

Intertek 731 Enterprise Drive Lexington, KY 40510

Tel 859 226 1000 Fax 859 226 1040

www.intertek.com

# Avery Dennison Retail Information Services, LLC. SAR TEST REPORT

#### SCOPE OF WORK

SPECIFIC ABSORBTION RATE - PATHFINDER 6059

**REPORT NUMBER** 103831188LEX-003

**ISSUE DATE** 

7/9/2019

**PAGES** 67

DOCUMENT CONTROL NUMBER Non-Specific EMC Report Shell Rev. December 2017 © 2017 INTERTEK





## SPECIFIC ABSORBTION RATE TEST REPORT

Report Number: 103831188LEX-003 Project Number: G103831188

Report Issue Date: 7/9/2019

Product Name: Pathfinder 6059

Standards: FCC Part 2.1093

RSS-102 Issue 5

Tested by:

Intertek Testing Services NA, Inc. 731 Enterprise Drive Lexington, KY 40510

USA

Client:

Avery Dennison Retail Information Services, LLC. 170 Monarch Lane

Miamisburg, OH 45342-3638

USA

Report prepared by

Brow C. layt

Bryan Taylor, Team Leader

Report reviewed by

James T. Soduet

James Sudduth, Senior Staff Engineer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.



#### TABLE OF CONTENTS

| 1   | INTRODUCTION4                         |
|-----|---------------------------------------|
| 2   | TEST SITE DESCRIPTION                 |
| 3   | CLIENT INFORMATION                    |
| 4   | PRODUCT DESCRIPTION                   |
| 5   | SYSTEM VERIFICATION                   |
| 6   | EVALUATION PROCEDURES                 |
| 7   | CRITERIA                              |
| 8   | TEST CONFIGURATION                    |
| 9   | CONDUCTED OUTPUT POWER                |
| 10  | TEST RESULTS                          |
| 11  | SAR DATA:                             |
| 12  | SIMULTANEOUS TRANSMISSION RESULTS41   |
| 1.0 | REFERENCES42                          |
| APP | ENDIX A – SYSTEM VALIDATION SUMMARY43 |
| APP | ENDIX B – WORST CASE SAR PLOTS44      |
| APP | ENDIX C – DIPOLE VALIDATION PLOTS     |



#### 1 INTRODUCTION

At the request of Avery Dennison Retail Information Services, LLC. the Pathfinder 6059 was evaluated for SAR in accordance with the requirements for FCC Part 2.1093 and RSS-102 Issue 5. Testing was performed in accordance with IEEE Std 1528:2013, IEC62209-2:2010, and the Office of Engineering and Technology KDB 447498. Testing was performed at the Intertek facility in Lexington, Kentucky.

For the evaluation, the dosimetric assessment system DASY52 was used. The total uncertainty for the evaluation of the spatial peak SAR values averaged over a cube of 1g tissue mass had been assessed for this system to be  $\pm$ 22.2% from 300MHz – 3GHz and 24.6% from 3GHz – 6GHz.

The Pathfinder 6059 was tested at the maximum output power measured by Intertek. Maximum output power measurements are tabulated under Section 10 Test Results. The maximum spatial peak SAR value for the sample device averaged over 1g (for body worn mode) and 10g (for hand held mode) is shown below.

Based on the worst-case data presented above, the Pathfinder 6059 was found to be **compliant** with the 1.6 W/kg and 4W/kg requirements for general population / uncontrolled exposure.

| Device Position | Transmit<br>Mode          | Separation<br>Distance | Frequency<br>(MHz) | Maximum<br>Conducted<br>Output<br>Power<br>(dBm) | Reported<br>SAR (1g)<br>(mW/g) | Limit<br>(W/kg) |
|-----------------|---------------------------|------------------------|--------------------|--------------------------------------------------|--------------------------------|-----------------|
| Top of Display  | 2.4Ghz<br>WiFi<br>802.11b | 0mm                    | 2437MHz            | 20.5dBm                                          | 0.0492mW/g                     | 1.6mW/g         |
| Top of Display  | 5GHz<br>WiFi<br>802.11n   | 0mm                    | 5580MHz            | 20.5dBm                                          | 0.5093mW/g                     | 1.6mW/g         |
| Top of Display  | Bluetooth<br>GFSK         | 0mm                    | 2440MHz            | 12.5dBm                                          | 0.0105mW/g                     | 1.6mW/g         |
| Top of Display  | RFID                      | 0mm                    | 915MHz             | 23dBm                                            | 0.0105mW/g                     | 1.6mW/g         |

Table 1: Worst Case Reported SAR per Exposure Condition



## 2 TEST SITE DESCRIPTION

The SAR test site located at 731 Enterprise Drive, Lexington KY 40510 is comprised of the SPEAG model DASY 5.2 automated near-field scanning system, which is a package, optimized for dosimetric evaluation of mobile radios [3]. This system is installed in an ambient-free shielded chamber. The ambient temperature is controlled to 22.0  $\pm 2^{\circ}$ C. During the SAR evaluations, the RF ambient conditions are monitored continuously for signals that might interfere with the test results. The tissue simulating liquid is also stored in this area in order to keep it at the same constant ambient temperature as the room.

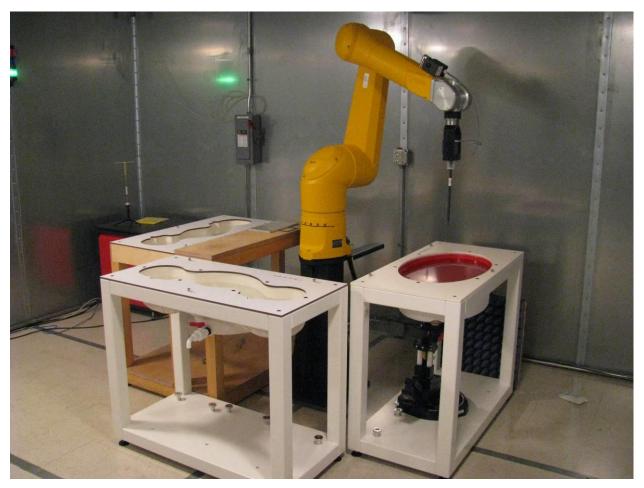



Figure 1: Intertek SAR Test Site



### 2.1 Measurement Equipment

The following major equipment/components were used for the SAR evaluation:

| Description            | Serial Number  | Manufacturer | Model      | Cal. Date  | Cal. Due   |
|------------------------|----------------|--------------|------------|------------|------------|
| SAR Probe              | 3516           | Speag        | EXDV3      | 11/12/2018 | 11/12/2019 |
| 900MHz Dipole          | 3014           | Speag        | D900V2     | 11/6/2018  | 11/6/2019  |
| 2450MHz Dipole         | 3013           | Speag        | D2450V2    | 11/5/2018  | 11/5/2019  |
| 5GHz Dipole            | 3053           | Speag        | D5GHzV2    | 11/9/2018  | 11/9/2019  |
| DAE                    | 358            | Speag        | DAE4       | 11/6/2018  | 11/6/2019  |
| Vector Signal          |                | Rohde &      |            |            |            |
| Generator              | 257708         | Schwarz      | SMBV100A   | 9/21/2018  | 9/21/2019  |
| Network Analyzer       | US39173983     | Agilent      | 8753ES     | 3/4/2019   | 3/4/2020   |
|                        |                | Rohde &      |            |            |            |
| Base Station Simulator | 3917           | Schwarz      | CMW500     | 9/26/2018  | 9/26/2019  |
|                        |                | Rohde &      |            |            |            |
| USB Power Sensor       | 100155         | Schwarz      | NRP-Z81    | 9/21/2018  | 9/21/2019  |
|                        |                | Rohde &      |            |            |            |
| USB Power Sensor       | 100705         | Schwarz      | NRP-Z51    | 9/21/2018  | 9/21/2019  |
| Dielectric Probe Kit   | 1111           | Speag        | DAK-3.5    | 11/6/2018  | 11/6/2019  |
|                        |                | Rohde &      |            |            |            |
| Spectrum Analyzer      | 3099           | Schwarz      | FSP7       | 9/20/2018  | 9/20/2019  |
|                        |                |              | QD 000 P40 |            |            |
| SAM Twin Phantom       | 1663           | Speag        | С          | NCR        | NCR        |
| Oval Flat Phantom ELI  |                |              | QD OVA 002 |            |            |
| 5.0                    | 1108           | Speag        | А          | NCR        | NCR        |
| 6-axis robot           | F11/5H1YA/A/01 | Staubli      | RX-90      | NCR        | NCR        |

Table 2: Test Equipment Used for SAR Evaluation

\*NCR – No Calibration Required



#### 2.2 Measurement Uncertainty

The Tables below includes the uncertainty budget suggested by the IEEE Std 1528-2013 and IEC62209-2: 2010 as determined by SPEAG for the DASY5 measurement System.

|                                  |                   | Prob. |               |                     |                            | Std.Unc. | Std.Unc. | (v <sub>i</sub> ) |
|----------------------------------|-------------------|-------|---------------|---------------------|----------------------------|----------|----------|-------------------|
| Error Description                | Uncertainty Value | Dist. | Div.          | c <sub>i</sub> (1g) | <i>c<sub>i</sub></i> (10g) | (1g)     | (10g)    | V <sub>eff</sub>  |
|                                  |                   |       | Measurement   | System              |                            |          |          |                   |
| Probe Calibration                | ±6.0%             | Ν     | 1             | 1                   | 1                          | ±6.0%    | ±6.0%    | ∞                 |
| Axial Isotropy                   | ±4.7%             | R     | √3            | 0.7                 | 0.7                        | ±1.9%    | ±1.9%    | ~                 |
| Hemispherical Isotropy           | ±9.6%             | R     | √3            | 0.7                 | 0.7                        | ±3.9%    | ±3.9%    | ~                 |
| Boundary Effect                  | ±1.0%             | R     | √3            | 1                   | 1                          | ±0.6%    | ±0.6%    | ~                 |
| Linearity                        | ±4.7%             | R     | √3            | 1                   | 1                          | ±2.7%    | ±2.7%    | ~                 |
| System Detection Limits          | ±1.0%             | R     | √3            | 1                   | 1                          | ±0.6%    | ±0.6%    | ~                 |
| Modulation Response              | ±2.4%             | R     | √3            | 1                   | 1                          | ±1.4%    | ±1.4%    | ~                 |
| Readout Electronics              | ±0.3%             | N     | 1             | 1                   | 1                          | ±0.3%    | ±0.3%    | ~                 |
| Response Time                    | ±0.8%             | R     | √3            | 1                   | 1                          | ±0.5%    | ±0.5%    | ~                 |
| Integration Time                 | ±2.6%             | R     | √3            | 1                   | 1                          | ±1.5%    | ±1.5%    | ~                 |
| RF Ambient Noise                 | ±3.0%             | R     | √3            | 1                   | 1                          | ±1.7%    | ±1.7%    | ~                 |
| RF Ambient Reflections           | ±3.0%             | R     | √3            | 1                   | 1                          | ±1.7%    | ±1.7%    | ~                 |
| Probe Positioner                 | ±0.4%             | R     | √3            | 1                   | 1                          | ±0.2%    | ±0.2%    | ~                 |
| Probe Positioning                | ±2.9%             | R     | √3            | 1                   | 1                          | ±1.7%    | ±1.7%    | ~                 |
| Max. SAR Eval.                   | ±2.0%             | R     | √3            | 1                   | 1                          | ±1.2%    | ±1.2%    | ~                 |
|                                  |                   |       | Test sample R | elated              |                            |          |          |                   |
| Device Positioning               | ±2.9%             | Ν     | 1             | 1                   | 1                          | ±2.9%    | ±2.9%    | 145               |
| Device Holder                    | ±3.6%             | N     | 1             | 1                   | 1                          | ±3.6%    | ±3.6%    | 5                 |
| Power Drift                      | ±5.0%             | R     | √3            | 1                   | 1                          | ±2.9%    | ±2.9%    | ~                 |
| Power Scaling                    | ±0.0%             | R     | √3            | 1                   | 1                          | ±0%      | ±0%      | ~                 |
|                                  |                   |       | Phantom and   | Setup               |                            |          |          |                   |
| Phantom Uncertainty              | ±6.1%             | R     | √3            | 1                   | 1                          | ±3.5%    | ±3.5%    | ~                 |
| SAR Correction                   | ±1.9%             | R     | √3            | 1                   | 0.84                       | ±1.1%    | ±0.9%    | ∞                 |
| Liquid Conductivity (mea.)       | ±2.5%             | R     | √3            | 0.78                | 0.71                       | ±1.1%    | ±1.0%    | ∞                 |
|                                  |                   |       | 1             |                     |                            |          |          |                   |
| Liquid Permittivity(mea.)        | ±2.5%             | R     | √3            | 0.26                | 0.26                       | ±0.3%    | ±0.4%    | ~                 |
| Temp unc Conductivity            | ±3.4%             | R     | √3            | 0.78                | 0.71                       | ±1.5%    | ±1.4%    | ~                 |
| Temp unc Permittivity            | ±0.4%             | R     | √3            | 0.23                | 0.26                       | ±0.1%    | ±0.1%    | ∞                 |
| Combined Standard<br>Uncertainty |                   |       |               |                     |                            | ±11.2%   | ±11.1%   | 361               |
| Expanded STD Uncertainty         |                   |       |               |                     |                            | ±22.3%   | ±22.2%   |                   |

#### Notes:

Worst Case uncertainty budget for DASY5 assessed according to IEEE 1528-2013. The budget is valid for the frequency range 300 MHz - 3 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerably smaller.



