	FCC TEST REPORT
	FOR
She	nzhen Linpa Technology Co.,Ltd
	Bluetooth Speaker
	Test Model: SBT608
	Additional Model No.: PBT608
Prepared for	: Shenzhen Linpa Technology Co.,Ltd
Address	: 114,C8, Flavor Commercial Street, Vanke Dream Town, Bantian, Longgang District, Shenzhen, Guangdong, 518102, China
Prepared by	: Shenzhen LCS Compliance Testing Laboratory Ltd.
Address	: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,
Tel	Bao'an District, Shenzhen, Guangdong, China : (+86)755-82591330
Fax	: (+86)755-82591332
Web	: www.LCS-cert.com
Mail	: webmaster@LCS-cert.com
Date of receipt of test sample	: September 03, 2016
Number of tested samples	: 1
Sample number	: Prototype
Date of Test	: September 05, 2016~October 18, 2016
Date of Report	: October 18, 2016

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 1 of 42 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: GTOSBT608 Report No.: LCS1609120749E

FC	FCC TEST REPORT CC CFR 47 PART 15 C(15.247): 201	5
Report Reference No		
Date of Issue	. : October 18, 2016	
Testing Laboratory Name	. : Shenzhen LCS Compliance Tes	ting Laboratory Ltd.
Address	. : 1/F., Xingyuan Industrial Park, To Bao'an District, Shenzhen, Guang	e
Testing Location/ Procedure	: Full application of Harmonised st	andards
	Partial application of Harmonised	I standards \square
	Other standard testing method \Box]
Applicant's Name	. : Shenzhen Linpa Technology Co	o.,Ltd
Address	. : 114,C8, Flavor Commercial Stree Bantian, Longgang District, Shen China	
Test Specification		
Standard	. : FCC CFR 47 PART 15 C(15.247)): 2015 / ANSI C63.10: 2013
Test Report Form No	.: LCSEMC-1.0	
TRF Originator	. : Shenzhen LCS Compliance Testin	ng Laboratory Ltd.
Master TRF	. : Dated 2011-03	
This publication may be reproduce Shenzhen LCS Compliance Testi of the material. Shenzhen LCS Co	ting Laboratory Ltd. All rights respect on whole or in part for non-commong Laboratory Ltd. is acknowledged a compliance Testing Laboratory Ltd. tages resulting from the reader's interpresented on the reader's interpresented.	ercial purposes as long as the as copyright owner and source kes no responsibility for and
Test Item Description	. : Bluetooth Speaker	
Trade Mark	. : Sharper Imag, Polaroid	
Test Model	. : SBT608	
Ratings	. : DC 3.7V by battery (1200mAh) Recharge Voltage: 5V-, 0.6 A	
Result	. : Positive	
Compiled by:	Supervised by:	Approved by:
Ada Libra	Supervised by.	Approved by.

Ada Lian

/25m

Cynums Lia

Ada Liang/ File administrators

Glin Lu/ Technique principal

Gavin Liang/ Manager

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 2 of 42

SHENZHEN LCS COMPLIANCE IESTING LABORATORY LTD. FCC ID: GTOSB1008 Report No.: LCS1009120/49	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: GTOSBT608	Report No.: LCS1609120749E
---	---	-------------------	----------------------------

FCC -- TEST REPORT

Test Report No. : LCS1609120749E

October 18, 2016 Date of issue

Test Model	: SBT608
EUT	: Bluetooth Speaker
Applicant	: Shenzhen Linpa Technology Co.,Ltd
Address	: 114,C8, Flavor Commercial Street, Vanke Dream Town, Bantian,
	Longgang District, Shenzhen, Guangdong, 518102, China
Telephone	:/
Fax	:/
Manufacturer	: LINPA WORLD., Ltd
Address	: Three Floor, B building, No 178, Jiaozhong Road, Shegu Bridge,
	Tanguia Dangguan CD China
	Tangxia, Dongguan, GD, China
Telephone	
Telephone Fax	:/
	:/
Fax	:/
Fax	:/
Fax	: / : / : LINPA WORLD., Ltd
Fax	 : / : LINPA WORLD., Ltd : Three Floor, B building, No 178, Jiaozhong Road, Shegu Bridge, Tangxia, Dongguan, GD, China
Fax Factory Address	 : / : LINPA WORLD., Ltd : Three Floor, B building, No 178, Jiaozhong Road, Shegu Bridge, Tangxia, Dongguan, GD, China : /

