

TEST REPORT				
Report Reference No FCC ID	GTS20211011003-1-1 GU6-GL2120TH			
IC	1502A-GL2120TH			
Compiled by		1		
(position+printed name+signature):	File administrators Jimmy Wang	Jrnd. Mer		
Supervised by		TOBAL TEST SEAL		
(position+printed name+signature):	Test Engineer Aaron Tan	GTS		
Approved by				
(position+printed name+signature):	Manager Jason Hu	Jasentin		
Date of issue	Oct. 13, 2021			
Representative Laboratory Name .:	Shenzhen Global Test Service (Co., Ltd.		
Address:	No.7-101 and 8A-104, Building 7 Garden, No.98, Pingxin North Roa Pinghu Street, Longgang District,	ad, Shangmugu Community,		
Applicant's name	Avery Dennison Retail Informat	ion Services, LLC		
Address	170 Monarch Lane Miamisburg, O	H 45342 United States		
Test specification:				
	FCC Part 15.247			
	RSS-247 Issue 2 February 2017			
Standard	RSS-Gen Issue 5 March 2019			
	ANSI C63.10: 2013			
TRF Originator	Shenzhen Global Test Service Co	o.,Ltd.		
Shenzhen Global Test Service Co.,Ltd. All rights reserved.				
This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.				
Test item description	Thermal Printer			
Trade Mark:	N/A			
Manufacturer	CME Electronics Technology Co.,LTD			
Model/Type reference	GL2120TH			
Listed Models	N/A			
Modulation Type	GFSK, T/4DQPSK,8DPSK			
Operation Frequency	From 2402MHz to 2480MHz			
Rating:	DC 12V from Adapter			
Result	PASS			

TEST REPORT

Equipment under Test	:	Thermal Printer
Model /Type	:	GL2120TH
Listed Models	:	N/A
Applicant	:	Avery Dennison Retail Information Services, LLC
Address	:	170 Monarch Lane Miamisburg, OH 45342 United States
Manufacturer	:	CME Electronics Technology Co.,LTD
Address	:	Suite B, 18th Floor, Jingwangem No. 303, Qinglv Road South, Gongbei, Zhuhai 519020, Guangdong province, China

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

2 SUMMARY 2.1 General Remarks 2.2 Product Description 2.3 Equipment Under Test 2.4 Short description of the Equipment under Test (EUT) 2.5 EUT operation mode 2.6 Block Diagram of Test Setup 2.7 Related Submittal(s) / Grant (s) 2.8 Modifications 3 TEST ENVIRONMENT 3.1 Address of the test laboratory 3.2 Test Facility 3.3 Environmental conditions 3.4 Summary of measurement results 3.5 Statement of the measurement uncertainty 3.6 Equipments Used during the Test 4 TEST CONDITIONS AND RESULTS 4.1 AC Power Conducted Emission 4.2 Radiated Emission 4.3 Maximum Peak Output Power 4.4 20dB Bandwidth and 99% Bandwidth 4.5 Frequency Separation 4.6 Number of hopping frequency 4.7 Time of Occupancy (Dwell Time) 4.8 Out-of-band Emissions	5 5 5 5 5 5 5
 2.2 Product Description 2.3 Equipment Under Test 2.4 Short description of the Equipment under Test (EUT) 2.5 EUT operation mode 2.6 Block Diagram of Test Setup 2.7 Related Submittal(s) / Grant (s) 2.8 Modifications 3 <u>TEST ENVIRONMENT</u>	5 5 5
 2.3 Equipment Under Test 2.4 Short description of the Equipment under Test (EUT) 2.5 EUT operation mode 2.6 Block Diagram of Test Setup 2.7 Related Submittal(s) / Grant (s) 2.8 Modifications 3 TEST ENVIRONMENT	5 5
 2.4 Short description of the Equipment under Test (EUT) 2.5 EUT operation mode 2.6 Block Diagram of Test Setup 2.7 Related Submittal(s) / Grant (s) 2.8 Modifications 3 TEST ENVIRONMENT	5
 EUT operation mode Block Diagram of Test Setup Related Submittal(s) / Grant (s) Modifications <u>TEST ENVIRONMENT</u> Address of the test laboratory Test Facility Environmental conditions Summary of measurement results Statement of the measurement uncertainty Equipments Used during the Test <u>TEST CONDITIONS AND RESULTS</u> AC Power Conducted Emission Radiated Emission Radiated Emission Maximum Peak Output Power 20B Bandwidth and 99% Bandwidth Frequency Separation Number of hopping frequency Time of Occupancy (Dwell Time) 	
 2.6 Block Diagram of Test Setup 2.7 Related Submittal(s) / Grant (s) 2.8 Modifications 3 TEST ENVIRONMENT 3.1 Address of the test laboratory 3.2 Test Facility 3.3 Environmental conditions 3.4 Summary of measurement results 3.5 Statement of the measurement uncertainty 3.6 Equipments Used during the Test 4 TEST CONDITIONS AND RESULTS 4.1 AC Power Conducted Emission 4.2 Radiated Emission 4.3 Maximum Peak Output Power 4.4 20dB Bandwidth and 99% Bandwidth 4.5 Frequency Separation 4.6 Number of hopping frequency 4.7 Time of Occupancy (Dwell Time) 	5
 2.7 Related Submittal(s) / Grant (s) 2.8 Modifications 3 TEST ENVIRONMENT 3.1 Address of the test laboratory 3.2 Test Facility 3.3 Environmental conditions 3.4 Summary of measurement results 3.5 Statement of the measurement uncertainty 3.6 Equipments Used during the Test 4 TEST CONDITIONS AND RESULTS 4.1 AC Power Conducted Emission 4.2 Radiated Emission 4.3 Maximum Peak Output Power 4.4 20dB Bandwidth and 99% Bandwidth 4.5 Frequency Separation 4.6 Number of hopping frequency 4.7 Time of Occupancy (Dwell Time) 	
 2.8 Modifications <u>TEST ENVIRONMENT</u>	6 6
 3.1 Address of the test laboratory 3.2 Test Facility 3.3 Environmental conditions 3.4 Summary of measurement results 3.5 Statement of the measurement uncertainty 3.6 Equipments Used during the Test 4 TEST CONDITIONS AND RESULTS 4.1 AC Power Conducted Emission 4.2 Radiated Emission 4.3 Maximum Peak Output Power 4.4 20dB Bandwidth and 99% Bandwidth 4.5 Frequency Separation 4.6 Number of hopping frequency 4.7 Time of Occupancy (Dwell Time) 	6
 3.1 Address of the test laboratory 3.2 Test Facility 3.3 Environmental conditions 3.4 Summary of measurement results 3.5 Statement of the measurement uncertainty 3.6 Equipments Used during the Test 4 TEST CONDITIONS AND RESULTS 4.1 AC Power Conducted Emission 4.2 Radiated Emission 4.3 Maximum Peak Output Power 4.4 20dB Bandwidth and 99% Bandwidth 4.5 Frequency Separation 4.6 Number of hopping frequency 4.7 Time of Occupancy (Dwell Time) 	7
 3.2 Test Facility 3.3 Environmental conditions 3.4 Summary of measurement results 3.5 Statement of the measurement uncertainty 3.6 Equipments Used during the Test 4 TEST CONDITIONS AND RESULTS 4.1 AC Power Conducted Emission 4.2 Radiated Emission 4.3 Maximum Peak Output Power 4.4 20dB Bandwidth and 99% Bandwidth 4.5 Frequency Separation 4.6 Number of hopping frequency 4.7 Time of Occupancy (Dwell Time) 	
 3.2 Test Facility 3.3 Environmental conditions 3.4 Summary of measurement results 3.5 Statement of the measurement uncertainty 3.6 Equipments Used during the Test 4 TEST CONDITIONS AND RESULTS 4.1 AC Power Conducted Emission 4.2 Radiated Emission 4.3 Maximum Peak Output Power 4.4 20dB Bandwidth and 99% Bandwidth 4.5 Frequency Separation 4.6 Number of hopping frequency 4.7 Time of Occupancy (Dwell Time) 	7
 3.3 Environmental conditions 3.4 Summary of measurement results 3.5 Statement of the measurement uncertainty 3.6 Equipments Used during the Test 4 TEST CONDITIONS AND RESULTS 4.1 AC Power Conducted Emission 4.2 Radiated Emission 4.3 Maximum Peak Output Power 4.4 20dB Bandwidth and 99% Bandwidth 4.5 Frequency Separation 4.6 Number of hopping frequency 4.7 Time of Occupancy (Dwell Time) 	7
 3.4 Summary of measurement results 3.5 Statement of the measurement uncertainty 3.6 Equipments Used during the Test 4 <u>TEST CONDITIONS AND RESULTS</u> 4.1 AC Power Conducted Emission 4.2 Radiated Emission 4.3 Maximum Peak Output Power 4.4 20dB Bandwidth and 99% Bandwidth 4.5 Frequency Separation 4.6 Number of hopping frequency 4.7 Time of Occupancy (Dwell Time) 	7
 3.5 Statement of the measurement uncertainty 3.6 Equipments Used during the Test <u>4</u> <u>TEST CONDITIONS AND RESULTS</u> 4.1 AC Power Conducted Emission 4.2 Radiated Emission 4.3 Maximum Peak Output Power 4.4 20dB Bandwidth and 99% Bandwidth 4.5 Frequency Separation 4.6 Number of hopping frequency 4.7 Time of Occupancy (Dwell Time) 	8
4 TEST CONDITIONS AND RESULTS 4.1 AC Power Conducted Emission 4.2 Radiated Emission 4.3 Maximum Peak Output Power 4.4 20dB Bandwidth and 99% Bandwidth 4.5 Frequency Separation 4.6 Number of hopping frequency 4.7 Time of Occupancy (Dwell Time)	8
 4.1 AC Power Conducted Emission 4.2 Radiated Emission 4.3 Maximum Peak Output Power 4.4 20dB Bandwidth and 99% Bandwidth 4.5 Frequency Separation 4.6 Number of hopping frequency 4.7 Time of Occupancy (Dwell Time) 	9
 4.2 Radiated Emission 4.3 Maximum Peak Output Power 4.4 20dB Bandwidth and 99% Bandwidth 4.5 Frequency Separation 4.6 Number of hopping frequency 4.7 Time of Occupancy (Dwell Time) 	11
 4.3 Maximum Peak Output Power 4.4 20dB Bandwidth and 99% Bandwidth 4.5 Frequency Separation 4.6 Number of hopping frequency 4.7 Time of Occupancy (Dwell Time) 	11
 4.4 20dB Bandwidth and 99% Bandwidth 4.5 Frequency Separation 4.6 Number of hopping frequency 4.7 Time of Occupancy (Dwell Time) 	14
 4.5 Frequency Separation 4.6 Number of hopping frequency 4.7 Time of Occupancy (Dwell Time) 	21
4.6 Number of hopping frequency4.7 Time of Occupancy (Dwell Time)	22
4.7 Time of Occupancy (Dwell Time)	26
	28
	30 34
4.9 Pseudorandom Frequency Hopping Sequence	34 43
4.10 Antenna Requirement	43 44
<u>5 TEST SETUP PHOTOS OF THE EUT</u>	45
<u>6</u> <u>PHOTOS OF THE EUT</u>	

