.6	6.49	43.61	-0.52						
7206.00	43.58	AV	54	10.42	44.10	36.6	6.49	43.61	-0.52						

Frequency(MHz):			2402		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin (dB)	Raw Value (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor $(\mathrm{dB} / \mathrm{m})$	
4804.00	58.80	PK	74	15.20	63.07	32.33	5.12	41.72	-4.27
4804.00	42.96	AV	54	11.04	47.23	32.33	5.12	41.72	-4.27
7206.00	51.24	PK	74	22.76	51.76	36.6	6.49	43.61	-0.52
7206.00	40.37	AV	54	13.63	40.89	36.6	6.49	43.61	-0.52

Frequency(MHz):		$\mathbf{2 4 4 1}$		Polarity:		HORIZONTAL			
Frequency (MHz)	Emission Level $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin (dB)	Raw Value (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor $(\mathrm{dB} / \mathrm{m})$	
4882.00	61.12	PK	74	12.88	65.00	32.6	5.34	41.82	-3.88
4882.00	46.53	AV	54	7.47	50.41	32.6	5.34	41.82	-3.88
7323.00	54.15	PK	74	19.85	54.26	36.8	6.81	43.72	-0.11
7323.00	43.90	AV	54	10.10	44.01	36.8	6.81	43.72	-0.11

Frequency(MHz):		$\mathbf{2 4 4 1}$		Polarity:		VERTICAL			
Frequency (MHz)	Emission Level $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin (dB)	Raw Value (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor $(\mathrm{dB} / \mathrm{m})$	
4882.00	58.04	PK	74	15.96	61.92	32.6	5.34	41.82	-3.88
4882.00	43.20	AV	54	10.80	47.08	32.6	5.34	41.82	-3.88
7323.00	50.88	PK	74	23.12	50.99	36.8	6.81	43.72	-0.11
7323.00	40.69	AV	54	13.31	40.80	36.8	6.81	43.72	-0.11

Frequency(MHz):		$\mathbf{2 4 8 0}$		Polarity:		HORIZONTAL			
Frequency (MHz)	Emission Level $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin (dB)	Raw Value (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor $(\mathrm{dB} / \mathrm{m})$	
4960.00	61.00	PK	74	13.00	64.08	32.73	5.66	41.47	-3.08
4960.00	46.05	AV	54	7.95	49.13	32.73	5.66	41.47	-3.08
7440.00	55.86	PK	74	18.14	55.41	37.04	7.25	43.84	0.45
7440.00	44.65	PK	54	9.35	44.20	37.04	7.25	43.84	0.45

Frequency(MHz):		$\mathbf{2 4 8 0}$		Polarity:		VERTICAL			
Frequency (MHz)	Emission Level $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin (dB)	Raw Value (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor $(\mathrm{dB} / \mathrm{m})$	
4960.00	57.79	PK	74	16.21	60.87	32.73	5.66	41.47	-3.08
4960.00	42.71	AV	54	11.29	45.79	32.73	5.66	41.47	-3.08
7440.00	52.58	PK	74	21.42	52.13	37.04	7.25	43.84	0.45
7440.00	41.44	PK	54	12.56	40.99	37.04	7.25	43.84	0.45

Shenzhen CTA Testing Technology Co., Ltd.
Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China
Tel:+86-755 23225875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

REMARKS:

1. Emission level $(\mathrm{dBuV} / \mathrm{m})=$ Raw Value $(\mathrm{dBuV})+$ Correction Factor $(\mathrm{dB} / \mathrm{m})$
2. Correction Factor $(d B / m)=$ Antenna Factor $(d B / m)+$ Cable Factor ($d B$)- Pre-amplifier
3. Margin value = Limit value- Emission level.
4. -- Mean the PK detector measured value is below average limit.
5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)
Note: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.
GFSK

Frequency(MHz):			2402		Polarity:		HORIZONTAL		
$\begin{aligned} & \text { Frequency } \\ & (\mathrm{MHz}) \end{aligned}$	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)		Antenna Factor (dB/m)	Cable Factor (dB)	$\begin{aligned} & \text { Pre- } \\ & \text { amplifier } \\ & \text { (dB) } \end{aligned}$	Correction Factor (dB/m)
2390.00	61.95	PK	74	12.05	72.37	27.42	4.31	42.15	-10.42
2390.00	44.49	AV	54	9.51	54.91	27.42	4.31	42.15	-10.42
Frequency(MHz):			2402		Polarity:		VERTICAL		
$\begin{aligned} & \text { Frequency } \\ & (\mathrm{MHz}) \end{aligned}$	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)		Antenna Factor (dB/m)	Cable Factor (dB)	Preamplifier (dB)	Correction Factor (dB/m)
2390.00	58.64	PK	74	15.36	69.06	27.42	4.31	42.15	-10.42
2390.00	41.28	AV	54	12.72	51.70	27.42	4.31	42.15	-10.42
Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	$\begin{gathered} \mathrm{Em} \\ \mathrm{~L} \\ (\mathrm{~dB} \end{gathered}$		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Preamplifier (dB)	Correction Factor (dB/m)
2483.50	61.42	PK	74	12.58	71.53	27.7	4.47	42.28	-10.11
2483.50	42.96	AV	54	11.04	53.07	27.7	4.47	42.28	-10.11
Frequency(MHz):			2480		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Preamplifier (dB)	Correction Factor (dB/m)
2483.50	57.85	PK	74	16.15	67.96	27.7	4.47	42.28	-10.11
2483.50	39.75	AV	54	14.25	49.86	27.7	4.47	42.28	-10.11