Test Result

Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: GTOSBT608 Report No.: LCS1609120749E

Revision History

Revision	Issue Date	Revisions	Revised By
00	2016-10-18	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 4 of 42

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1 Description of Device (EUT)	6
1.2 Support equipment List	6
1.3 External I/O	
1.4 Description of Test Facility	
1.5 List Of Measuring Equipment	
1.6 Statement of The Measurement Uncertainty	
1.7 Measurement Uncertainty	
1.8 Description Of Test Modes	
2. TEST METHODOLOGY	
2.1 EUT Configuration	
2.2 EUT Exercise	
2.3 General Test Procedures	
3. SYSTEM TEST CONFIGURATION	
3.1 Justification	
3.2 EUT Exercise Software	
3.3 Special Accessories	
3.4 Block Diagram/Schematics	
3.5 Equipment Modifications	
3.6 Test Setup	
4. SUMMARY OF TEST RESULTS	
	14
5. ANTENNA PORT MEASUREMENT	14
5.1 Maximum Conducted Output Power	
5.1 Maximum Conducted Output Power	
5.1 Maximum Conducted Output Power5.2 Frequency Separation And 20 dB Bandwidth5.3 Number Of Hopping Frequency	
 5.1 Maximum Conducted Output Power 5.2 Frequency Separation And 20 dB Bandwidth 5.3 Number Of Hopping Frequency 5.4 Time Of Occupancy (Dwell Time) 	
5.1 Maximum Conducted Output Power5.2 Frequency Separation And 20 dB Bandwidth5.3 Number Of Hopping Frequency	
 5.1 Maximum Conducted Output Power 5.2 Frequency Separation And 20 dB Bandwidth 5.3 Number Of Hopping Frequency 5.4 Time Of Occupancy (Dwell Time) 	14 15 20 22 24
 5.1 Maximum Conducted Output Power	14 15 20 22 24 24 28
 5.1 Maximum Conducted Output Power 5.2 Frequency Separation And 20 dB Bandwidth	
 5.1 Maximum Conducted Output Power	14 15 20 22 24 28 28 28
 5.1 Maximum Conducted Output Power	14 15 20 22 24 24 28 28 28 28 29 33
 5.1 Maximum Conducted Output Power	14 15 20 22 24 24 28 28 28 28 29 33 34
 5.1 Maximum Conducted Output Power	14 15 20 22 24 24 28 28 28 28 29 33 34 34
 5.1 Maximum Conducted Output Power	14 15 20 22 24 28 28 28 28 29 33 34 34 34 37
 5.1 Maximum Conducted Output Power	14 15 20 22 24 28 28 28 28 29 33 34 34 34 37
 5.1 Maximum Conducted Output Power	14 15 20 22 24 28 28 28 28 29 33 33 34 34 34 37 39
 5.1 Maximum Conducted Output Power	14 15 20 22 24 28 28 28 29 33 34 34 34 37 39 39
 5.1 Maximum Conducted Output Power	14 15 20 22 24 28 28 28 29 33 34 34 34 37 39 39
 5.1 Maximum Conducted Output Power	14 15 20 22 24 28 28 28 28 29 33 34 34 34 34 34 37 39 39 39
 5.1 Maximum Conducted Output Power	14 15 20 22 24 28 28 28 29 33 34 34 34 37 39 39 39 39 39 39
 5.1 Maximum Conducted Output Power	14 15 20 22 24 28 28 28 29 33 34 34 34 34 34 39 39 39 39 39 39 39 39

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 5 of 42

1. GENERAL INFORMATION

1.1 Description of Device (EUT)

EUT	: Bluetooth Speaker
Test Model	: SBT608
Hardware Version	• V1.0
Software Version	• V1.0
Power Supply	: DC 3.7 V by battery (1200mAh) Recharge Voltage: 5V=, 0.6 A
Frequency Range	: 2402.00-2480.00MHz
Channel Spacing	: 1MHz for Bluetooth V4.1 (DSS)
Channel Number	: 79 channels for Bluetooth V4.1 (DSS) (Channel Frequency=2402+1(K-1), K=1, 2, 379)
Modulation Type	: GFSK, π /4-DQPSK, 8-DPSK for Bluetooth V4.1 (DSS)
Bluetooth Version	: Bluetooth V4.1
Antenna Description	: Internal Antenna, 0dBi (Max.)