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

RSS-247-Issue 2: Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-

Exempt Local Area Network (LE-LAN) Devices

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

ANSI C63.4: 2014: –American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz Range of 9 kHz to 40GHz

RSS-GEN Issue 5: General Requirements for Compliance of Radio Apparatus

2 <u>SUMMARY</u>

2.1 General Remarks

Date of receipt of test sample	:	Aug. 10, 2021
Testing commenced on		Aug. 10, 2021
Testing concluded on	:	Oct. 13, 2021

2.2 Product Description

Product Name:	Thermal Printer
Model/Type reference:	GL2120TH
HVIN:	GL2120TH
Power supply:	DC 12V from Adapter
Adapter information:	Model: SW-1960 Input: 100-240V~, 50/60Hz 2.0A Output:DC12V 4A
Sample ID:	GTS20211011003-1-1-1#(Normal sample) GTS20211011003-1-1-2#(Engineer sample)
Bluetooth :	
Supported Type:	Bluetooth BR/EDR
Modulation:	GFSK, π/4DQPSK,8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	PCB antenna
Antenna gain:	2.00dBi

2.3 Equipment Under Test

Power supply system utilised

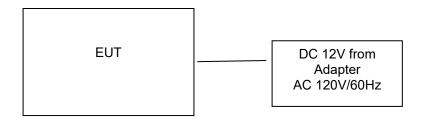
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		•	12 V DC	0	24 V DC
		Ο	Other (specified in blank below)		

DC 12V from Adapter

2.4 Short description of the Equipment under Test (EUT)

This is a Thermal Printer.

For more details, refer to the user's manual of the EUT.


2.5 EUT operation mode

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

Operation Frequency:

Channel	Frequency (MHz)
00	2402
01	2403
:	
38	2440
39	2441
40	2442
:	
77	2479
78	2480

2.6 Block Diagram of Test Setup

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules and RSS 247 Issue 2

2.8 Modifications

No modifications were implemented to meet testing criteria.

3 <u>TEST ENVIRONMENT</u>

3.1 Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L8169)

Shenzhen Global Test Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2019 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA (Certificate No. 4758.01)

Shenzhen Global Test Service Co., Ltd. has been assessed by the American Association for Laboratory Accreditation (A2LA). Certificate No. 4758.01.

Industry Canada Registration Number. is 24189.

FCC Designation Number is CN1234.

FCC Registered Test Site Number is165725.

IC Registration Number is 24189.