|                                  |                   | Prob. |             |                     |                             | Std.Unc. | Std.Unc. | (v <sub>i</sub> )                       |
|----------------------------------|-------------------|-------|-------------|---------------------|-----------------------------|----------|----------|-----------------------------------------|
| Error Description                | Uncertainty Value | Dist. | Div.        | c <sub>i</sub> (1g) | <i>c</i> <sub>i</sub> (10g) | (1g)     | (10g)    | (vi)<br>V <sub>eff</sub>                |
|                                  |                   |       | Measureme   | nt System           |                             |          |          |                                         |
| Probe Calibration                | ±6.55%            | Ν     | 1           | 1                   | 1                           | ±6.55%   | ±6.55%   | ~                                       |
| Axial Isotropy                   | ±4.7%             | R     | √3          | 0.7                 | 0.7                         | ±1.9%    | ±1.9%    | ~                                       |
| Hemispherical Isotropy           | ±9.6%             | R     | √3          | 0.7                 | 0.7                         | ±3.9%    | ±3.9%    | ~                                       |
| Boundary Effect                  | ±2.0%             | R     | √3          | 1                   | 1                           | ±1.2%    | ±1.2%    | ~                                       |
| Linearity                        | ±4.7%             | R     | √3          | 1                   | 1                           | ±2.7%    | ±2.7%    | ~                                       |
| System Detection Limits          | ±1.0%             | R     | √3          | 1                   | 1                           | ±0.6%    | ±0.6%    | ~                                       |
| Modulation Response              | ±2.4%             | R     | √3          | 1                   | 1                           | ±1.4%    | ±1.4%    | ~                                       |
| Readout Electronics              | ±0.3%             | N     | 1           | 1                   | 1                           | ±0.3%    | ±0.3%    | ~                                       |
| Response Time                    | ±0.8%             | R     | √3          | 1                   | 1                           | ±0.5%    | ±0.5%    | ~                                       |
| Integration Time                 | ±2.6%             | R     | √3          | 1                   | 1                           | ±1.5%    | ±1.5%    | ~                                       |
| RF Ambient Noise                 | ±3.0%             | R     | √3          | 1                   | 1                           | ±1.7%    | ±1.7%    | ~                                       |
| RF Ambient Reflections           | ±3.0%             | R     | √3          | 1                   | 1                           | ±1.7%    | ±1.7%    | ~                                       |
| Probe Positioner                 | ±0.8%             | R     | √3          | 1                   | 1                           | ±0.5%    | ±0.5%    | ~                                       |
| Probe Positioning                | ±6.7%             | R     | √3          | 1                   | 1                           | ±3.9%    | ±3.9%    | ~                                       |
| Max. SAR Eval.                   | ±4.0%             | R     | √3          | 1                   | 1                           | ±2.3%    | ±2.3%    | ~                                       |
|                                  |                   |       | Test sample | Related             |                             |          |          |                                         |
| Device Positioning               | ±2.9%             | Ν     | 1           | 1                   | 1                           | ±2.9%    | ±2.9%    | 145                                     |
| Device Holder                    | ±3.6%             | N     | 1           | 1                   | 1                           | ±3.6%    | ±3.6%    | 5                                       |
| Power Drift                      | ±5.0%             | R     | √3          | 1                   | 1                           | ±2.9%    | ±2.9%    | ~                                       |
| Power Scaling                    | ±0.0%             | R     | √3          | 1                   | 1                           | ±0%      | ±0%      | ∞                                       |
|                                  |                   |       | Phantom ar  | nd Setup            |                             |          |          |                                         |
| Phantom Uncertainty              | ±6.6%             | R     | √3          | 1                   | 1                           | ±3.8%    | ±3.8%    | ~                                       |
| SAR Correction                   | ±1.9%             | R     | √3          | 1                   | 0.84                        | ±1.1%    | ±0.9%    | ~                                       |
| Liquid Conductivity (mea.)       | ±2.5%             | R     | √3          | 0.78                | 0.71                        | ±1.1%    | ±1.0%    | ∞                                       |
| Liquid Permittivity(mea.)        | ±2.5%             | R     | √3          | 0.26                | 0.26                        | ±0.3%    | ±0.4%    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| Temp unc Conductivity            | ±3.4%             | R     | √3          | 0.78                | 0.71                        | ±1.5%    | ±1.4%    | ∞                                       |
| Temp unc Permittivity            | ±0.4%             | R     | √3          | 0.23                | 0.26                        | ±0.1%    | ±0.1%    | ~                                       |
| Combined Standard<br>Uncertainty |                   |       |             |                     |                             | ±12.3%   | ±12.2%   | 748                                     |
| ,<br>Expanded STD Uncertainty    |                   | +     |             |                     |                             | ±24.6%   | ±24.5%   |                                         |

#### Notes.

Worst Case uncertainty budget for DASY5 assessed according to IEEE 1528-2013. The budget is valid for the frequency range 3 GHz – 6 GHz and represents a worst-case analysis. Probe calibration error reflects uncertainty of the EX3D probe. For specific tests and configurations, the uncertainty could be considerably smaller.



|                                  |                   | Prob. |             |                     |                            | Std.Unc. | Std.Unc. | (v <sub>i</sub> )        |
|----------------------------------|-------------------|-------|-------------|---------------------|----------------------------|----------|----------|--------------------------|
| Error Description                | Uncertainty Value | Dist. | Div.        | c <sub>i</sub> (1g) | <i>c<sub>i</sub></i> (10g) | (1g)     | (10g)    | (vi)<br>V <sub>eff</sub> |
|                                  |                   |       | Measureme   | nt System           |                            |          |          |                          |
| Probe Calibration                | ±6.55%            | Ν     | 1           | 1                   | 1                          | ±6.55%   | ±6.55%   | ~                        |
| Axial Isotropy                   | ±4.7%             | R     | √3          | 0.7                 | 0.7                        | ±1.9%    | ±1.9%    | ~                        |
| Hemispherical Isotropy           | ±9.6%             | R     | √3          | 0.7                 | 0.7                        | ±3.9%    | ±3.9%    | ~                        |
| Boundary Effect                  | ±2.0%             | R     | √3          | 1                   | 1                          | ±1.2%    | ±1.2%    | ~                        |
| Linearity                        | ±4.7%             | R     | √3          | 1                   | 1                          | ±2.7%    | ±2.7%    | ~                        |
| System Detection Limits          | ±1.0%             | R     | √3          | 1                   | 1                          | ±0.6%    | ±0.6%    | ~                        |
| Modulation Response              | ±2.4%             | R     | √3          | 1                   | 1                          | ±1.4%    | ±1.4%    | ~                        |
| Readout Electronics              | ±0.3%             | N     | 1           | 1                   | 1                          | ±0.3%    | ±0.3%    | ~                        |
| Response Time                    | ±0.8%             | R     | √3          | 1                   | 1                          | ±0.5%    | ±0.5%    | ~                        |
| Integration Time                 | ±2.6%             | R     | √3          | 1                   | 1                          | ±1.5%    | ±1.5%    | ~                        |
| RF Ambient Noise                 | ±3.0%             | R     | √3          | 1                   | 1                          | ±1.7%    | ±1.7%    | ~                        |
| RF Ambient Reflections           | ±3.0%             | R     | √3          | 1                   | 1                          | ±1.7%    | ±1.7%    | ~                        |
| Probe Positioner                 | ±0.8%             | R     | √3          | 1                   | 1                          | ±0.5%    | ±0.5%    | ~                        |
| Probe Positioning                | ±6.7%             | R     | √3          | 1                   | 1                          | ±3.9%    | ±3.9%    | ~                        |
| Post-Processing                  | ±4.0%             | R     | √3          | 1                   | 1                          | ±2.3%    | ±2.3%    | ∞                        |
|                                  |                   |       | Test sample | Related             |                            |          |          |                          |
| Device Positioning               | ±2.9%             | Ν     | 1           | 1                   | 1                          | ±2.9%    | ±2.9%    | 145                      |
| Device Holder                    | ±3.6%             | N     | 1           | 1                   | 1                          | ±3.6%    | ±3.6%    | 5                        |
| Power Drift                      | ±5.0%             | R     | √3          | 1                   | 1                          | ±2.9%    | ±2.9%    | ∞                        |
| Power Scaling                    | ±0.0%             | R     | √3          | 1                   | 1                          | ±0%      | ±0%      | ~                        |
|                                  |                   |       | Phantom ar  | nd Setup            |                            |          |          |                          |
| Phantom Uncertainty              | ±7.9%             | R     | √3          | 1                   | 1                          | ±4.6%    | ±4.6%    | ∞                        |
| SAR Correction                   | ±1.9%             | R     | √3          | 1                   | 0.84                       | ±1.1%    | ±0.9%    | ~                        |
| Liquid Conductivity (mea.)       | ±2.5%             | R     | √3          | 0.78                | 0.71                       | ±1.1%    | ±1.0%    | ~                        |
|                                  |                   |       |             |                     |                            |          |          |                          |
| Liquid Permittivity(mea.)        | ±2.5%             | R     | √3          | 0.26                | 0.26                       | ±0.3%    | ±0.4%    | ∞                        |
| Temp unc Conductivity            | ±3.4%             | R     | √3          | 0.78                | 0.71                       | ±1.5%    | ±1.4%    | ∞                        |
| Temp unc Permittivity            | ±0.4%             | R     | √3          | 0.23                | 0.26                       | ±0.1%    | ±0.1%    | ~                        |
| Combined Standard<br>Uncertainty |                   |       |             |                     |                            | ±12.5%   | ±12.5%   | 748                      |
| Expanded STD Uncertainty         |                   |       |             |                     |                            | ±25.1%   | ±25.0%   |                          |

#### Notes.

Worst Case uncertainty budget for DASY5 assessed according to IEC62209-2: 2010. The budget is valid for the frequency range 30MHz – 6 GHz and represents a worst-case analysis. Probe calibration error reflects uncertainty of the EX3D probe. For specific tests and configurations, the uncertainty could be considerably smaller.



#### **3** CLIENT INFORMATION

This product was tested at the request of the following:

|                       | Client Information                               |
|-----------------------|--------------------------------------------------|
| Client Name:          | Avery Dennison Retail Information Services, LLC. |
| Address:              | 170 Monarch Lane                                 |
|                       | Miamisburg, OH 45342-3638                        |
|                       | USA                                              |
| Contact:              | Michael Ouziel                                   |
| Telephone:            | (937) 865-2020                                   |
| Email:                | Michael.ouziel@averydennison.com                 |
|                       | Manufacturer Information                         |
| Manufacturer Name:    | Avery Dennison Retail Information Services, LLC. |
| Manufacturer Address: | 170 Monarch Lane                                 |
|                       | Miamisburg, OH 45342-3638                        |
|                       | USA                                              |

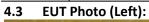


### 4 **PRODUCT DESCRIPTION**

|                                                                                                                                                                                                                                             | Equipment Under Test                              |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|--|--|--|--|--|
| Product Name                                                                                                                                                                                                                                | Pathfinder 6059                                   |  |  |  |  |  |  |  |
| Model Number                                                                                                                                                                                                                                | 6059                                              |  |  |  |  |  |  |  |
| Serial Number                                                                                                                                                                                                                               | FCC Test Sample                                   |  |  |  |  |  |  |  |
| Receive Date                                                                                                                                                                                                                                | 3/26/2019                                         |  |  |  |  |  |  |  |
| Test Start Date                                                                                                                                                                                                                             | 5/21/2019                                         |  |  |  |  |  |  |  |
| Test End Date                                                                                                                                                                                                                               | 5/31/2019                                         |  |  |  |  |  |  |  |
| Device Received Condition                                                                                                                                                                                                                   | Good                                              |  |  |  |  |  |  |  |
| Test Sample Type                                                                                                                                                                                                                            | Production                                        |  |  |  |  |  |  |  |
| Rated Voltage                                                                                                                                                                                                                               | 7.4VDC                                            |  |  |  |  |  |  |  |
| Radios Onboard                                                                                                                                                                                                                              | RFID, Bluetooth, WiFi                             |  |  |  |  |  |  |  |
| Operating Frequency Ranges                                                                                                                                                                                                                  | RFID:                                             |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                             | 902 – 928MHz                                      |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                             | Bluetooth:                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                             | 2.4 – 2.48GHz                                     |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                             | 2.4GHz WiFi:                                      |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                             | 2.4 – 2.473GHz                                    |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                             | 5GHz WiFi:                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                             | 5.15 – 5.35GHz                                    |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                             | 5.47 – 5.725GHz                                   |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                             | 5.725 – 5.85GHz                                   |  |  |  |  |  |  |  |
| Rated Frequency                                                                                                                                                                                                                             | NA – DC Powered                                   |  |  |  |  |  |  |  |
| Number of Phases                                                                                                                                                                                                                            | NA – DC Powered                                   |  |  |  |  |  |  |  |
| Descrip                                                                                                                                                                                                                                     | tion of Equipment Under Test (provided by client) |  |  |  |  |  |  |  |
| The product under test was the Pathfinder 6059 manufactured by Avery Dennison Retail Information Services,<br>LLC. The 6059 is a handheld battery operated scanner / label printer equipped with Bluetooth, WiFi, and RFID<br>capabilities. |                                                   |  |  |  |  |  |  |  |



## 4.1 EUT Photo (Top):






4.2 EUT Photo (Bottom):











## 4.4 EUT Photo (Right):





#### SYSTEM VERIFICATION 5

#### **System Validation**

Prior to the assessment, the system was verified to be within ±10% of the specifications by using the system validation kit. The system validation procedure tests the system against reference SAR values and the performance of probe, readout electronics and software. The test setup utilizes a phantom and reference dipole.