REMARKS:

1. Emission level ($\mathrm{dBuV} / \mathrm{m}$) =Raw Value (dBuV)+Correction Factor (dB / m)
2. Correction Factor $(\mathrm{dB} / \mathrm{m})=$ Antenna Factor $(\mathrm{dB} / \mathrm{m})+$ Cable Factor (dB) - Pre-amplifier
3. Margin value = Limit value- Emission level.
4. -- Mean the PK detector measured value is below average limit.
5. The other emission levels were very low against the limit.

4.3 Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the powersensor.

Test Configuration

Test Results

Type	Channel	Output power (dBm)	Limit (dBm)	Result
GFSK	00	-0.66	20.97	Pass
	39	-0.21		
	115 78	0.19		
п/4DQPSK	00	0.21	20.97	Pass
	39	0.66		
	78	CTP 1.04		
8DPSK	00	0.15	20.97	Pass
	39	0.64		
	78	0.87		

Note: 1.The test results including the cable lose.

4.4 20dB Bandwidth

Limit

For frequency hopping systems operating in the $2400 \mathrm{MHz}-2483.5 \mathrm{MHz}$ no limit for 20 dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20 dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20 dB .

Test Configuration

Test Results

Modulation	Channel	20dB bandwidth (MHz)	Result
GFSK	CH 00	0.981	
	CH 39	1.023	
	CH 78	1.023	
m/4DQPSK	CH 00	1.311	
	CH 39	1.305	Pass
	CH 78	1.293	
8DPSK	CH 00	1.281	

Test plot as follows:

Shenzhen CTA Testing Technology Co., Ltd.
Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

Shenzhen CTA Testing Technology Co., Ltd.
Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

Shenzhen CTA Testing Technology Co., Ltd.
Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

4.5 Frequency Separation

LIMIT

According to 15.247(a)(1),frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25 KHz or the $2 / 3^{*} 20 \mathrm{~dB}$ bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS

Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result
GFSK	CH 38	1.160	25 KHz or $2 / 3^{*} 20 \mathrm{~dB}$ bandwidth	Pass
	CH 39	CH 38	1.120	25 KHz or $2 / 3^{*} 20 \mathrm{~dB}$ bandwidth
CH39	CH	Pass		
8DPSK	CH 38	CH 39	1.164	25 KHz or $2 / 3^{*} 20 \mathrm{~dB}$ bandwidth
		Pass		

Note:
We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows:

(6)	
GFFK	

Shenzhen CTA Testing Technology Co., Ltd.
Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

4.6 Number of hopping frequency

Limit

Frequency hopping systems in the $2400-2483.5 \mathrm{MHz}$ band shall use at least 15 channels.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400 MHz to 2483.5 MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration

Test Results

Modulation	Number of Hopping Channel	Limit	Result
GFSK	79		Pass
m/4DQPSK	79		
8DPSK	79		

Test plot as follows:

4.7 Time of Occupancy (Dwell Time)

Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1 MHz RBW and 1 MHz VBW, Span 0 Hz .

Test Configuration

Test Results

Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result
GFSK	DH1	0.37	0.118	0.40	Pass
	DH3	1.62	0.259		
	DH5	2.86	0.305		
	2-DH1	0.37	0.118		
ד/4DQPSK	2-DH3	1.62	0.259	0.40	Pass
	2-DH5	2.87	0.306		
	3-DH1	0.36	0.115		
8DPSK	3-DH3	1.62	0.259	0.40	Pass
	3-DH5	2.87	0.306		

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.
Dwell time $=$ Pulse time $(\mathrm{ms}) \times(1600 \div 2 \div 79) \times 31.6$ Second for DH1, 2-DH1, 3-DH1
Dwell time=Pulse time $(\mathrm{ms}) \times(1600 \div 4 \div 79) \times 31.6$ Second for DH3, 2-DH3, 3-DH3
Dwell time=Pulse time $(\mathrm{ms}) \times(1600 \div 6 \div 79) \times 31.6$ Second for DH5, 2-DH5, 3-DH5

Test plot as follows:

	OHt busstine
	OHf3 bustime

Shenzhen CTA Testing Technology Co., Ltd.
Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

Shenzhen CTA Testing Technology Co., Ltd.
Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

4.8 Out-of-band Emissions

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph $(\mathrm{b})(3)$ of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to $\mathrm{RBW}=100 \mathrm{kHz}$, VBW $=300 \mathrm{kHz}$, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

Test Results

Remark: The measurement frequency range is from 30 MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.
We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5
Test plot as follows:

GFSK(CHOO)

reference

30MHz-1G

1G-25G

GFSK(CH39)

reference

30MHz-1G

1G-25G

Shenzhen CTA Testing Technology Co., Ltd.
Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 23225875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

Shenzhen CTA Testing Technology Co., Ltd.
Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao’an District, Shenzhen, China Tel:+86-755 23225875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

Shenzhen CTA Testing Technology Co., Ltd.
Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao’an District, Shenzhen, China Tel:+86-755 23225875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