CAB identifier is CN0082.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

AC Power Conducted Emission:

Temperature:	25.3 ° C
Humidity:	46.1 %
Atmospheric pressure:	950-1050mbar

Radiated Emission:

Temperature:	24.6 ° C
Humidity:	45.6 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

Temperature:	24.9 ° C
Humidity:	48.3 %
Atmospheric pressure:	950-1050mbar

3.4 Summary of measurement results

RSS 247				
FCC Part 15.207 RSS-Gen 8.8	AC Power Conducted Emission	PASS		
FCC Part 15.247(a)(1) RSS 247 5.1 (a) RSS-Gen 6.7	20dB Bandwidth& 99% Bandwidth	PASS		
FCC Part 15.247(d) RSS 247 5.5	Spurious RF Conducted Emission	PASS		
FCC Part 15.247(b)(1) RSS 247 5.4 (b)	Maximum Peak Output Power	PASS		
FCC Part 15.247(a)(1) RSS 247 5.1 (d)	Pseudorandom Frequency Hopping Sequence	PASS		
FCC Part 15.247(a)(1) RSS 247 5.1 (d)	Number of hopping frequency& Time of Occupancy	PASS		
FCC Part 15.247(a)(1) RSS 247 5.1 (b)	Frequency Separation	PASS		
FCC Part 15.209(a) RSS-Gen 8.9	Radiated Emissions	PASS		
FCC Part 15.247(d) FCC Part 15.205 RSS-Gen 8.10	Band Edge Compliance of RF Emission	PASS		
RSS-Gen 6.8 FCC §15.203	Antenna Requirement	PASS		

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

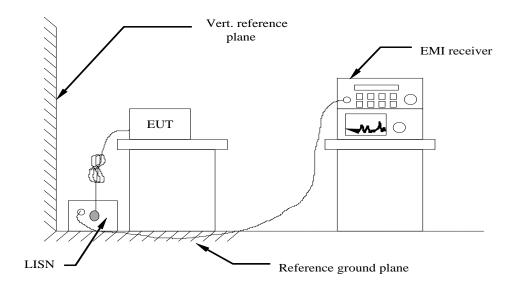
(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	CYBERTEK	EM5040A	E1850400105	2021/07/17	2022/07/16
LISN	R&S	ESH2-Z5	893606/008	2021/07/17	2022/07/16
EMI Test Receiver	R&S	ESPI3	101841-cd	2021/07/17	2022/07/16
EMI Test Receiver	R&S	ESCI7	101102	2021/09/18	2022/09/17
EMI Test Receiver	R&S	ESCI7	101102	2021/09/19	2022/09/18
Spectrum Analyzer	Agilent	N9020A	MY48010425	2021/09/18	2022/09/17
Spectrum Analyzer	Agilent	N9020A	MY48010425	2021/09/19	2022/09/18
Spectrum Analyzer	R&S	FSV40	100019	2021/07/17	2022/07/16
Vector Signal generator	Agilent	N5181A	MY49060502	2021/07/17	2022/07/16
Signal generator	Agilent	N5182A	3610AO1069	2021/09/18	2022/09/17
Signal generator	Agilent	N5182A	3610AO1069	2021/09/19	2022/09/18
Climate Chamber	ESPEC	EL-10KA	A20120523	2021/09/18	2022/09/17
Climate Chamber	ESPEC	EL-10KA	A20120523	2021/09/19	2022/09/18
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2020/11/08	2021/11/07
Active Loop Antenna	Beijing Da Ze Technology Co.,Ltd.	ZN30900C	15006	2021/10/10	2022/10/09
Bilog Antenna	Schwarzbeck	VULB9163	000976	2021/08/08	2022/08/07
Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2020/11/08	2021/11/07
Amplifier	Schwarzbeck	BBV 9743	#202	2021/07/17	2022/07/16
Amplifier	Schwarzbeck	BBV9179	9719-025	2021/07/17	2022/07/16
Amplifier	EMCI	EMC051845B	980355	2021/07/17	2022/07/16
Temperature/Humidi ty Meter	Gangxing	CTH-608	02	2021/07/17	2022/07/16
High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	KL142031	2021/07/17	2022/07/16
High-Pass Filter	K&L	41H10- 1375/U12750- O/O	KL142032	2021/07/17	2022/07/16
RF Cable(below 1GHz)	HUBER+SUHNE R	RG214	RE01	2021/07/17	2022/07/16
RF Cable(above 1GHz)	HUBER+SUHNE R	RG214	RE02	2021/07/17	2022/07/16
Data acquisition card	Agilent	U2531A	TW53323507	2021/07/17	2022/07/16
Power Sensor	Agilent	U2021XA	MY5365004	2021/07/17	2022/07/16
Test Control Unit	Tonscend	JS0806-1	178060067	2021/07/17	2022/07/16
Automated filter bank	Tonscend	JS0806-F	19F8060177	2021/07/17	2022/07/16
EMI Test Software	Tonscend	JS1120-1	Ver 2.6.8.0518	/	/

Report No.: GTS20211011003-1-1

Page 10 of 50


EMI Test Software	Tonscend	JS1120-3	Ver 2.5.77.0418	/	/
EMI Test Software	Tonscend	JS32-CE	Ver 2.5	/	/
EMI Test Software	Tonscend	JS32-RE	Ver 2.5.1.8	/	/

Note: The Cal.Interval was one year.

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

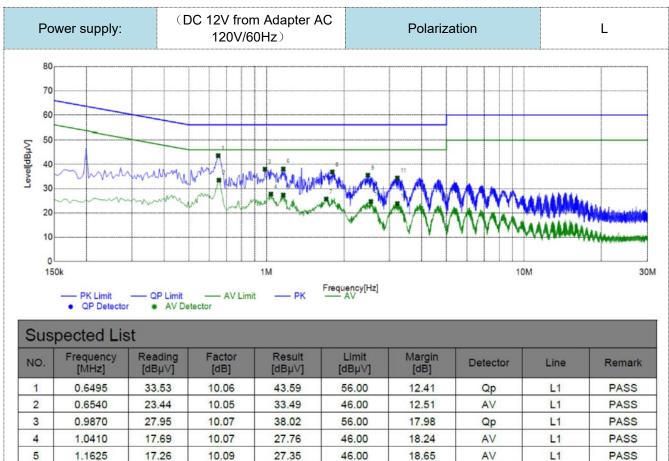
5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

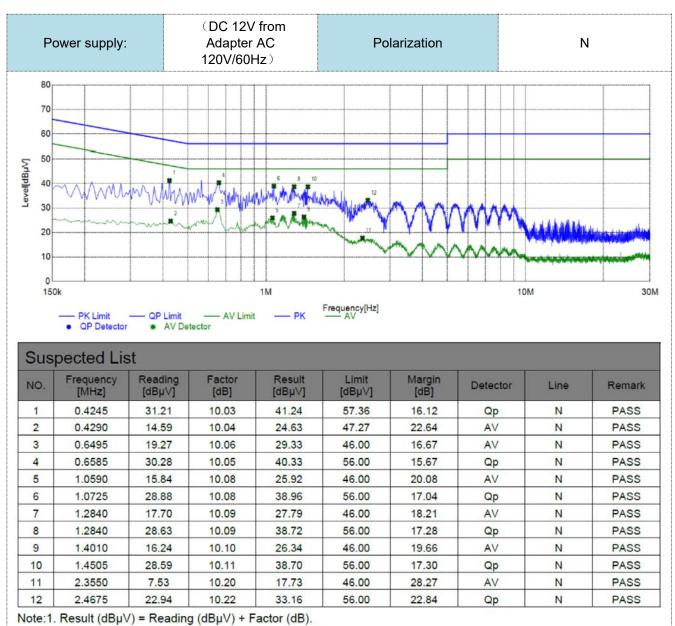

According to RSS Gen 8.8 and § 15.207(a) Line Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (c	IBuV)				
	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
* Decreases with the logarithm of the frequency.						