Figure 2: System Verification Setup



Table 3: Dipole Validations (1g)

|                         | Reference Dipole Validation |                    |         |               |                          |                            |                      |                           |           |  |  |  |  |  |
|-------------------------|-----------------------------|--------------------|---------|---------------|--------------------------|----------------------------|----------------------|---------------------------|-----------|--|--|--|--|--|
| Ambient<br>Temp<br>(ºC) | Fluid<br>Temp<br>(ºC)       | Frequency<br>(MHz) | Dipole  | Fluid<br>Type | Dipole<br>Power<br>Input | Cal.<br>Lab<br>SAR<br>(1g) | Measured<br>SAR (1g) | %<br>Error<br>SAR<br>(1g) | Date      |  |  |  |  |  |
| 23.2                    | 23.1                        | 2450               | D2450V2 | MSL2450       | 1W                       | 49.7                       | 52                   | 4.63                      | 5/20/2019 |  |  |  |  |  |
| 23.2                    | 23.1                        | 5200               | D5GHzV2 | MSL5GHz       | 1W                       | 73.00                      | 67.8                 | 7.12                      | 5/28/2019 |  |  |  |  |  |
| 23.2                    | 23.1                        | 5500               | D5GHzV2 | MSL5GHz       | 1W                       | 81.80                      | 83.3                 | 1.83                      | 5/28/2019 |  |  |  |  |  |
| 23.2                    | 23.1                        | 5800               | D5GHzV2 | MSL5GHz       | 1W                       | 76.80                      | 83.7                 | 8.98                      | 5/28/2019 |  |  |  |  |  |
| 23.2                    | 23.1                        | 900                | D900V2  | MSL900        | 1W                       | 11.00                      | 11                   | 0.00                      | 5/31/2019 |  |  |  |  |  |

## Table 4: Dipole Validations (10g)

|                         | Reference Dipole Validation |                    |         |               |                          |                             |                       |                            |           |  |  |  |  |
|-------------------------|-----------------------------|--------------------|---------|---------------|--------------------------|-----------------------------|-----------------------|----------------------------|-----------|--|--|--|--|
| Ambient<br>Temp<br>(ºC) | Fluid<br>Temp<br>(ºC)       | Frequency<br>(MHz) | Dipole  | Fluid<br>Type | Dipole<br>Power<br>Input | Cal.<br>Lab<br>SAR<br>(10g) | Measured<br>SAR (10g) | %<br>Error<br>SAR<br>(10g) | Date      |  |  |  |  |
| 23.2                    | 23.1                        | 2450               | D2450V2 | MSL2450       | 1W                       | 23.4                        | 23.5                  | 0.43                       | 5/20/2019 |  |  |  |  |
| 23.2                    | 23.1                        | 5200               | D5GHzV2 | MSL5GHz       | 1W                       | 20.40                       | 19.1                  | 6.37                       | 5/28/2019 |  |  |  |  |
| 23.2                    | 23.1                        | 5500               | D5GHzV2 | MSL5GHz       | 1W                       | 22.60                       | 21.8                  | 3.54                       | 5/28/2019 |  |  |  |  |
| 23.2                    | 23.1                        | 5800               | D5GHzV2 | MSL5GHz       | 1W                       | 21.30                       | 23.1                  | 8.45                       | 5/28/2019 |  |  |  |  |
| 23.2                    | 23.1                        | 900                | D900V2  | MSL900        | 1W                       | 7.09                        | 7.33                  | 3.39                       | 5/31/2019 |  |  |  |  |



## Measurement Uncertainty for System Validation

| Source of Uncertainty                    | Value(dB) | Probability<br>Distribution | Divisor | Ci     | u <sub>i</sub> (y) | (u <sub>i</sub> (y))^2 |
|------------------------------------------|-----------|-----------------------------|---------|--------|--------------------|------------------------|
| Measurement System                       |           |                             |         |        |                    |                        |
| Probe Calibration                        | 5.50      | n1                          | 1       | 1      | 5.50               | 30.250                 |
| Axial Isotropy                           | 4.70      | r                           | 1.732   | 0.7    | 2.71               | 7.364                  |
| Hemispherical Isotropy                   | 9.60      | r                           | 1.732   | 0.7    | 5.54               | 30.722                 |
| Boundary Effect                          | 1.00      | r                           | 1.732   | 1      | 0.58               | 0.333                  |
| Linearity                                | 4.70      | r                           | 1.732   | 1      | 2.71               | 7.364                  |
| System Detection Limits                  | 1.00      | r                           | 1.732   | 1      | 0.58               | 0.333                  |
| Readout Electronics                      | 0.30      | n1                          | 1       | 1      | 0.30               | 0.090                  |
| Response Time                            | 0.80      | r                           | 1.732   | 1      | 0.46               | 0.213                  |
| Integration Time                         | 2.60      | r                           | 1.732   | 1      | 1.50               | 2.253                  |
| RF Ambient Noise                         | 3.00      | r                           | 1.732   | 1      | 1.73               | 3.000                  |
| RF Ambient Reflections                   | 3.00      | r                           | 1.732   | 1      | 1.73               | 3.000                  |
| Probe Positioner                         | 0.40      | r                           | 1.732   | 1      | 0.23               | 0.053                  |
| Probe Positioning                        | 2.90      | r                           | 1.732   | 1      | 1.67               | 2.803                  |
| Max. SAR Eval.                           | 1.00      | r                           | 1.732   | 1      | 0.58               | 0.333                  |
| Dipole / Generator / Power Meter Related |           |                             |         |        |                    |                        |
| Dipole positioning                       | 2.90      | n1                          | 1       | 1      | 2.90               | 8.410                  |
| Dipole Calibration Uncertainty           | 0.68      | r                           | 1.732   | 1      | 0.39               | 0.154                  |
| Power Meter 1 Uncertainty (+20C to +25C) | 0.13      | n1                          | 1       | 2      | 0.13               | 0.017                  |
| Power Meter 2 Uncertainty (+20C to +25C) | 0.04      | n1                          | 1       | 3      | 0.04               | 0.002                  |
| Sig Gen VSWR Mismatch Error              | 1.80      | n1                          | 1       | 5      | 1.80               | 3.240                  |
| Sig Gen Resolution Error                 | 0.01      | n1                          | 1       | 6      | 0.01               | 0.000                  |
| Sig Gen Level Error                      | 0.90      | n1                          | 1       | 1      | 0.90               | 0.810                  |
| Phantom and Setup                        |           |                             |         |        |                    |                        |
| Phantom Uncertainty                      | 4.00      | r                           | 1.732   | 1      | 2.31               | 5.334                  |
| Liquid Conductivity (target)             | 5.00      | r                           | 1.732   | 0.43   | 2.89               | 8.334                  |
| Liquid Conductivity (meas.)              | 2.50      | n1                          | 1       | 0.43   | 2.50               | 6.250                  |
| Liquid Permittivity (target)             | 5.00      | r                           | 1.732   | 0.49   | 2.89               | 8.334                  |
| Liquid Permittivity (meas.)              | 2.50      | n1                          | 1       | 0.49   | 2.50               | 6.250                  |
| Combined Standard Uncertainty            |           | N1                          | 1       | 1      | 11.63              | 135.247                |
| Expanded Uncertainty                     |           | Normal k=                   | 2       |        | 23.26              |                        |
| Expanded Uncertainty                     | is        | 23.3                        | for     | Normal | k=                 | 2                      |



#### Tissue Simulating Liquid Description and Validation

The dielectric parameters were verified to be within 5% of the target values prior to assessment. The dielectric parameters ( $\epsilon_r$ ,  $\sigma$ ) are shown in Table 5. A recipe for the tissue simulating fluid used is shown in Table 6.

| Tissue<br>Type | Frequency<br>Measure<br>(MHz) | Dielectric<br>Constant<br>Target | Conductivity<br>Target | Dielectric<br>Constant<br>Measure | Imaginary<br>Part | Conductivity<br>Measure | Dielectric<br>%<br>Deviation | Conductivity<br>% Deviation |
|----------------|-------------------------------|----------------------------------|------------------------|-----------------------------------|-------------------|-------------------------|------------------------------|-----------------------------|
|                | 2400                          | 52.77                            | 1.95                   | 51.8                              | 14.2              | 1.89                    | 1.84                         | 2.84                        |
|                | 2450                          | 52.7                             | 1.95                   | 51.5                              | 14.6              | 1.99                    | 2.28                         | 1.98                        |
| 2450MSL        | 2480                          | 52.66                            | 1.95                   | 51.4                              | 14.6              | 2.01                    | 2.39                         | 3.23                        |

#### Table 5: Dielectric Parameter Validations

| Tissue<br>Type | Frequency<br>Measure<br>(MHz) | Dielectric<br>Constant<br>Target | Conductivity<br>Target | Dielectric<br>Constant<br>Measure | Imaginary<br>Part | Conductivity<br>Measure | Dielectric<br>%<br>Deviation | Conductivity<br>% Deviation |
|----------------|-------------------------------|----------------------------------|------------------------|-----------------------------------|-------------------|-------------------------|------------------------------|-----------------------------|
|                | 5200                          | 49.01                            | 5.30                   | 48.93                             | 18.45             | 5.33                    | 0.16                         | 0.64                        |
| 5GHz           | 5600                          | 48.47                            | 5.77                   | 48.48                             | 18.77             | 5.84                    | 0.02                         | 1.28                        |
| MSL            | 5800                          | 48.2                             | 6.00                   | 48.11                             | 19.03             | 6.14                    | 0.19                         | 2.27                        |

| Tissue<br>Type | Frequency<br>Measure<br>(MHz) | Dielectric<br>Constant<br>Target | Conductivity<br>Target | Dielectric<br>Constant<br>Measure | Imaginary<br>Part | Conductivity<br>Measure | Dielectric<br>%<br>Deviation | Conductivity<br>% Deviation |
|----------------|-------------------------------|----------------------------------|------------------------|-----------------------------------|-------------------|-------------------------|------------------------------|-----------------------------|
|                | 900                           | 55                               | 0.97                   | 54.27                             | 19.12             | 0.96                    | 1.33                         | 1.37                        |
|                | 915                           | 55                               | 0.97                   | 54.16                             | 19.19             | 0.98                    | 1.53                         | 0.64                        |
| 900MSL         | 928                           | 55                               | 0.97                   | 53.78                             | 19.22             | 0.99                    | 2.22                         | 2.23                        |



## Table 6: Tissue Simulating Fluid Recipe

| Comp                | Composition of Ingredients for Liquid Tissue Phantoms (450MHz to 2450 MHz data only) |         |       |      |       |       |       |       |      |       |        |        |
|---------------------|--------------------------------------------------------------------------------------|---------|-------|------|-------|-------|-------|-------|------|-------|--------|--------|
| Ingredient          |                                                                                      | f (MHz) |       |      |       |       |       |       |      |       |        |        |
| (% by weight)       | 450                                                                                  |         | 835   |      | 915   |       | 1900  |       | 2450 |       | 5500   |        |
| Tissue Type         | Head                                                                                 | Body    | Head  | Body | Head  | Body  | Head  | Body  | Head | Body  | Head   | Body   |
| Water               | 38.56                                                                                | 51.16   | 41.45 | 52.4 | 41.05 | 56    | 54.9  | 70.45 | 62.7 | 68.64 | 65.53  | 78.67  |
| Salt (NaCl)         | 3.95                                                                                 | 1.49    | 1.45  | 1.4  | 1.35  | 0.76  | 0.18  | 0.36  | 0.5  | 0     | 0      | 0      |
| Sugar               | 56.32                                                                                | 46.78   | 56    | 45   | 56.5  | 41.76 | 0     | 0     | 0    | 0     | 0      | 0      |
| HEC                 | 0.98                                                                                 | 0.52    | 1     | 1    | 1     | 1.21  | 0     | 0     | 0    | 0     | 0      | 0      |
| Bactericide         | 0.19                                                                                 | 0.05    | 0.1   | 0.1  | 0.1   | 0.27  | 0     | 0     | 0    | 0     | 0      | 0      |
| Triton X-100        | 0                                                                                    | 0       | 0     | 0    | 0     | 0     | 0     | 0     | 36.8 | 0     | 17.235 | 10.665 |
| DGBE                | 0                                                                                    | 0       | 0     | 0    | 0     | 0     | 44.92 | 29.18 | 0    | 31.37 | 0      | 0      |
| DGHE                | 0                                                                                    | 0       | 0     | 0    | 0     | 0     | 0     | 0     | 0    | 0     | 17.235 | 10.665 |
| Dielectric Constant | 43.42                                                                                | 58      | 42.54 | 56.1 | 42    | 56.8  | 39.9  | 53.3  | 39.8 | 52.7  |        |        |
| Conductivity (S/m)  | 0.85                                                                                 | 0.83    | 0.91  | 0.95 | 1     | 1.07  | 1.42  | 1.52  | 1.88 | 1.95  |        |        |

Tissue Simulating Liquid for 5GHz, MBBL3500-5800V5 Manufactured by SPEAG (proprietary mixture)

| Ingredients        | (% by weight) |
|--------------------|---------------|
| Water              | 78            |
| Mineral oil        | 11            |
| Emulsifiers        | 9             |
| Additives and Salt | 2             |



#### 6 EVALUATION PROCEDURES

Prior to any testing, the appropriate fluid was used to fill the phantom to a depth of 15 cm  $\pm$ 0.2cm (see figure below). The fluid parameters were verified and the dipole validation was performed as described in the previous sections.

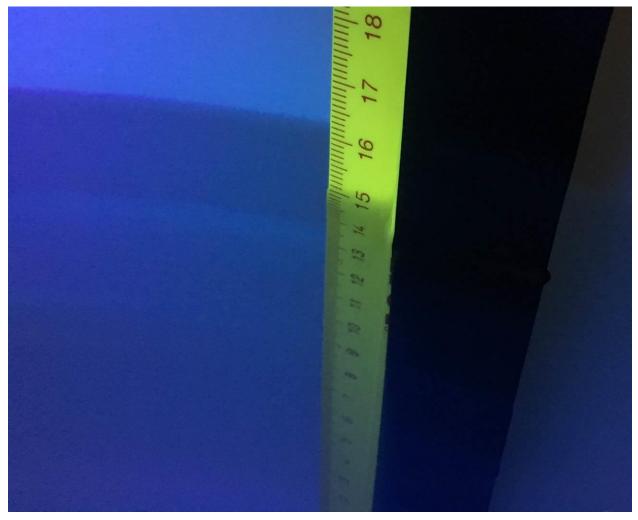



Figure 3: Fluid Depth 15cm



#### **Test Positions:**

The Device was positioned against the SAM and flat phantom using the exact procedure described in IEEE Std 1528:2013, IEC62209-2:2010, and the Office of Engineering and Technology KDB 447498.

#### **Reference Power Measurement:**

The measurement probe was positioned at a fixed location above the reference point. A power measurement was made with the probe above this reference position so it could used for the assessing the power drift later in the test procedure.

#### Area Scan:

A coarse area scan was performed in order to find the approximate location of the peak SAR value. This scan was performed with the measurement probe at a constant height in the simulating fluid. A two dimensional spline interpolation algorithm was then used to determine the peaks and gradients within the scanned area. The area scan resolution conformed to the requirements of KDB 865664 as shown in Table 7.

#### Zoom Scan:

A zoom scan was performed around the approximate location of the peak SAR as determined from the area scan. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure. The zoom scan resolution conformed to the requirements of KDB 865664 as shown in Table 7.



|                                                                             |             |                                                                                      | $\leq$ 3 GHz                                                                                                                                                                                                                                                          | > 3 GHz                                                                                                           |  |
|-----------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|
| Maximum distance from<br>(geometric center of pr                            |             |                                                                                      | 5 ± 1 mm                                                                                                                                                                                                                                                              | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$                                                        |  |
| Maximum probe angle<br>surface normal at the m                              |             |                                                                                      | 30° ± 1°                                                                                                                                                                                                                                                              | 20° ± 1°                                                                                                          |  |
|                                                                             |             |                                                                                      | ≤ 2 GHz: ≤ 15 mm<br>2 – 3 GHz: ≤ 12 mm                                                                                                                                                                                                                                | 3 – 4 GHz: ≤ 12 mm<br>4 – 6 GHz: ≤ 10 mm                                                                          |  |
| Maximum area scan sp                                                        | atial resol | ution: $\Delta x_{Area}$ , $\Delta y_{Area}$                                         | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above the measurement resolution must be $\leq$ the corresponding x or y dimension of the test device with at least one measurement point on the test device. |                                                                                                                   |  |
| Maximum zoom scan spatial resolution: $\Delta x_{Zoom}$ , $\Delta y_{Zoom}$ |             |                                                                                      | $\leq 2 \text{ GHz}$ : $\leq 8 \text{ mm}$<br>2 - 3 GHz: $\leq 5 \text{ mm}^*$                                                                                                                                                                                        | 3 – 4 GHz: ≤ 5 mm <sup>*</sup><br>4 – 6 GHz: ≤ 4 mm <sup>*</sup>                                                  |  |
|                                                                             | uniform     | grid: Δz <sub>Zoom</sub> (n)                                                         | ≤ 5 mm                                                                                                                                                                                                                                                                | $3 - 4 \text{ GHz:} \le 4 \text{ mm}$ $4 - 5 \text{ GHz:} \le 3 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$ |  |
| Maximum zoom scan<br>spatial resolution,<br>normal to phantom<br>surface    | graded      | $\Delta z_{Zoom}(1)$ : between 1 <sup>st</sup> two points closest to phantom surface | ≤4 mm                                                                                                                                                                                                                                                                 | 3 – 4 GHz: ≤ 3 mm<br>4 – 5 GHz: ≤ 2.5 mm<br>5 – 6 GHz: ≤ 2 mm                                                     |  |
| Surface                                                                     | grid        | Δz <sub>Zoom</sub> (n>1):<br>between subsequent<br>points                            | $\leq 1.5 \cdot \Delta z$                                                                                                                                                                                                                                             | z <sub>zoom</sub> (n-1)                                                                                           |  |
| Minimum zoom scan<br>volume                                                 | x, y, z     |                                                                                      | ≥ 30 mm                                                                                                                                                                                                                                                               | $3 - 4$ GHz: $\geq 28$ mm<br>$4 - 5$ GHz: $\geq 25$ mm<br>$5 - 6$ GHz: $\geq 22$ mm                               |  |

\* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is  $\leq 1.4$  W/kg,  $\leq 8$  mm,  $\leq 7$  mm and  $\leq 5$  mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

#### Interpolation, Extrapolation and Detection of Maxima:

The probe is calibrated at the center of the dipole sensors which is located 1 to 2.7 mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated.

In DASY5, the choice of the coordinate system defining the location of the measurement points has no influence on the uncertainty of the interpolation, Maxima Search and extrapolation routines. The interpolation, extrapolation and maximum search routines are all based on the modified Quadratic Shepard's method.

Thereby, the interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. The DASY5 routines construct a once-continuously differentiable function that interpolates the measurement values as follows:

- For each measurement point a trivariate (3-D) / bivariate (2-D) quadratic is computed. It interpolates the measurement values at the data point and forms a least-square fit to neighboring measurement values.
- The spatial location of the quadratic with respect to the measurement values is attenuated by an inverse distance weighting. This is performed since the calculated quadratic will fit measurement values at nearby points more accurate than at points located further away.
- After the quadratics are calculated for at all measurement points, the interpolating function is calculated as a weighted average of the quadratics.

There are two control parameters that govern the behavior of the interpolation method. One specifies the number of measurement points to be used in computing the least-square fits for the local quadratics. These measurement points are the ones nearest the input point for which the quadratic is being computed. The second parameter specifies the number of measurement points that will be used in calculating the weights for the quadratics to produce the final function. The input data points used there are the ones nearest the point at which the interpolation is desired. Appropriate defaults are chosen for each of the control parameters.

The trivariate quadratics that have been previously computed for the 3-D interpolation and whose input data are at the closest distance from the phantom surface, are used in order to extrapolate the fields to the surface of the phantom.

In order to determine all the field maxima in 2-D (Area Scan) and 3-D (Zoom Scan), the measurement grid is refined by a default factor of 10 and the interpolation function is used to evaluate all field values between corresponding measurement points. Subsequently, a linear search is applied to find all the candidate maxima. In a last step, nonphysical maxima are removed and only those maxima which are within 2 dB of the global maximum value are retained.

#### Averaging and Determination of Spatial Peak SAR

The interpolated data is used to average the SAR over the 1g and 10g cubes by spatially discretizing the entire measured volume. The resolution of this spatial grid used to calculate the averaged SAR is 1mm or about 42875 interpolated points. The resulting volumes are defined as cubical volumes containing the appropriate tissue parameters that are centered at the location. The location is defined as the center of the incremental volume.

The spatial-peak SAR must be evaluated in cubical volumes containing a mass that is within 5% of the required mass. The cubical volume centered at each location, as defined above, should be expanded in all directions until the desired value for the mass is reached, with no surface boundaries of the averaging volume extending beyond the outermost surface of the considered region. In addition, the cubical volume should not consist of more than 10% of air. If these conditions are not satisfied then the center of the averaging volume is moved to the next location. Otherwise, the exact size of the final sampling cube is found using an inverse polynomial approximation algorithm, leading to results with improved accuracy. If one boundary of the averaging volume reaches the boundary of the measured volume during its expansion, it will not be evaluated at all. Reference is kept of all locations used and those not used for averaging the SAR. All average SAR values are finally assigned to the centered location in each valid averaging volume.

All locations included in an averaging volume are marked to indicate that they have been used at least once. If a location has been marked as used, but has never been assigned to the center of a cube, the highest averaged SAR value of all other cubical volumes which have used this location for averaging is assigned to this location. Only those locations that are not part of any valid averaging volume should be marked as unused. For the case of an unused location, a new averaging volume must be constructed which will have the unused location centered at one surface of the cube. The remaining five surfaces are expanded evenly in all directions until the required mass is enclosed, regardless of the amount of included air. Of the six possible cubes with one surface centered on the unused location, the smallest cube is used, which still contains the required mass.

If the final cube containing the highest averaged SAR touches the surface of the measured volume, an appropriate warning is issued within the post processing engine.

#### **Power Drift Measurement:**

The probe was positioned at precisely the same reference point and the reference power measurement was repeated. The difference between the initial reference power and the final one is referred to as the power drift. This value should not exceed 5%. The power drift measurement was used to assess the output power stability of the test sample throughout the SAR scan.

#### **RF Ambient Activity:**

During the entire SAR evaluation, the RF ambient activity was monitored using a spectrum analyzer with an antenna connected to it. The spectrum analyzer was tuned to the frequency of measurement and with one trace set to max hold mode. In this way, it was possible to determine if at any point during the SAR measurement there was an interfering ambient signal. If an ambient signal was detected, then the SAR measurement was repeated.



### 7 CRITERIA

The following ANSI/IEEE C95.1 – 1992 limits for SAR apply to portable devices operating in the General Population/Uncontrolled Exposure environment. Uncontrolled environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

| Exposure Type                                          | SAR Limit      |
|--------------------------------------------------------|----------------|
| (General Population/Uncontrolled Exposure environment) | (W/kg or mW/g) |
| Average over the whole body                            | 0.08           |
| Spatial Peak (1g)                                      | 1.60           |
| Spatial Peak for hands, wrists, feet and ankles (10g)  | 4.00           |

### 8 TEST CONFIGURATION

The Pathfinder 6059 was evaluated according to the specific requirements found in the following KDBs and Standards:

- FCC KDB 447498D01 v06, General RF Exposure Guidance
- FCC KDB 865664D01 v01r04, SAR Measurement Requirements for 100MHz to 6GHz
- FCC KDB 248227D01 801.11 Wi-Fi SAR v02r02, SAR Guidance for IEEE 802.11 (Wi-Fi) Transmitters
- RSS-102 Issue 5, Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

The Pathfinder 6059 could be used against the body or hand held. According to the manufacturer there are no against the head usage conditions. Therefore it was evaluated in body and extremity (hand held) positions. Photos of the test position s are shown below. Initial scans indicated that the left and right hand positions produced a lower SAR value that the top side positions as. The antennas were located toward the top side of the device which produced the higher SAR.



## 8.1 Setup Photos (Top Side Exposure Condition)





## 8.2 Setup Photos (Screen Top Exposure Condition)





## 8.3 Setup Photos (Left Side Exposure Condition)





## 8.4 Setup Photos (Right Side Exposure Condition)





#### 9 CONDUCTED OUTPUT POWER

Conducted output power measurements are shown below.

| Frequency<br>Band | Mode | Data Rate      | Channel | Freq.<br>(MHz) | Average<br>Power<br>(dBm) |
|-------------------|------|----------------|---------|----------------|---------------------------|
|                   |      |                | 0       | 2402           | 9.97                      |
|                   | BT   | GFSK           | 39      | 2441           | 10.12                     |
|                   |      |                | 78      | 2480           | 9.84                      |
|                   | вт   | Pi/4-<br>DQPSK | 0       | 2402           | 7.68                      |
|                   |      |                | 39      | 2441           | 7.62                      |
| 2390 -            |      |                | 78      | 2480           | 7.42                      |
| 2483.5MHz         |      | 8DPSK          | 0       | 2402           | 6.87                      |
|                   | BT   |                | 39      | 2441           | 6.92                      |
|                   |      |                | 78      | 2480           | 6.84                      |
|                   |      |                | 0       | 2402           | 6.61                      |
|                   | BLE  | GFSK           | 39      | 2441           | 6.67                      |
|                   |      |                | 78      | 2480           | 5.14                      |

## Table 8: Conducted Output Power (Bluetooth)

Table 9: Conducted Output Power (2.4GHz, WiFi)

| Frequency<br>Band | Mode      | Bandwidth | Channel | Freq.<br>(MHz) | Average<br>Power<br>(dBm) |
|-------------------|-----------|-----------|---------|----------------|---------------------------|
|                   |           |           | 1       | 2412           | 20.22                     |
|                   | 802.11b   | 20MHz     | 6       | 2437           | 20.31                     |
|                   |           |           | 11      | 2463           | 20.33                     |
|                   | 802.11g   |           | 1       | 2412           | 19.87                     |
|                   |           | 20MHz     | 6       | 2437           | 20.42                     |
| 2390 -            |           |           | 11      | 2463           | 20.21                     |
| 2483.5MHz         |           |           | 1       | 2412           | 19.57                     |
|                   | 802.11n20 | 20MHz     | 6       | 2437           | 19.89                     |
|                   |           |           | 11      | 2463           | 19.46                     |
|                   |           |           | 3       | 2422           | 15.64                     |
|                   | 802.11n40 | 20MHz     | 6       | 2437           | 16.67                     |
|                   |           |           | 9       | 2452           | 16.52                     |

| Frequency<br>Band | Mode     | Bandwidth | Channel | Freq.<br>(MHz) | Average<br>Power<br>(dBm) |
|-------------------|----------|-----------|---------|----------------|---------------------------|
|                   |          |           | 36      | 5180           | 19.42                     |
|                   | 802.11a  | 20MHz     | 40      | 5200           | 19.86                     |
|                   | 802.11a  |           | 44      | 5220           | 19.74                     |
|                   |          |           | 48      | 5240           | 19.43                     |
| U-NII-1           |          | 20MHz     | 36      | 5180           | 19.41                     |
| 5150 -            | 802.11n  |           | 40      | 5200           | 19.38                     |
| 5250MHz           | (20MHz)  |           | 44      | 5220           | 19.33                     |
|                   |          |           | 48      | 5240           | 19.27                     |
|                   | 802.11n  |           | 38      | 5190           | 19.41                     |
|                   | (40MHz)  | 40MHz     | 46      | 5230           | 19.34                     |
|                   | 802.11ac | 80MHz     | 42      | 5210           | 15.27                     |

Table 10: Conducted Output Power (U-NII-1, WiFi)