TEST RESULTS

Remark:

- 1. All modes of GFSK, Pi/4 DQPSK and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:
- Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

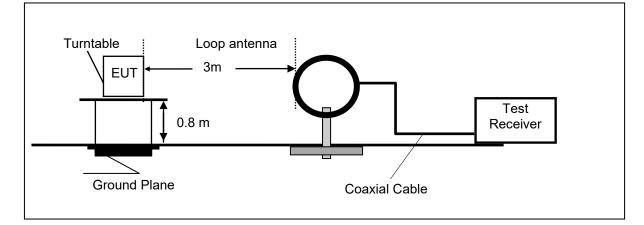


6	1.1625	27.99	10.09	38.08	56.00	17.92	Qp	L1	PASS
7	1.7070	15.58	10.13	25.71	46.00	20.29	AV	L1	PASS
8	1.8015	26.74	10.13	36.87	56.00	19.13	Qp	L1	PASS
9	2.4765	25.31	10.22	35.53	56.00	20.47	Qp	L1	PASS
10	2.5440	14.46	10.23	24.69	46.00	21.31	AV	L1	PASS
11	3.2235	24.07	10.31	34.38	56.00	21.62	Qp	L1	PASS
12	3.2235	13.51	10.31	23.82	46.00	22.18	AV	L1	PASS

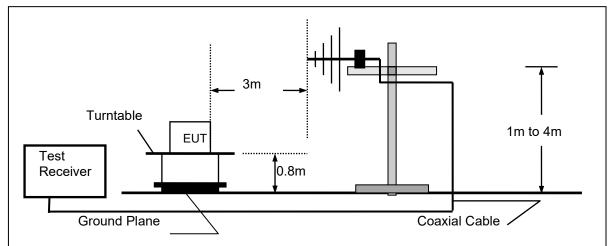
Note:1. Result (dBµV) = Reading (dBµV) + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

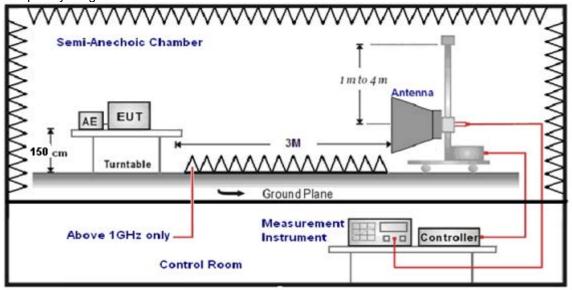
Report No.: GTS20211011003-1-1



2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).


4.2 Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector				
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP				
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP				
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP				
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak				

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

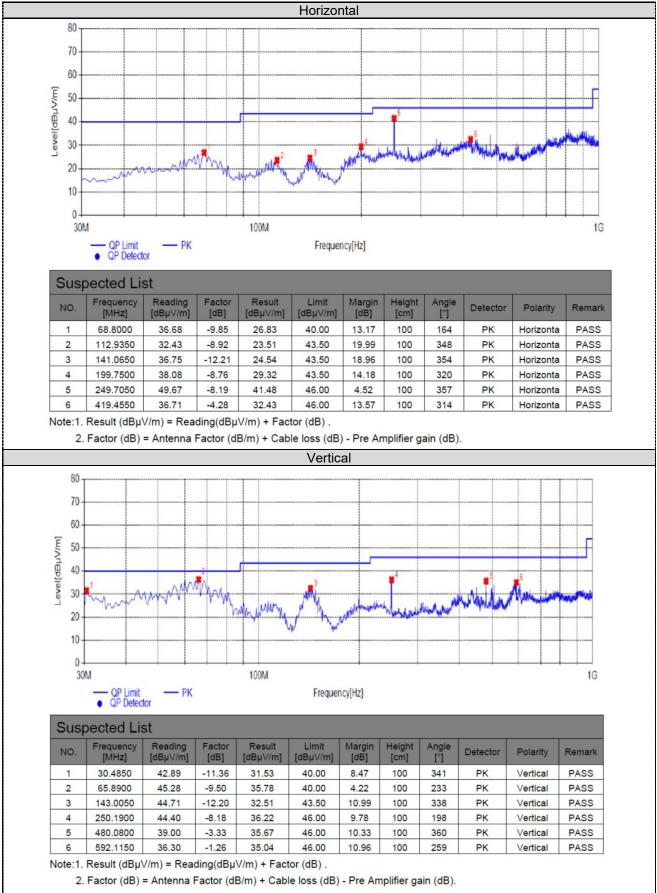
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission

Unwanted emissions that fall into restricted bands shall comply with the limits specified in RSS-Gen; and Unwanted emissions that do not fall within the restricted frequency bands shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen.


Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark:

- 1. We measured Radiated Emission at GFSK , $\pi/4$ DQPSK and 8DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- 2. For below 1GHz testing recorded worst at GFSK DH5 middle channel.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

For 1GHz to 25GHz

Note: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported. GFSK (above 1GHz)

GFSK (above 1GHz)												
Freque	Frequency(MHz):		2402		Polarity:		HORIZONTAL					
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)			
4804.00	59.03	PK	74	14.97	57.13	31.42	6.98	36.5	1.9			
4804.00	42.94	AV	54	11.06	41.04	31.42	6.98	36.5	1.9			
7206.00	55.57	PK	74	18.43	44.97	37.03	8.87	35.3	10.6			
7206.00	41.83	AV	54	12.17	31.23	37.03	8.87	35.3	10.6			

Freque	ncy(MHz)	:	24	2402 Polarity: VERTIC		Polarity:		Polarity: VERTICAL	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	59.48	PK	74	14.52	57.58	31.42	6.98	36.5	1.9
4804.00	43.19	AV	54	10.81	41.29	31.42	6.98	36.5	1.9
7206.00	55.76	PK	74	18.24	45.16	37.03	8.87	35.3	10.6
7206.00	42.21	AV	54	11.79	31.61	37.03	8.87	35.3	10.6

Freque	Frequency(MHz):		2441		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	58.99	PK	74	15.01	56.93	30.98	7.58	36.5	2.06
4882.00	42.64	AV	54	11.36	40.58	30.98	7.58	36.5	2.06
7323.00	55.74	PK	74	18.26	44.82	37.66	8.56	35.3	10.92
7323.00	41.68	AV	54	12.32	30.76	37.66	8.56	35.3	10.92