Table 11: Conducted Output Power (U-NII-2A, WiFi)

| Frequency<br>Band | Mode     | Bandwidth | Channel | Freq.<br>(MHz) | Average<br>Power<br>(dBm) |
|-------------------|----------|-----------|---------|----------------|---------------------------|
|                   |          |           | 52      | 5260           | 19.89                     |
|                   | 802.11a  | 20MHz     | 56      | 5280           | 19.92                     |
|                   | 802.11a  | ZUMHZ     | 60      | 5300           | 20.12                     |
|                   |          |           | 64      | 5320           | 20.07                     |
| U-NII-2A          | 802.11n  | 20MHz     | 52      | 5260           | 19.84                     |
| 5250 -            |          |           | 56      | 5280           | 19.93                     |
| 5350MHz           | (20MHz)  |           | 60      | 5300           | 20.08                     |
|                   |          |           | 64      | 5320           | 20.04                     |
|                   | 802.11n  | 40MHz     | 54      | 5270           | 19.02                     |
|                   | (40MHz)  |           | 62      | 5310           | 19.41                     |
|                   | 802.11ac | 80MHz     | 58      | 5290           | 15.23                     |

| Frequency<br>Band | Mode     | Bandwidth | Channel | Freq.<br>(MHz) | Average<br>Power<br>(dBm) |
|-------------------|----------|-----------|---------|----------------|---------------------------|
|                   |          |           | 100     | 5500           | 20.08                     |
|                   |          |           | 104     | 5520           | 20.14                     |
|                   |          |           | 108     | 5540           | 20.18                     |
|                   |          |           | 112     | 5560           | 20.31                     |
|                   |          |           | 116     | 5580           | 20.42                     |
|                   | 802.11a  | 20MHz     | 120     | 5600           | 20.24                     |
|                   |          |           | 124     | 5620           | 20.13                     |
|                   |          |           | 128     | 5640           | 20.11                     |
|                   |          |           | 132     | 5660           | 20.16                     |
|                   |          |           | 136     | 5680           | 19.67                     |
|                   |          |           | 140     | 5700           | 19.52                     |
|                   |          | 20MHz     | 100     | 5500           | 19.98                     |
| U-NII-2C          |          |           | 104     | 5520           | 19.87                     |
| 5470 -            |          |           | 108     | 5540           | 19.92                     |
| 5725MHz           |          |           | 112     | 5560           | 19.46                     |
|                   |          |           | 116     | 5580           | 19.98                     |
|                   | 802.11n  |           | 120     | 5600           | 19.53                     |
|                   |          |           | 124     | 5620           | 19.46                     |
|                   |          |           | 128     | 5640           | 19.27                     |
|                   |          |           | 132     | 5660           | 19.46                     |
|                   |          |           | 136     | 5680           | 19.33                     |
|                   |          |           | 140     | 5700           | 19.21                     |
|                   |          |           | 102     | 5510           | 19.01                     |
|                   | 802.11n  | 40MHz     | 118     | 5590           | 19.02                     |
|                   |          |           | 134     | 5670           | 18.63                     |
|                   | 802.11ac |           | 106     | 5530           | 15.31                     |
|                   | 002.11aC | 80MHz     | 122     | 5610           | 15.12                     |

Table 12: Conducted Output Power (U-NII-2C, WiFi)

| Frequency<br>Band              | Mode     | Bandwidth | Channel | Freq.<br>(MHz) | Average<br>Power<br>(dBm) |
|--------------------------------|----------|-----------|---------|----------------|---------------------------|
|                                |          | 20MHz     | 149     | 5745           | 19.86                     |
|                                |          |           | 153     | 5765           | 20.14                     |
|                                | 802.11a  |           | 157     | 5785           | 20.17                     |
|                                |          |           | 161     | 5805           | 19.94                     |
|                                |          |           | 165     | 5825           | 19.76                     |
| U-NII_3                        |          |           | 149     | 5745           | 19.21                     |
| 5725 <sup>-</sup> -<br>5850MHz |          |           | 153     | 5765           | 20.04                     |
|                                | 802.11n  | 20MHz     | 157     | 5785           | 20.08                     |
|                                |          |           | 161     | 5805           | 19.43                     |
|                                |          |           | 165     | 5825           | 19.26                     |
|                                | 000.11.  | 401.411   | 151     | 5755           | 19.22                     |
|                                | 802.11n  | 40MHz     | 159     | 5795           | 19.31                     |
|                                | 802.11ac | 80MHz     | 155     | 5775           | 15.44                     |

Table 13: Conducted Output Power (U-NII-3, WiFi)

## Table 14: Conducted Output Power (RFID)

| Frequency<br>Band | Mode | Bandwidth | Channel | Freq.<br>(MHz) | Peak<br>Power<br>(dBm) |
|-------------------|------|-----------|---------|----------------|------------------------|
|                   |      |           | Low     | 902.75         | 22.87                  |
| 902 - 928MHz      | RFID | 82kHz     | Mid     | 915.25         | 22.94                  |
|                   |      |           | High    | 927.25         | 22.76                  |



#### **10 TEST RESULTS**

The Pathfinder 6059 is **compliant** with the SAR criteria from rule part 2.1093 and 1.1310. The Pathfinder 6059 is **compliant** with the SAR criteria from RSS-102 Issue 5. The worst case stand-alone 1g SAR value for body exposure was less than the 1.6W/kg limit.

#### 11 SAR DATA:

The results on the following page(s) were obtained when the device was transmitting at maximum output power. The worst case plots, which reveal information about the location of the maximum SAR with respect to the device, are referenced are shown in APPENDIX B – Worst Case SAR Plots. The measured conducted output power was compared to the power declared by the manufacturer and used for scaling the measured SAR values.

| US / Canada Body SAR Results Using 2450MHz MSL |         |                   |                     |                      |                            |                         |                          |
|------------------------------------------------|---------|-------------------|---------------------|----------------------|----------------------------|-------------------------|--------------------------|
| TX Mode                                        | Spacing | Position          | Power Drift<br>(dB) | Raw SAR<br>1g (W/kg) | Scaled<br>SAR 1g<br>(W/kg) | Measured<br>Power (dBm) | Rated Max<br>Power (dBm) |
| DSSS Ch. 6                                     | 0mm     | Тор               | -0.06               | 0.0380               | 0.0397                     | 20.31                   | 20.50                    |
| DSSS Ch. 6                                     | 0mm     | Left              | 0.20                | 0.0200               | 0.0209                     | 20.31                   | 20.50                    |
| DSSS Ch. 6                                     | 0mm     | Right             | 0.09                | 0.0370               | 0.0387                     | 20.31                   | 20.50                    |
| DSSS Ch. 6                                     | 0mm     | Top of<br>Display | -0.09               | 0.0471               | 0.0492                     | 20.31                   | 20.50                    |

#### Table 15: Body Worn SAR Results, (2.4GHz WiFi, DSSS)

| Test Personnel:                  | Bryan Taylor          | Test Date:            | 5/20/2019 |
|----------------------------------|-----------------------|-----------------------|-----------|
| Supervising/Reviewing Engineer:  |                       |                       |           |
| (Where Applicable)               | NA                    | Tissue Depth:         | 15cm      |
| Signal Setup:                    | Test Commands         | Ambient Temperature:  | 22.7      |
| Power Method:                    | Fully Charged Battery | Relative Humidity:    | 36.3%     |
| Pretest Verification w / Dipole: | Yes                   | Atmospheric Pressure: | 990mBar   |



## Table 16: Body Worn SAR Results, (U-NII-2A)

| US / Canada Body SAR Results Using 5GHz MSL |         |                   |                     |                      |                            |                         |                          |
|---------------------------------------------|---------|-------------------|---------------------|----------------------|----------------------------|-------------------------|--------------------------|
| TX Mode                                     | Spacing | Position          | Power Drift<br>(dB) | Raw SAR<br>1g (W/kg) | Scaled<br>SAR 1g<br>(W/kg) | Measured<br>Power (dBm) | Rated Max<br>Power (dBm) |
| 802.11a; Ch<br>60; 5300MHz                  | 0mm     | Top of<br>Display | -0.05               | 0.1020               | 0.1113                     | 20.12                   | 20.50                    |
| 802.11a; Ch<br>60; 5300MHz                  | 0mm     | Top Side          | -0.25               | 0.0985               | 0.1075                     | 20.12                   | 20.50                    |
| 802.11a; Ch<br>60; 5300MHz                  | 0mm     | Left Side         | -7.03               | 0.0577               | 0.0630                     | 20.12                   | 20.50                    |
| 802.11a; Ch<br>60; 5300MHz                  | 0mm     | Right Side        | -0.22               | 0.0620               | 0.0677                     | 20.12                   | 20.50                    |
| 802.11n20; Ch<br>60; 5300MHz                | 0mm     | Top of<br>Display | -0.51               | 0.1020               | 0.1113                     | 20.12                   | 20.50                    |
| 802.11n40; Ch<br>62; 5310MHz                | 0mm     | Top of<br>Display | -0.44               | 0.1080               | 0.1388                     | 19.41                   | 20.50                    |
| 802.11ac<br>(80MHz); Ch<br>58; 5290MHz      | 0mm     | Top of<br>Display | -0.23               | 0.0790               | 0.2658                     | 15.23                   | 20.50                    |
| 1g SAR Limit (Head & Body) = 1.6W/kg        |         |                   |                     |                      |                            |                         |                          |

| Test Personnel:                  | Bryan Taylor          | Test Date:            | 5/28/2019 |
|----------------------------------|-----------------------|-----------------------|-----------|
| Supervising/Reviewing Engineer:  |                       |                       |           |
| (Where Applicable)               | NA                    | Tissue Depth:         | 15cm      |
| Signal Setup:                    | Test Commands         | Ambient Temperature:  | 21.2      |
| Power Method:                    | Fully Charged Battery | Relative Humidity:    | 42.1%     |
| Pretest Verification w / Dipole: | Yes                   | Atmospheric Pressure: | 992mBar   |
|                                  |                       |                       |           |



# Table 17: Body Worn SAR Results, (U-NII-2C)

|                                         |     | US / Cana         | da Body SAR R                                          | esults Using 5 | GHz MSL                    |                         |                          |  |
|-----------------------------------------|-----|-------------------|--------------------------------------------------------|----------------|----------------------------|-------------------------|--------------------------|--|
| TX Mode                                 |     |                   | Power Drift Raw SAR<br>Spacing Position (dB) 1g (W/kg) |                | Scaled<br>SAR 1g<br>(W/kg) | Measured<br>Power (dBm) | Rated Max<br>Power (dBm) |  |
| 802.11a; Ch<br>116; 5580MHz             | 0mm | Top of<br>Display | -0.04                                                  | 0.4930         | 0.5022                     | 20.42                   | 20.50                    |  |
| 802.11a; Ch<br>116; 5580MHz             | 0mm | Top Side          | -0.07                                                  | 0.3890         | 0.3962                     | 20.42                   | 20.50                    |  |
| 802.11n20; Ch<br>116; 5580MHz           | 0mm | Top of<br>Display | -0.04                                                  | 0.5000         | 0.5093                     | 20.42                   | 20.50                    |  |
| 802.11n40; Ch<br>118; 5590MHz           | 0mm | Top of<br>Display | -0.01                                                  | 0.1180         | 0.1659                     | 19.02                   | 20.50                    |  |
| 802.11ac<br>(80MHz); Ch<br>122; 5610MHz | 0mm | Top of<br>Display | -0.15                                                  | 0.0119         | 0.0411                     | 15.12                   | 20.50                    |  |
|                                         |     | 1g S/             | AR Limit (Head                                         | & Body) = 1.6W | V/kg                       | •                       | •                        |  |

| Test Personnel:                  | Bryan Taylor          | Test Date:            | 5/29/2019 |
|----------------------------------|-----------------------|-----------------------|-----------|
| Supervising/Reviewing Engineer:  |                       |                       |           |
| (Where Applicable)               | NA                    | Tissue Depth:         | 15cm      |
| Signal Setup:                    | Test Commands         | Ambient Temperature:  | 22.3C     |
| Power Method:                    | Fully Charged Battery | Relative Humidity:    | 41.7%     |
| Pretest Verification w / Dipole: | Yes                   | Atmospheric Pressure: | 990mBar   |
|                                  |                       |                       |           |



# Table 18: Body Worn SAR Results, (U-NII-3)

| US / Canada Body SAR Results Using 5GHz MSL |                          |                                                                                                            |                                                                                                                                                                                          |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|---------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Power Drift<br>Spacing Position (dB)        |                          | Raw SAR<br>1g (W/kg)                                                                                       | Scaled<br>SAR 1g<br>(W/kg)                                                                                                                                                               | Measured<br>Power (dBm)                                                                                                                                                                         | Rated Max<br>Power (dBm)                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 0mm                                         | Top of<br>Display        | -0.25                                                                                                      | 0.2430                                                                                                                                                                                   | 0.2622                                                                                                                                                                                          | 20.17                                                                                                                                                                                                                                                                      | 20.50                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 0mm                                         | Top Side                 | -0.05                                                                                                      | 0.1510                                                                                                                                                                                   | 0.1629                                                                                                                                                                                          | 20.17                                                                                                                                                                                                                                                                      | 20.50                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 0mm                                         | Top of<br>Display        | 0.06                                                                                                       | 0.4610                                                                                                                                                                                   | 0.4974                                                                                                                                                                                          | 20.17                                                                                                                                                                                                                                                                      | 20.50                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 0mm                                         | Top of<br>Display        | -0.11                                                                                                      | 0.1120                                                                                                                                                                                   | 0.1473                                                                                                                                                                                          | 19.31                                                                                                                                                                                                                                                                      | 20.50                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 0mm                                         | Top of<br>Display        | 0.02                                                                                                       | 0.0096                                                                                                                                                                                   | 0.0308                                                                                                                                                                                          | 15.44                                                                                                                                                                                                                                                                      | 20.50                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                             | Omm<br>Omm<br>Omm<br>Omm | SpacingPosition0mmTop of<br>Display0mmTop Side0mmTop of<br>Display0mmTop of<br>Display0mmTop of<br>Display | SpacingPositionPower Drift<br>(dB)0mmTop of<br>Display-0.250mmTop Side<br>Display-0.050mmTop of<br>Display0.060mmTop of<br>Display0.060mmTop of<br>Display-0.110mmTop of<br>Display-0.11 | SpacingPositionPower Drift<br>(dB)Raw SAR<br>1g (W/kg)0mmTop of<br>Display-0.250.24300mmTop Side<br>Display-0.050.15100mmTop of<br>Display0.060.46100mmTop of<br>Display0.060.46100mmTop of<br> | SpacingPositionPower Drift<br>(dB)Raw SAR<br>1g (W/kg)Scaled<br>SAR 1g<br>(W/kg)0mmTop of<br>Display-0.250.24300.26220mmTop Side<br>Display-0.050.15100.16290mmTop of<br>Display0.060.46100.49740mmTop of<br>Display-0.110.11200.14730mmTop of<br>Display-0.110.11200.1473 | SpacingPositionPower Drift<br>(dB)Raw SAR<br>1g (W/kg)Scaled<br>SAR 1g<br>(W/kg)Measured<br>Power (dBm)0mmTop of<br>Display-0.250.24300.262220.170mmTop Side<br>Display-0.050.15100.162920.170mmTop of<br>Display-0.060.46100.497420.170mmTop of<br>Display0.060.46100.497420.170mmTop of<br>Display-0.110.11200.147319.31 |  |  |  |  |

| Test Personnel:                  | Bryan Taylor          | Test Date:            | 5/30/2019 |
|----------------------------------|-----------------------|-----------------------|-----------|
| Supervising/Reviewing Engineer:  |                       |                       |           |
| (Where Applicable)               | NA                    | Tissue Depth:         | 15cm      |
| Signal Setup:                    | Test Commands         | Ambient Temperature:  | 22.3C     |
| Power Method:                    | Fully Charged Battery | Relative Humidity:    | 38.6%     |
| Pretest Verification w / Dipole: | Yes                   | Atmospheric Pressure: | 989.6mBar |
|                                  |                       |                       |           |



# Table 19: Body Worn SAR Results, (Bluetooth)

| TX Mode   | Spacing |                   | Power Drift<br>Spacing Position (dB) | Raw SAR<br>1g (W/kg) | Scaled<br>SAR 1g<br>(W/kg) | Measured<br>Power (dBm) | Rated Max<br>Power (dBm)<br>12.50 |  |
|-----------|---------|-------------------|--------------------------------------|----------------------|----------------------------|-------------------------|-----------------------------------|--|
| BT (GFSK) | 0mm     | Top of<br>Display | 0.07                                 | 0.0061               | 0.0105                     | 10.12                   |                                   |  |
| BT (GFSK) | 0mm     | Top Side          | -0.04                                | 0.0049               | 0.0085                     | 10.12                   | 12.50                             |  |
| BLE       | 0mm     | Top of<br>Display | -0.03                                | 0.0048               | 0.0092                     | 6.67                    | 9.50                              |  |
| BLE       | 0mm     | Top Side          | -0.02                                | 0.0041               | 0.0079                     | 6.67                    | 9.50                              |  |

| Test Personnel:                  | Bryan Taylor          | Test Date:            | 5/22/2019 |
|----------------------------------|-----------------------|-----------------------|-----------|
| Supervising/Reviewing Engineer:  |                       |                       |           |
| (Where Applicable)               | NA                    | Tissue Depth:         | 15cm      |
| Signal Setup:                    | Test Commands         | Ambient Temperature:  | 21.9C     |
| Power Method:                    | Fully Charged Battery | Relative Humidity:    | 41.3%     |
| Pretest Verification w / Dipole: | Yes                   | Atmospheric Pressure: | 988.2mBar |
|                                  |                       |                       |           |



# Table 20: Body Worn SAR Results, (915MHz RFID)

| US / Canada Body SAR Results Using 900MHz MSL |                      |          |                     |                      |                            |                         |                          |  |  |  |  |
|-----------------------------------------------|----------------------|----------|---------------------|----------------------|----------------------------|-------------------------|--------------------------|--|--|--|--|
| TX Mode                                       | ode Spacing Position |          | Power Drift<br>(dB) | Raw SAR<br>1g (W/kg) | Scaled<br>SAR 1g<br>(W/kg) | Measured<br>Power (dBm) | Rated Max<br>Power (dBm) |  |  |  |  |
| RFID                                          | 0mm                  | Top Side | 0.00                | 0.0004               | 0.0004                     | 22.94                   | 23.00                    |  |  |  |  |
| RFID                                          | 0mm                  | Front    | -0.05               | 0.0003               | 0.0003                     | 22.94                   | 23.00                    |  |  |  |  |
| RFID                                          | 0mm                  | Left     | -0.02               | 0.0001               | 0.0001                     | 22.94                   | 23.00                    |  |  |  |  |
| RFID                                          | 0mm                  | Right    | -0.06               | 0.0002               | 0.0002                     | 22.94                   | 23.00                    |  |  |  |  |

| Test Personnel:                  | Bryan Taylor          | Test Date:            | 5/31/2019 |
|----------------------------------|-----------------------|-----------------------|-----------|
| Supervising/Reviewing Engineer:  |                       |                       |           |
| (Where Applicable)               | NA                    | Tissue Depth:         | 15cm      |
| Signal Setup:                    | Test Commands         | Ambient Temperature:  | 22.4C     |
| Power Method:                    | Fully Charged Battery | Relative Humidity:    | 39.6%     |
| Pretest Verification w / Dipole: | Yes                   | Atmospheric Pressure: | 989.6mBar |



# 12 SIMULTANEOUS TRANSMISSION RESULTS

Per KDB447498 section 4.3.2, "Simultaneous transmission SAR test exclusion considerations Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneously transmitting antenna. When the sum of 1-g or 10-g SAR of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit, SAR test exclusion applies to that simultaneous transmission configuration".

The sum of the worst case stand-alone SAR results is shown below and is lower than the applicable limit. Therefore the Pathfinder 6059 meets the simultaneous transmission SAR test exclusion.

| Worst Case Bluetooth SAR: | 0.0105mW/g |
|---------------------------|------------|
| Worst Case WiFi SAR:      | 0.5093mW/g |
| Worst Case RFID SAR:      | 0.004mW/g  |
|                           |            |
| Sum:                      | 0.5202mW/g |
| Limit:                    | 1.6mW/g    |



# **1.0 REFERENCES**

[1]ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300 GHz, The Institute of electrical and Electronics Engineers, Inc., New York, NY 10017, 1992

[2]Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), FCC, Washington, D.C. 20554, 1997

[3]Thomas Schmid, Oliver Egger, and Niels Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on Microwave Theory and Techniques, vol. 44, pp. 105-113, Jan. 1996.

[4]Niels Kuster, Ralph Kastle, and Thomas Schmid, "Dosimetic evaluation of mobile communications equipment with know precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp.645-652, May 1997.

[5]NIS81, NAMAS, "The treatment of uncertainty in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddinton, Middlesex, England, 1994.

[6]Barry N. Tayor and Chris E. Kuyatt, "Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994.

[7]Federal Communications Commission, KDB 248227 - "SAR Measurement Procedures for 802.11 a/b/g Transmitters"

[8] Federal Communications Commission, KDB 648474 – "SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas".

[9] Federal Communications Commission, KDB 447498 – "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies".

[10] Federal Communications Commission, KDB 616217 – "SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens".

[11] Federal Communications Commission, KDB 450824 – "SAR Probe Calibration and System Verification Considerations for Measurements at 150MHz – 3GHz".

[12] Federal Communications Commission, KDB 865664 – "SAR Measurement Requirements for 3-6GHz".

[13] Federal Communications Commission, KDB 941225 – "SAR Measurement Procedures for 3G Devices".

[14] ANSI, ANSI/IEEE C63.10-2009: American National Standard for Testing Unlicensed Wireless Devices.



# **APPENDIX A – SYSTEM VALIDATION SUMMARY**

Per FCC KDB 865664, a tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters have been included in the summary table below. The validation was performed with reference dipoles using the required tissue equivalent media for system validation according to KDB 865664. Each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point. All measurements were performed using probes calibrated for CW signals. Modulations in the table above represent test configurations for which the SAR system has been validated. The SAR system was also validated with modulated signals per KDB 865664.

|                    |          |                |                    | Probe Calibr       | ation Point | Dielectric F | roperties | C           | N Validatio        | 1                 | Modu      | lation Valid   | ation |
|--------------------|----------|----------------|--------------------|--------------------|-------------|--------------|-----------|-------------|--------------------|-------------------|-----------|----------------|-------|
| Frequency<br>(MHz) | Date     | Probe<br>(SN#) | Probe<br>(Model #) | Frequency<br>(MHz) | Fluid Type  | σ            | €r        | Sensitivity | Probe<br>Linearity | Probe<br>Isotropy | Mod. Type | Duty<br>Factor | PAR   |
| 2450               | 1/2/2019 | 3516           | EX3DV3             | 2450               | Body        | 50.65        | 2.02      | Pass        | Pass               | Pass              | OFDM      | N/A            | Pass  |
| 5200               | 1/2/2019 | 3516           | EX3DV3             | 5200               | Body        | 48.71        | 5.54      | Pass        | Pass               | Pass              | OFDM      | N/A            | Pass  |
| 5500               | 1/2/2019 | 3516           | EX3DV3             | 5500               | Body        | 47.68        | 6.29      | Pass        | Pass               | Pass              | OFDM      | N/A            | Pass  |
| 5800               | 1/2/2019 | 3516           | EX3DV3             | 5800               | Body        | 48.71        | 5.54      | Pass        | Pass               | Pass              | OFDM      | N/A            | Pass  |
|                    |          |                |                    |                    |             |              |           |             |                    |                   |           |                |       |
|                    |          |                |                    | Probe Calibr       | ation Point | Dielectric F | roperties | C           | N Validation       | -                 | Modu      | lation Valid   | ation |
| Frequency          |          | Probe          | Probe              | Frequency          |             |              |           |             | Probe              | Probe             |           | Duty           |       |
| (MHz)              | Date     | (SN#)          | (Model #)          | (MHz)              | Fluid Type  | σ            | €r        | Sensitivity | Linearity          | Isotropy          | Mod. Type | Factor         | PAR   |
| 835                | 1/3/2019 | 3516           | EX3DV3             | 835                | Body        | 54.2         | 0.98      | Pass        | Pass               | Pass              | GMSK      | Pass           | N/A   |
| 900                | 1/3/2019 | 3516           | EX3DV3             | 900                | Body        | 54           | 1.02      | Pass        | Pass               | Pass              | GMSK      | Pass           | N/A   |
| 1750               | 1/3/2019 | 3516           | EX3DV3             | 1800               | Body        | 52.9         | 1.41      | Pass        | Pass               | Pass              | GMSK      | Pass           | N/A   |
| 1900               | 1/3/2019 | 3516           | EX3DV3             | 1900               | Body        | 52.7         | 1.48      | Pass        | Pass               | Pass              | GMSK      | Pass           | N/A   |

Table 21: SAR System Validation Summary



# APPENDIX B – WORST CASE SAR PLOTS

Date/Time: 5/20/2019 1:14:12 PM

Test Laboratory: Intertek File Name: <u>2.4GHz WiFi SAR.da52:4</u>

# 12.1.1 2.4GHz WiFi SAR

Procedure Notes:

# DUT: Avery 6059; Serial: Sample 1

Communication System: UID 0, Generic 802.11b/g/n (0); Communication System Band: 2.4 GHz Band; Frequency: 2437 MHz;Duty Cycle: 1:1

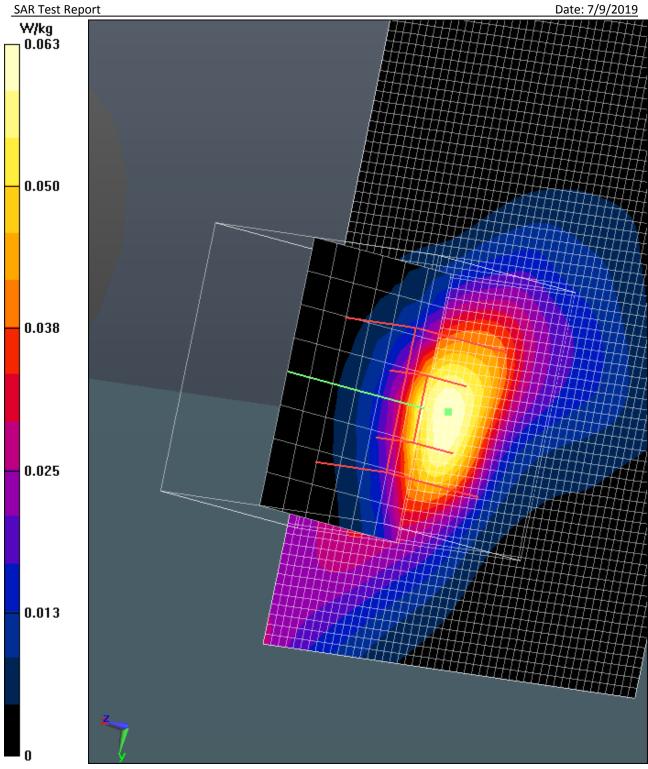
Medium parameters used (interpolated): f = 2437 MHz;  $\sigma = 2.013 \text{ S/m}$ ;  $\epsilon_r = 50.739$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV3 SN3516; ConvF(8.27, 8.27, 8.27); Calibrated: 11/12/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 11/6/2018
- Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

WWAN Flat-Section MSL Testing/DSSS Mid Channel, 0mm spacing, Right Side 2/Area Scan 2 (51x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 0.0628 W/kg

WWAN Flat-Section MSL Testing/DSSS Mid Channel, 0mm spacing, Right Side 2/Zoom Scan (10x9x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.114 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.105 W/kg SAR(1 g) = 0.047 W/kg; SAR(10 g) = 0.021 W/kg

Maximum value of SAR (measured) = 0.0789 W/kg



# Evaluation For: Avery Dennison Retail Information Services, LLC. Product: Pathfinder 6059





Date/Time: 5/28/2019 9:29:30 AM

Test Laboratory: Intertek File Name: <u>5GHz WiFi SAR.da52:4</u>

# 5GHz WiFi SAR

Procedure Notes:

# DUT: Avery 6059; Serial: Sample 1

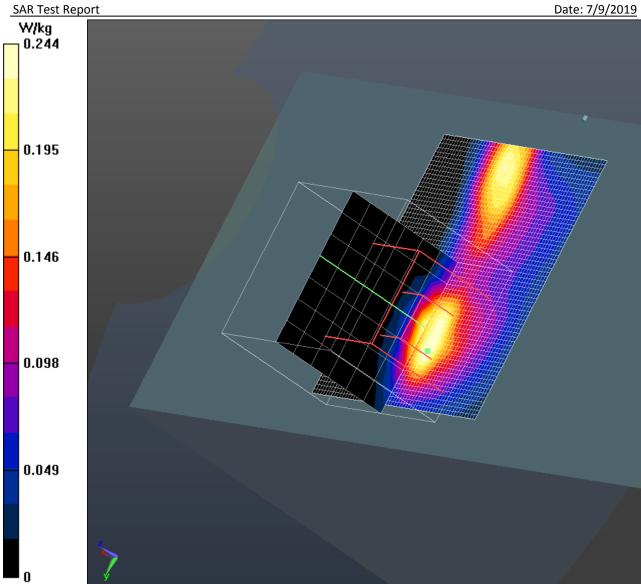
Communication System: UID 0, Generic 802.11a (0); Communication System Band: UNII Band 2; Frequency: 5300 MHz;Duty Cycle: 1:1

Medium parameters used: f = 5300 MHz;  $\sigma$  = 5.595 S/m;  $\epsilon_r$  = 49.08;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV3 SN3516; ConvF(4.41, 4.41, 4.41); Calibrated: 11/12/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 11/6/2018
- Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


# WWAN Flat-Section MSL Testing/802.11a ch 60 screen top/Area Scan 2 (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.244 W/kg

# WWAN Flat-Section MSL Testing/802.11a ch 60 screen top/Zoom Scan (9x8x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 6.652 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.357 W/kg SAR(1 g) = 0.102 W/kg; SAR(10 g) = 0.033 W/kg Maximum value of SAR (measured) = 0.249 W/kg







Date/Time: 5/29/2019 10:36:02 AM

Test Laboratory: Intertek File Name: <u>5GHz WiFi SAR.da52:5</u>

# 12.1.2 5GHz WiFi SAR

Procedure Notes:

# DUT: Avery 6059; Serial: Sample 1

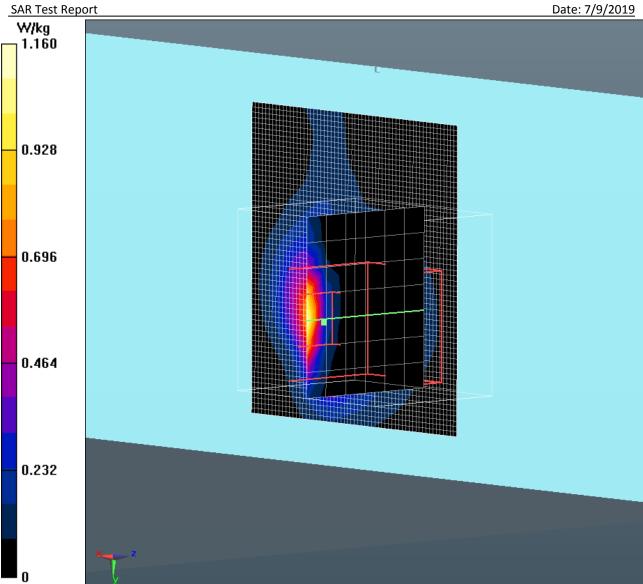
Communication System: UID 0, Generic 802.11a (0); Communication System Band: UNII Band 3; Frequency: 5580 MHz;Duty Cycle: 1:1

Medium parameters used: f = 5580 MHz;  $\sigma$  = 5.972 S/m;  $\epsilon$ r = 48.61;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV3 SN3516; ConvF(4.04, 4.04, 4.04); Calibrated: 11/12/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 11/6/2018
- Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


U-NII-2C/802.11n ch 116 screen top/Area Scan 2 (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.16 W/kg

U-NII-2C/802.11n ch 116 screen top/Zoom Scan (9x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.317 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 2.02 W/kg

SAR(1 g) = 0.500 W/kg; SAR(10 g) = 0.139 W/kg

Maximum value of SAR (measured) = 1.22 W/kg







Date/Time: 5/29/2019 4:52:44 PM

Test Laboratory: Intertek File Name: <u>5GHz WiFi SAR.da52:6</u>

# 12.1.3 5GHz WiFi SAR

Procedure Notes:

# DUT: Avery 6059; Serial: Sample 1

Communication System: UID 0, Generic 802.11a (0); Communication System Band: UNII Band 4; Frequency: 5782 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5782 MHz;  $\sigma$  = 6.226 S/m;  $\epsilon$ r = 48.309;  $\rho$  = 1000 kg/m<sup>3</sup>

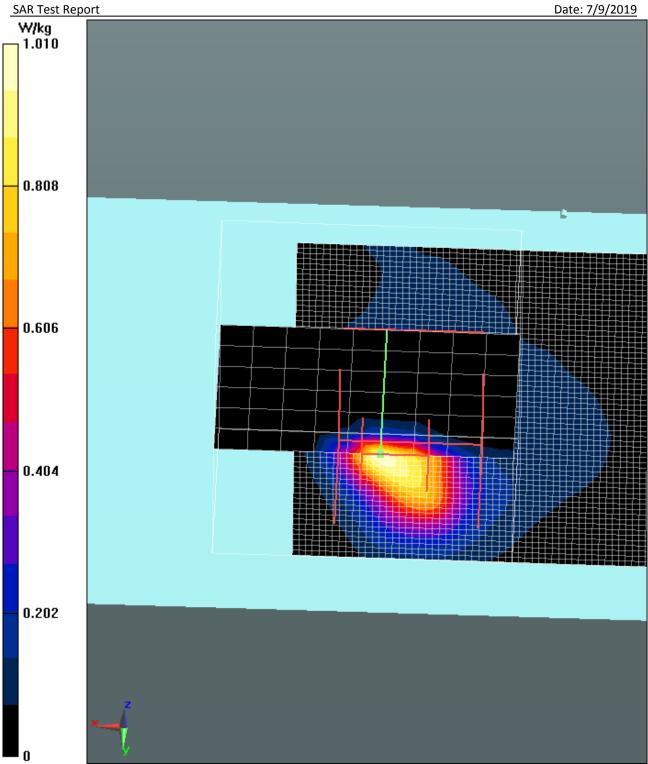
Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV3 SN3516; ConvF(3.86, 3.86, 3.86); Calibrated: 11/12/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 11/6/2018
- Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

## U-NII-3/802.11a ch 157 screen top side/Area Scan 2 (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.01 W/kg


# U-NII-3/802.11a ch 157 screen top side/Zoom Scan (10x9x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm Reference Value = 13.542 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 2.01 W/kg

# SAR(1 g) = 0.461 W/kg; SAR(10 g) = 0.115 W/kg

Maximum value of SAR (measured) = 1.17 W/kg







Date/Time: 5/22/2019 1:39:30 PM

Test Laboratory: Intertek

# **BT SAR**

Procedure Notes:

# DUT: Avery 6059; Serial: Sample 1

Communication System: UID 0, Generic Bluetooth (0); Communication System Band: 2.4Ghz ISM; Frequency: 2442 MHz;Duty Cycle: 1:1

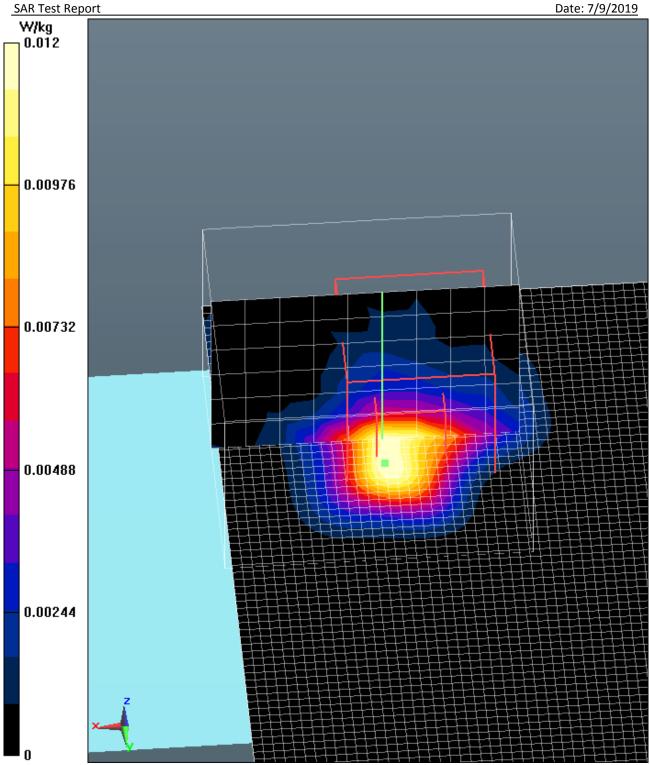
Medium parameters used (interpolated): f = 2442 MHz;  $\sigma$  = 2.02 S/m;  $\epsilon_r$  = 50.719;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV3 SN3516; ConvF(8.27, 8.27, 8.27); Calibrated: 11/12/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 11/6/2018
- Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

WWAN Flat-Section MSL Testing/BT Mid Channel, 0mm spacing, Top of Screen/Area Scan 2 (51x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 0.0122 W/kg

WWAN Flat-Section MSL Testing/BT Mid Channel, 0mm spacing, Top of Screen/Zoom Scan (10x9x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.250 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.0290 W/kg

SAR(1 g) = 0.00606 W/kg; SAR(10 g) = 0.00232 W/kg

Maximum value of SAR (measured) = 0.0104 W/kg







Date/Time: 5/31/2019 2:45:42 PM

Test Laboratory: Intertek File Name: <u>915MHz RFID SAR.da52:4</u>

## 915MHz RFID SAR

Procedure Notes:

# DUT: Avery 6059; Serial: Sample 1

Communication System: UID 0, RFID (0); Communication System Band: 915MHz; Frequency: 902.25 MHz;Duty Cycle: 1:1

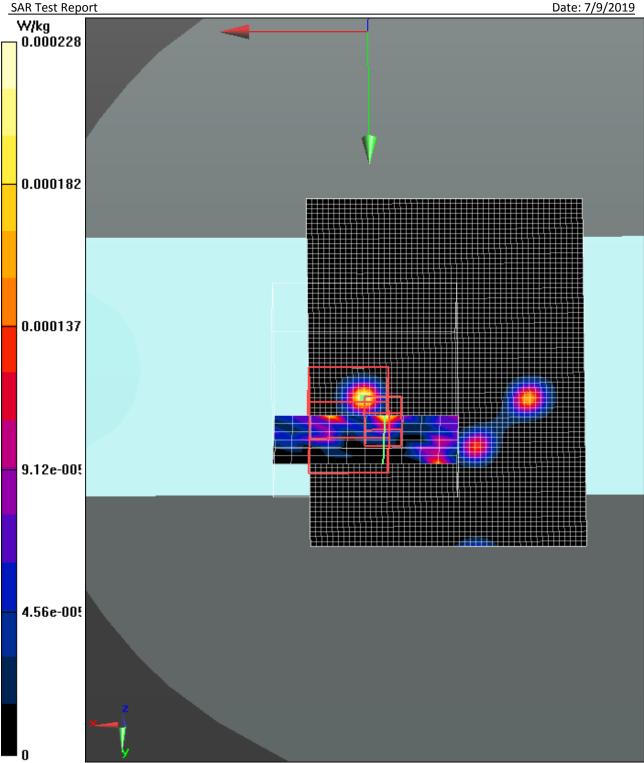
Medium parameters used (interpolated): f = 902.25 MHz;  $\sigma$  = 1.022 S/m;  $\epsilon$ r = 57.964;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV3 SN3516; ConvF(10.58, 10.58, 10.58); Calibrated: 11/12/2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 11/6/2018
- Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RFID Flat-Section MSL Testing/Top/Area Scan 2 (51x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 0.000228 W/kg

# RFID Flat-Section MSL Testing/Top/Zoom Scan (11x11x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm Reference Value = 0 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.000435 W/kg SAR(1 g) = 3.61e-004 W/kg; SAR(10 g) = 4.88e-005 W/kg

Maximum value of SAR (measured) = 0.000435 W/kg







# APPENDIX C – DIPOLE VALIDATION PLOTS

Date/Time: 5/20/2019 2:52:23 PM

Test Laboratory: Intertek File Name: <u>dipole 2450.da52:0</u>

# dipole\_2450

Procedure Notes: Ambient Temp: 22.8C, Fluid Temp: 22.2C

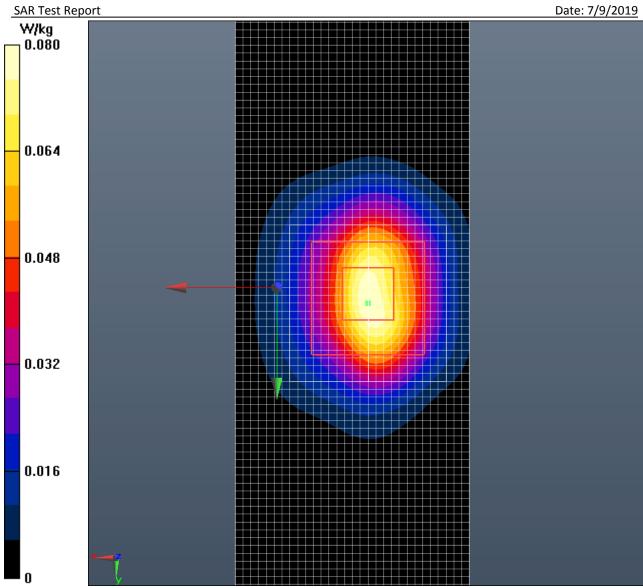
# DUT: Dipole 2450 MHz D2450V2; Serial: D2450V2 - SN:xxx