Frequency(MHz):		2441		Polarity:		VERTICAL			
Frequency (MHz)	Le	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	59.38	PK	74	14.62	57.32	30.98	7.58	36.5	2.06
4882.00	43.61	AV	54	10.39	41.55	30.98	7.58	36.5	2.06
7323.00	56.68	PK	74	17.32	45.76	37.66	8.56	35.3	10.92
7323.00	41.81	AV	54	12.19	30.89	37.66	8.56	35.3	10.92

Frequency(MHz):		2480		Polarity:		HORIZONTAL		NL	
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	59.49	PK	74	14.51	56.42	31.47	7.8	36.2	3.07
4960.00	42.24	AV	54	11.76	39.17	31.47	7.8	36.2	3.07
7440.00	55.77	PK	74	18.23	44.03	38.32	8.72	35.3	11.74
7440.00	41.48	PK	54	12.52	29.74	38.32	8.72	35.3	11.74

Frequency(MHz):		2480		Polarity:		VERTICAL			
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	59.81	PK	74	14.19	56.74	31.47	7.8	36.2	3.07
4960.00	43.83	AV	54	10.17	40.76	31.47	7.8	36.2	3.07
7440.00	56.23	PK	74	17.77	44.49	38.32	8.72	35.3	11.74
7440.00	41.29	PK	54	12.71	29.55	38.32	8.72	35.3	11.74

Report No.: GTS20211011003-1-1

REMARKS:

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m) Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier Margin value = Limit value- Emission level. -- Mean the PK detector measured value is below average limit. The other emission levels were very low against the limit. 1. 2. 3. 4. 5.

Results of Band Edges Test (Radiated)

Note: GFSK ,Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

				GFS	K				
Freque	ncy(MHz)	:	24	02	Pola	arity:	н	IORIZONTA	NL
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	57.70	PK	74	16.30	63.11	27.49	3.32	36.22	-5.41
2390.00	39.18	AV	54	14.82	44.59	27.49	3.32	36.22	-5.41
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	57.87	PK	74	16.13	63.28	27.49	3.32	36.22	-5.41
2390.00	39.28	AV	54	14.72	44.69	27.49	3.32	36.22	-5.41
Freque	ncy(MHz)	:	2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Le ^v (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	57.34	PK	74	16.66	62.85	27.45	3.38	36.34	-5.51
2483.50	39.22	AV	54	14.78	44.73	27.45	3.38	36.34	-5.51
Freque	ncy(MHz)	:	24	80	Pola	arity:	rity: VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	57.46	ΡK	74	16.54	62.97	27.45	3.38	36.34	-5.51
2483.50 REMARKS:	39.34	AV	54	14.66	44.85	27.45	3.38	36.34	-5.51

 REMARKS:
 1.
 Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)

 2.
 Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

 3.
 Margin value = Limit value- Emission level.

 4.
 -- Mean the PK detector measured value is below average limit.

4.3 Maximum Peak Output Power

<u>Limit</u>

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the powersensor.

Test Configuration

Test Results

Туре	Channel	Output power (dBm)	Limit (dBm)	Result	
	00	6.005			
GFSK	39	6.024	20.97	Pass	
	78	5.973			
	00	6.406			
π/4DQPSK	39	6.429	20.97	Pass	
	78	6.241			
	00	6.301			
8DPSK	39	6.422	20.97	Pass	
	78	6.183			

Note: 1.The test results including the cable lose.

4.4 20dB Bandwidth and 99% Bandwidth

<u>Limit</u>

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

EUT	SPECTRUM ANALYZER
EUT	

Test Results

Modulation	Channel	20dB bandwidth (MHz)	99% bandwidth (MHz)	Result
	CH00	0.6748	0.74507	
GFSK	CH39	0.6635	0.73828	
	CH78	0.6708	0.73377	
	CH00	1.162	1.0868	
π/4DQPSK	CH39	1.166	1.0866	Pass
	CH78	1.163	1.0885	
	CH00	1.155	1.0744	
8DPSK	CH39	1.163	1.0768	
	CH78	1.111	1.0735	

4.5 Frequency Separation

<u>LIMIT</u>

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

FUT	SPECTRUM
LUI	ANALYZER

TEST RESULTS

Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result	
GFSK	CH39	1.000	25KHz or 2/3*20dB	Pass	
GFSK	CH40	1.000	bandwidth	Fass	
π/4DQPSK	CH39	1.000	25KHz or 2/3*20dB	Pass	
II/4DQF3K	CH40	1.000	bandwidth	Fass	
0000//	CH39	1.000	25KHz or 2/3*20dB	Daga	
8DPSK	CH40	1.000	bandwidth	Pass	

Note:

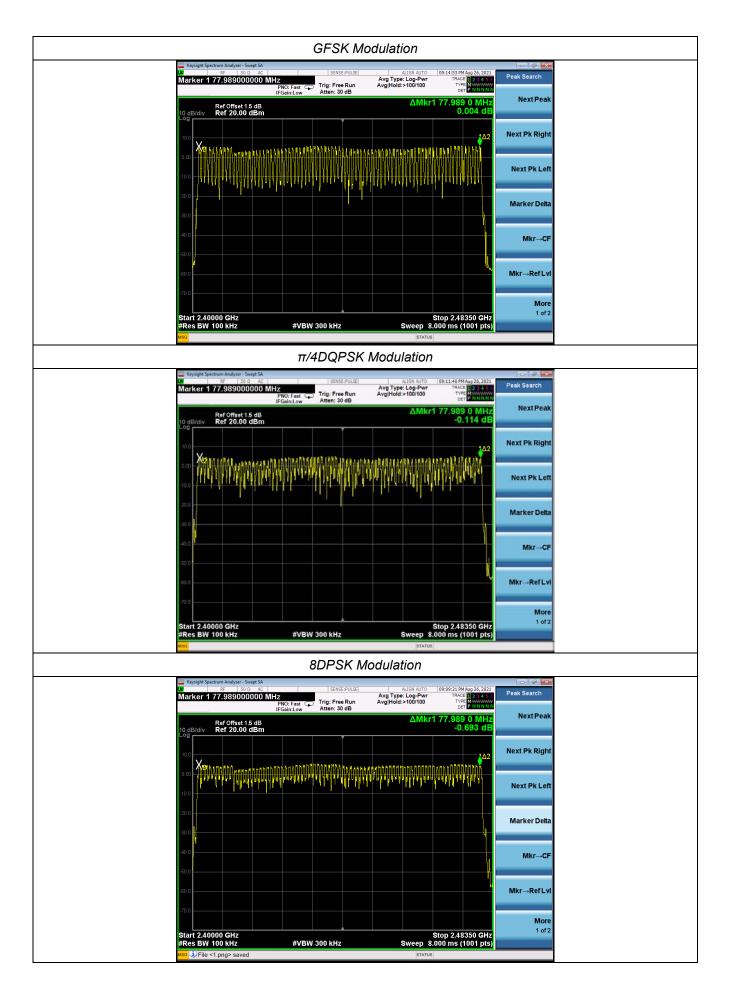
We have tested all mode at high, middle and low channel, and recorded worst case at middle

4.6 Number of hopping frequency

<u>Limit</u>

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure


The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration

Test Results

Modulation	Number of Hopping Channel	Limit	Result
GFSK	79		
π/4DQPSK	79	≥15	Pass
8DPSK	79		

4.7 Time of Occupancy (Dwell Time)

<u>Limit</u>

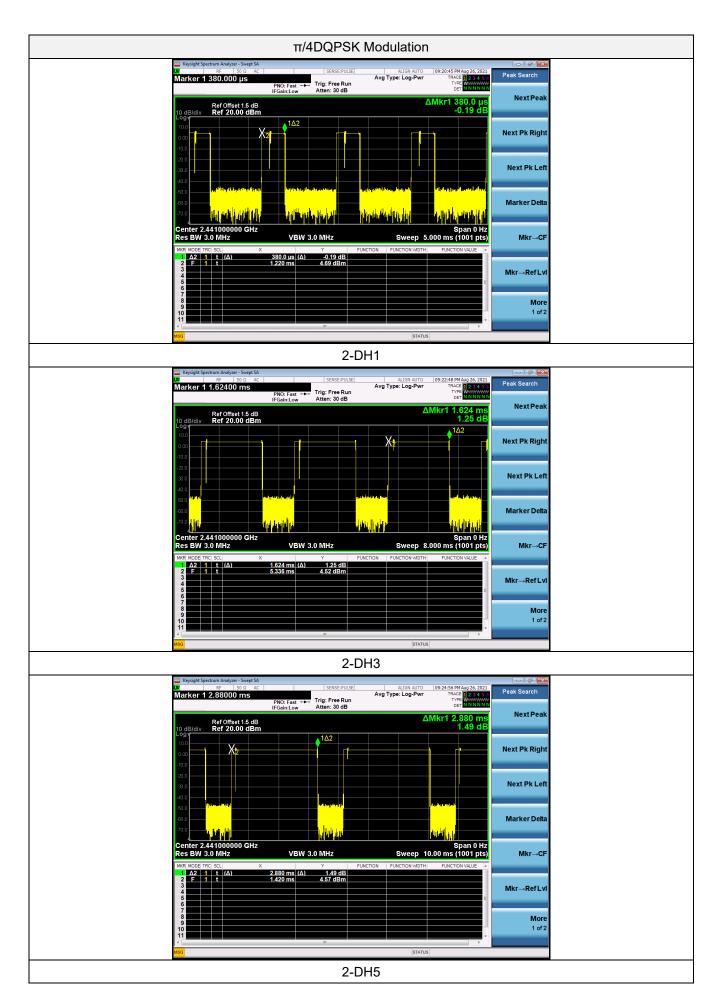
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

Test Configuration

EUT	SPECTRUM ANALYZER
-----	----------------------


Test Results

Modulation	Packet	Pulse time (ms)	Dwell time (s)	Limit (s)	Result	
	DH1	0.380	0.122			
GFSK	DH3	1.648	0.264	0.40	Pass	
	DH5	2.890	0.308			
	2-DH1	0.380	0.122			
π/4DQPSK	2-DH3	1.624	0.260	0.40	Pass	
	2-DH5	2.880	0.307			
	2-DH1	0.390	0.125			
8DPSK	2-DH3	1.616	0.259	0.40	Pass	
	2-DH5	2.860	0.305			

Note:

- 1. We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.
- Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1 Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH3 Dwell time=Pulse time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second for DH5, 2-DH5, 3-DH5