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz;Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz;  $\sigma$  = 2.02 S/m;  $\epsilon$ r = 50.71;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:


- Probe: EX3DV3 SN3516; ConvF(8.27, 8.27, 8.27); Calibrated: 11/12/2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 11/6/2018
- Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequencies below 1 GHz/d=10mm, Pin=100 mW, dist=2.0mm (EX-Probe)/Area Scan (31x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0798 W/kg

System Performance Check at Frequencies below 1 GHz/d=10mm, Pin=100 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.345 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 111 W/kg SAR(1 g) = 52 W/kg; SAR(10 g) = 23.5 W/kg

Normalized to target power = 1 W and actual power = 0.001 W Maximum value of SAR (measured) = 59.1 W/kg







Date/Time: 5/24/2019 9:44:57 AM

Test Laboratory: Intertek File Name: <u>dipole\_2450\_EU.da52:0</u>

# 12.1.4 dipole\_2450\_EU

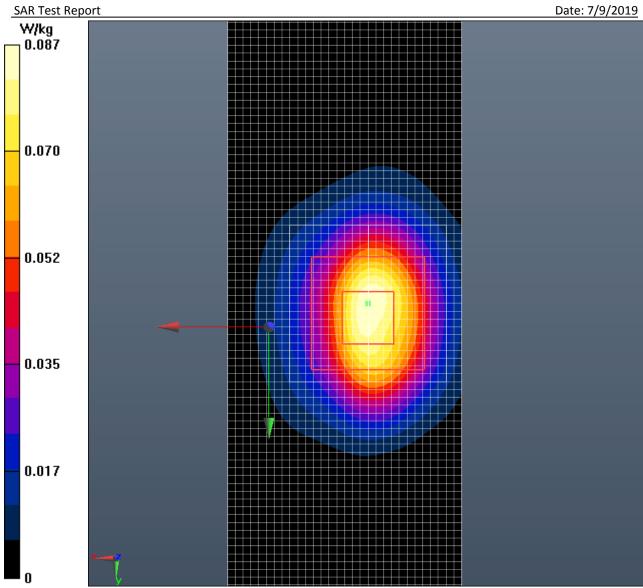
Procedure Notes: Ambient Temp: 22.8C, Fluid Temp: 22.2C

## DUT: Dipole 2450 MHz D2450V2; Serial: D2450V2 - SN:xxx

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz;Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz;  $\sigma$  = 1.88 S/m;  $\epsilon$ r = 37.97;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)


DASY5 Configuration:

- Probe: EX3DV3 SN3516; ConvF(8.14, 8.14, 8.14); Calibrated: 11/12/2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 11/6/2018
- Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequencies below 1 GHz/d=10mm, Pin=100 mW, dist=2.0mm (EX-Probe)/Area Scan (31x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0872 W/kg

System Performance Check at Frequencies below 1 GHz/d=10mm, Pin=100 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.650 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 117 W/kg SAR(1 g) = 54.8 W/kg; SAR(10 g) = 24.9 W/kg Normalized to target power = 1 W and actual power = 0.001 W Maximum value of SAR (measured) = 61.7 W/kg







Date/Time: 5/28/2019 10:44:04 AM

Test Laboratory: Intertek File Name: <u>dipole\_5GHz.da52:0</u>

# 12.1.5 dipole\_5GHz

Procedure Notes: Ambient Temp: 22.8C, Fluid Temp: 22.2C

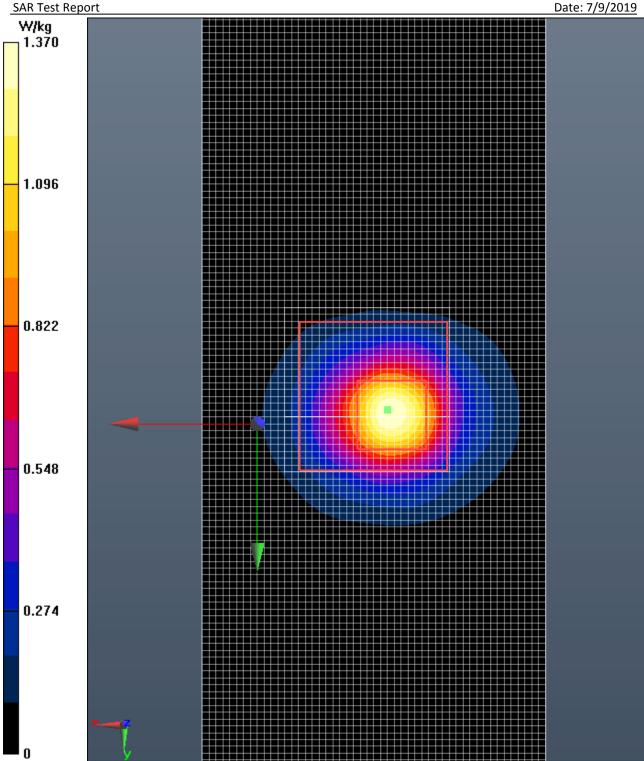
# DUT: Dipole D5GHzV2; Serial: D5GHzV2 - SN:xxx

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5200 MHz;Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz;  $\sigma$  = 5.3 S/m;  $\epsilon_r$  = 47.4;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:


- Probe: EX3DV3 SN3516; ConvF(4.53, 4.53, 4.53); Calibrated: 11/12/2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 11/6/2018
- Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequencies below 1 GHz/d=10mm, Pin=10 mW, dist=2.0mm (EX-Probe)/Area Scan (51x181x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.37 W/kg

System Performance Check at Frequencies below 1 GHz/d=10mm, Pin=10 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 16.876 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 256 W/kg SAR(1 g) = 67.8 W/kg; SAR(10 g) = 19.1 W/kg Normalized to target power = 1 W and actual power = 0.01 W

Maximum value of SAR (measured) = 164 W/kg







Date/Time: 5/28/2019 11:31:37 AM

Test Laboratory: Intertek File Name: <u>dipole\_5GHz.da52:0</u>

# 12.1.6 dipole\_5GHz

Procedure Notes: Ambient Temp: 22.8C, Fluid Temp: 22.2C

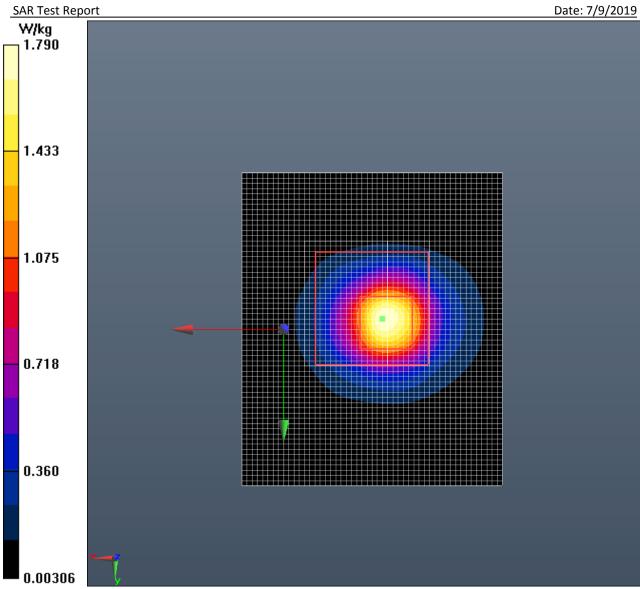
## DUT: Dipole D5GHzV2; Serial: D5GHzV2 - SN:xxx

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5500 MHz;Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz;  $\sigma$  = 5.868 S/m;  $\varepsilon_r$  = 48.74;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:


- Probe: EX3DV3 SN3516; ConvF(4.18, 4.18, 4.18); Calibrated: 11/12/2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 11/6/2018
- Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequencies below 1 GHz/d=10mm, Pin=10 mW, dist=2.0mm (EX-Probe) 2/Area Scan (51x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.79 W/kg

System Performance Check at Frequencies below 1 GHz/d=10mm, Pin=10 mW, dist=2.0mm (EX-Probe) 2/Zoom Scan (7x7x7) (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 17.582 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 340 W/kg SAR(1 g) = 83.3 W/kg; SAR(10 g) = 21.8 W/kg Normalized to target power = 1 W and actual power = 0.01 W

Maximum value of SAR (measured) = 210 W/kg







Date/Time: 5/28/2019 1:23:33 PM

Test Laboratory: Intertek File Name: <u>dipole\_5GHz.da52:0</u>

# 12.1.7 dipole\_5GHz

Procedure Notes: Ambient Temp: 22.8C, Fluid Temp: 22.2C

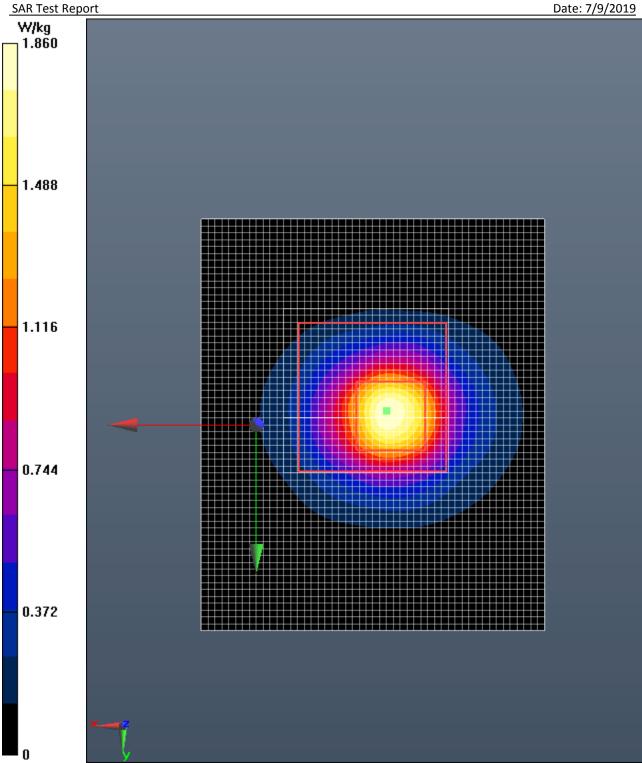
## DUT: Dipole D5GHzV2; Serial: D5GHzV2 - SN:xxx

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5800 MHz;  $\sigma$  = 6.294 S/m;  $\epsilon_r$  = 48.23;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:


- Probe: EX3DV3 SN3516; ConvF(3.86, 3.86, 3.86); Calibrated: 11/12/2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 11/6/2018
- Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequencies below 1 GHz/d=10mm, Pin=10 mW, dist=2.0mm (EX-Probe) 2 2/Area Scan (51x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.86 W/kg

System Performance Check at Frequencies below 1 GHz/d=10mm, Pin=10 mW, dist=2.0mm (EX-Probe) 2 2/Zoom Scan (7x7x7) (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 17.923 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 382 W/kg SAR(1 g) = 83.7 W/kg; SAR(10 g) = 23.1 W/kg Normalized to target power = 1 W and actual power = 0.01 W

Maximum value of SAR (measured) = 224 W/kg







Date/Time: 5/31/2019 11:21:57 AM

Test Laboratory: Intertek File Name: <u>dipole\_900MHz.da52:0</u>

# 12.1.8 dipole\_900MHz

Procedure Notes: Ambient Temp: 22.8C, Fluid Temp: 22.2C

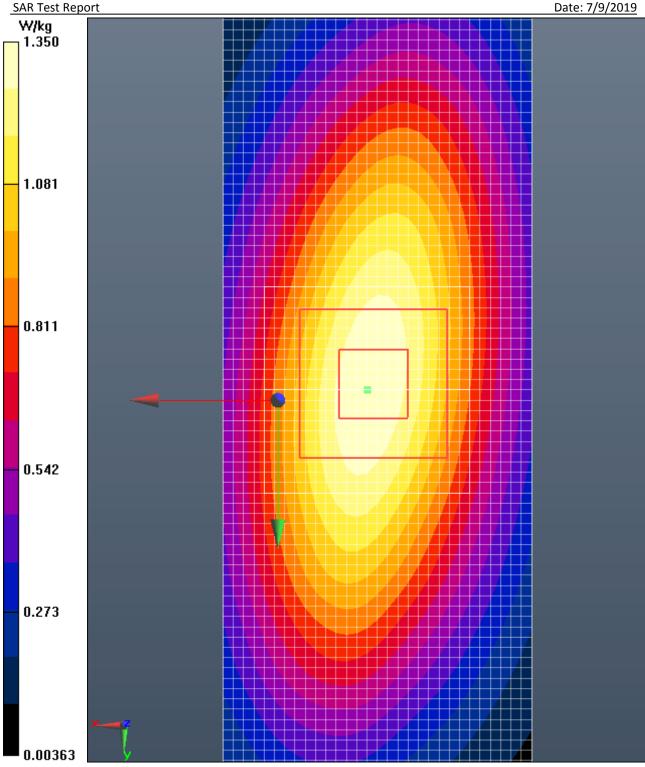
## DUT: Dipole 900 MHz D900V2; Serial: D900V2 - SN:xxx

Communication System: UID 0, CW (0); Communication System Band: D900 (900.0 MHz); Frequency: 900 MHz;Duty Cycle: 1:1

Medium parameters used: f = 900 MHz;  $\sigma$  = 1.02 S/m;  $\epsilon_r$  = 57.98;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:


- Probe: EX3DV3 SN3516; ConvF(10.58, 10.58, 10.58); Calibrated: 11/12/2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 11/6/2018
- Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequencies below 1 GHz/d=10mm, Pin=100 mW, dist=2.0mm (EX-Probe)/Area Scan (31x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.35 W/kg

System Performance Check at Frequencies below 1 GHz/d=10mm, Pin=100 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 36.740 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 16.3 W/kg SAR(1 g) = 11 W/kg; SAR(10 g) = 7.33 W/kg

Normalized to target power = 1 W and actual power = 0.1 W Maximum value of SAR (measured) = 11.8 W/kg