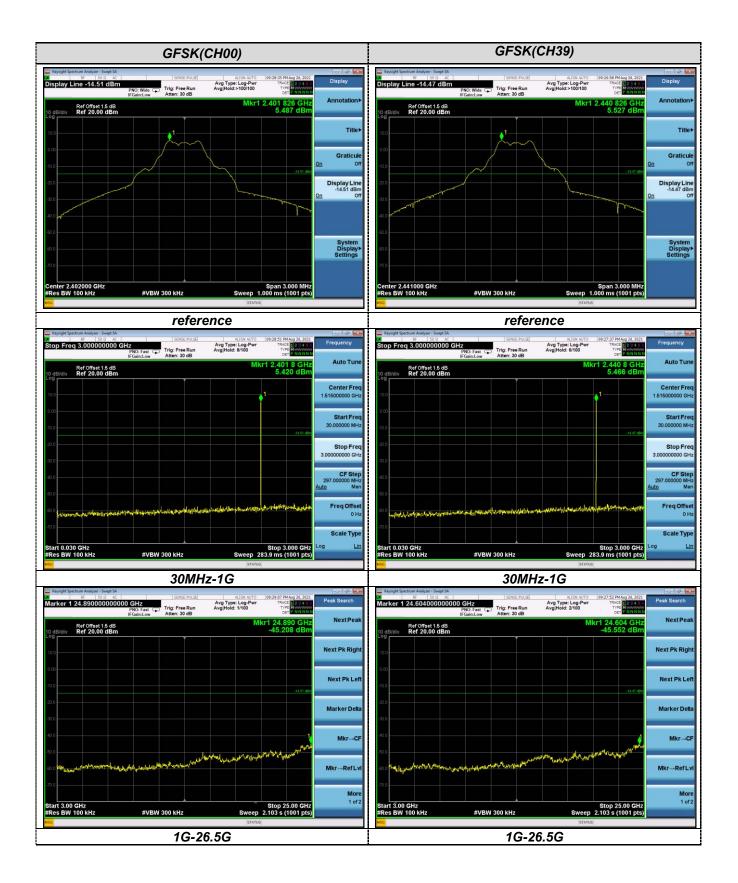
4.8 Out-of-band Emissions

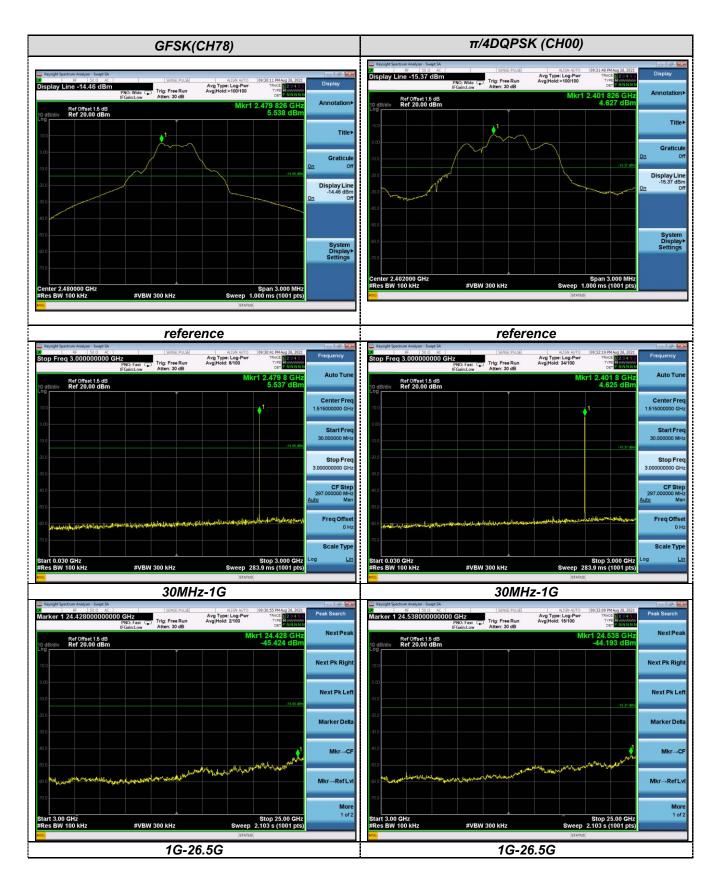
<u>Limit</u>

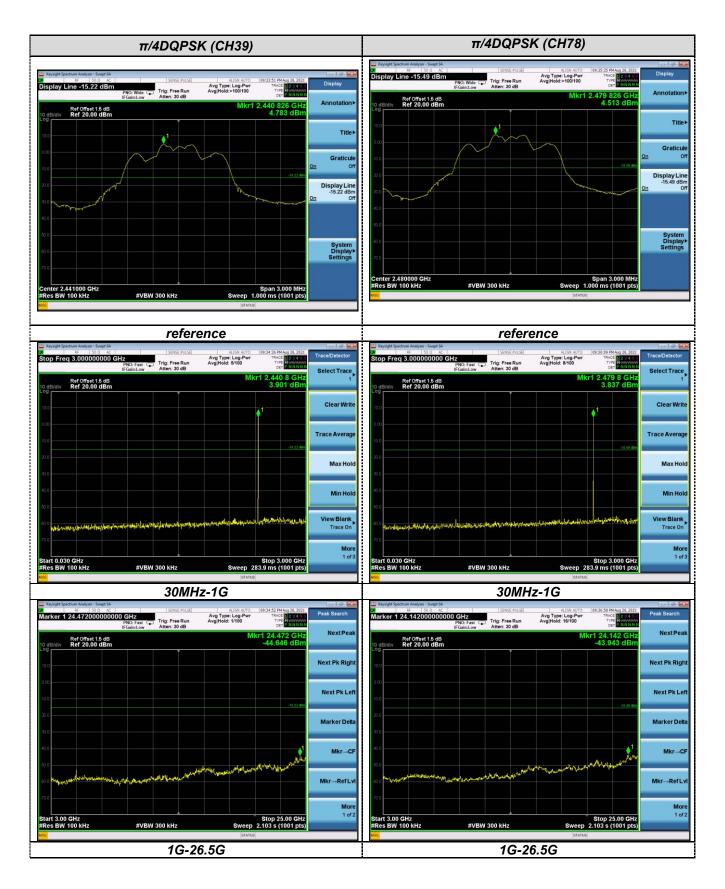
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

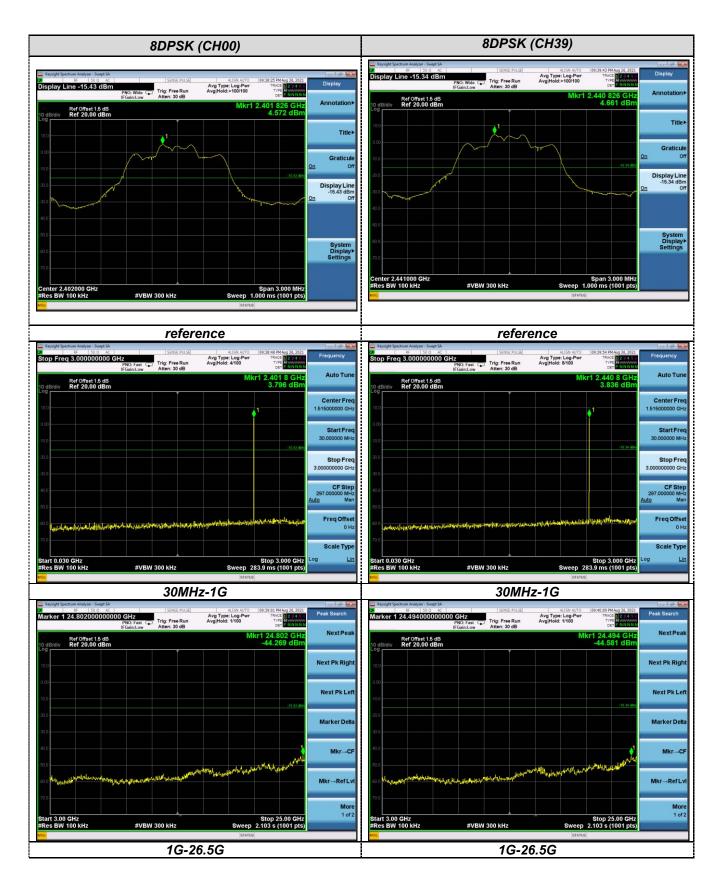
<u>Test Procedure</u>

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector , and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

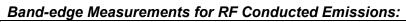

Test Configuration

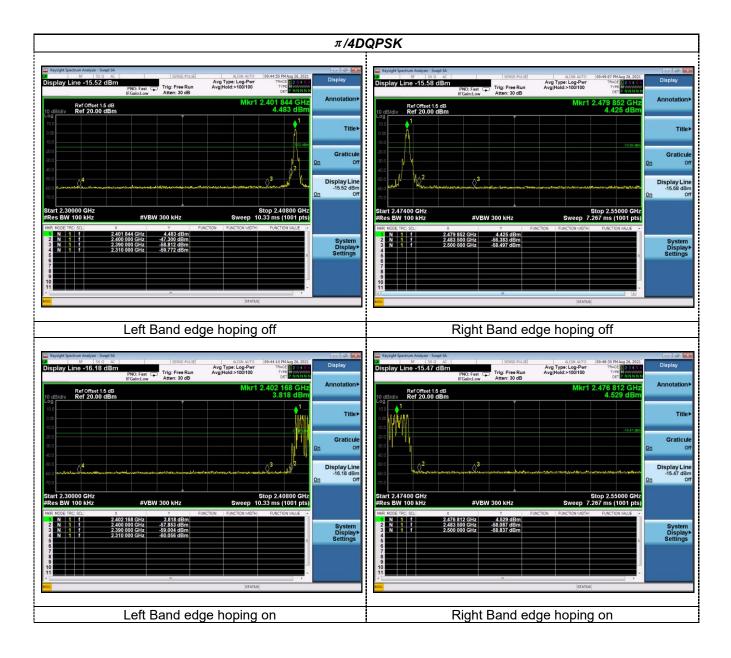


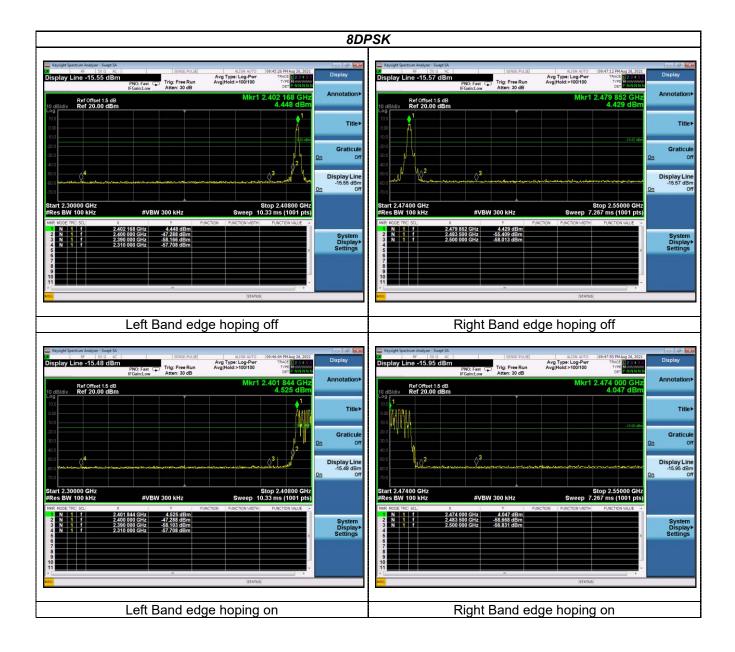

<u>Test Results</u>


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5







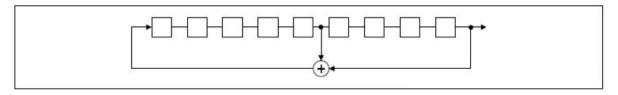
GF	SK	
Krywydd Sjentown Andryger Swegt SA Display Line -14.55d dBm SENSE PLCE All on diffice (or performed and participation of the performance of the p	Report Spectrum Analyzer - Sweet SA. Align Surger SA. Display Line -14.67 dBm Processor of the state of the st	
Left Band edge hoping off	Right Band edge hoping off	
Knychi Spectrum Andrager - Swell Sin Sinks Pructi Allow Arro Devize Prvage 2, 201 Display Display Line - 14, 58 dBm PHC Face Trig: Free Run Arg Type: Log-Pwr Arg Type: L	Knycki fijestum Auger - Serget A. Auser Anger - Serget A. Bisplay Line -14.49 dBm PRO; Fait (***) Tig: Free Run Atter: 30 dB Avg Type: Log-Rwr AvgType: Log-Rwr Atter: 30 dB Tig: Free Run AvgType: Log-Rwr AvgType: Log-Rwr Atter: 30 dB Tig: Free Run AvgType: Log-Rwr AvgType: Log-Rwr AvgTy	
Left Band edge hoping on	Right Band edge hoping on	

Report No.: GTS20211011003-1-1

Report No.: GTS20211011003-1-1

4.9 Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:

0	2	4	6	62 64	78 1	73 75 77

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

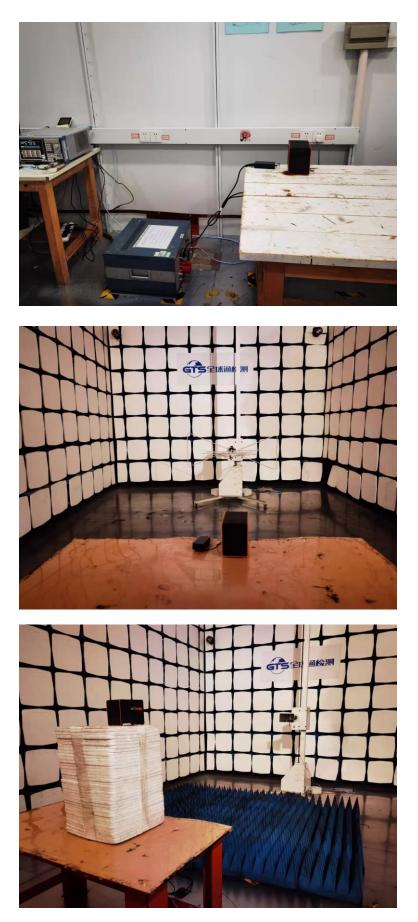
4.10 Antenna Requirement

Standard Applicable

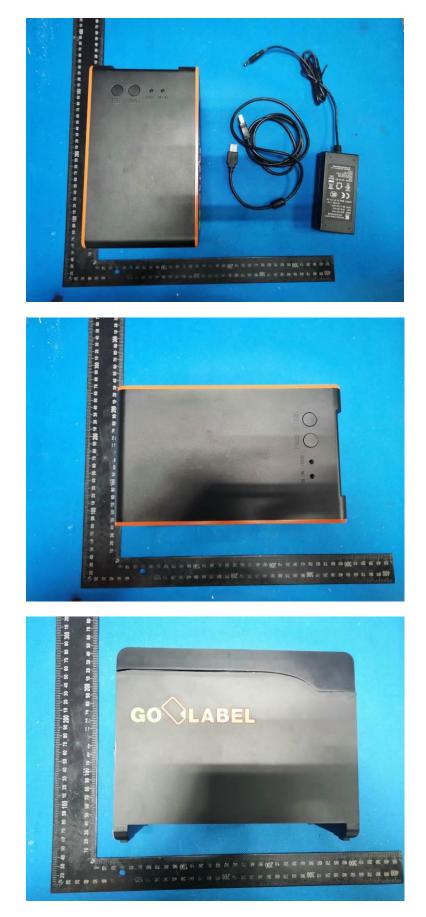
According to RSS-GEN Section 6.7:

As per RSP-100, each applicant for equipment certification must provide a list of all antenna types that maybe used with the transmitter, indicating the maximum permissible antenna gain (in dBi).

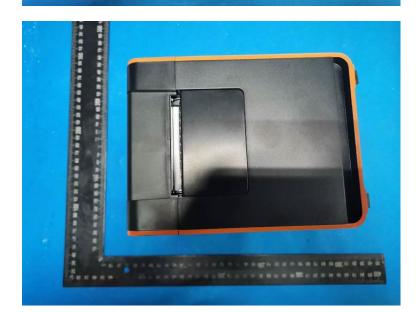
When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer. The test report shall state the RF power, output power setting and spurious emission measurements, including the antenna type used.


Refer to statement below for compliance

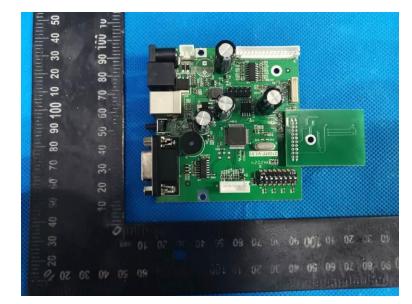
The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.


Antenna Connected Construction

The maximum gain of antenna was 2.00 dBi.


5 Test Setup Photos of the EUT

6 Photos of the EUT



0 20 20 10 20 20 40 20 20 10 200 20 20

6