Additional models No.				
PBT608				
Remark: PCB board, structure and internal of these model(s) are the same, So no addi				
tional models were tested.				

1.2 Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate
Lenovo	PC	B470		DOC
Lenovo	AC/DC ADAPTER	ADP-90DDB		DOC

1.3 External I/O

I/O Port Description	Quantity	Cable
Charge Interface	1	N/A
AUX Port	1	N/A

1.4 Description of Test Facility

CNAS Registration Number. is L4595.

FCC Registration Number. is 899208.

Industry Canada Registration Number. is 9642A-1.

VCCI Registration Number. is C-4260 and R-3804.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

Report No.: LCS1609120749E

1.5 List Of Measuring Equipment

	-					
Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Cal Date	Due Date
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	2016/06/18	2017/06/17
Signal analyzer	Agilent	E4448A(External mixers to 40GHz)	US44300469	9kHz~40GHz	2016/07/16	2017/07/15
LISN	MESS Tec	NNB-2/16Z	99079	9KHz-30MHz	2016/06/18	2017/06/17
LISN (Support Unit)	EMCO	3819/2NM	9703-1839	9KHz-30MHz	2016/06/18	2017/06/17
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9KHz-30MHz	2016/06/18	2017/06/17
ISN	SCHAFFNER	ISN ST08	21653	9KHz-30MHz	2016/06/18	2017/06/17
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30M-18GHz	2016/06/18	2017/06/17
Amplifier	SCHAFFNER	COA9231A	18667	9kHz-2GHzz	2016/04/18	2017/04/17
Amplifier	Agilent	8449B	3008A02120	1GHz-26.5GHz	2016/04/18	2017/04/17
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5GHz-40GHz	2016/04/18	2017/04/17
Loop Antenna	R&S	HFH2-Z2	860004/001	9k-30MHz	2016/04/18	2017/04/17
By-log Antenna	SCHWARZBECK	VULB9163	9163-470	30MHz-1GHz	2016/04/18	2017/04/17
Horn Antenna	EMCO	3115	6741	1GHz-18GHz	2016/04/18	2017/04/17
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15GHz-40GHz	2016/04/18	2017/04/17
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz-1GHz	2016/06/18	2017/06/17
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz-40GHz	2016/06/18	2017/06/17
Power Meter	R&S	NRVS	100444	DC-40GHz	2016/06/18	2017/06/17
Power Sensor	R&S	NRV-Z51	100458	DC-30GHz	2016/06/18	2017/06/17
Power Sensor	R&S	NRV-Z32	10057	30MHz-6GHz	2016/06/18	2017/06/17
AC Power Source	HPC	HPA-500E	HPA-9100024	AC 0~300V	2016/06/18	2017/06/17
DC power Soure	GW	GPC-6030D	C671845	DC 1V-60V	2016/06/18	2017/06/17
Temp. and Humidigy Chamber	Giant Force	GTH-225-20-S	MAB0103-00	N/A	2016/06/18	2017/06/17
RF CABLE-1m	JYE Bao	RG142	CB034-1m	20MHz-7GHz	2016/06/18	2017/06/17
RF CABLE-2m	JYE Bao	RG142	CB035-2m	20MHz-1GHz	2016/06/18	2017/06/17
Signal Generator	R&S	SMR40	10016	10MHz~40GHz	2016/07/16	2017/07/15
Universal Radio Communication Tester	R&S	CMU200	112012	N/A	2015/10/27	2016/10/26
Wideband Radia Communication Tester	R&S	CMW500	1201.0002K50	N/A	2015/11/19	2016/11/18
MXG Vector Signal Generator	Agilent	N5182A	MY47071151	250KHz~6GHz	2015/10/27	2016/10/26
MXG Vector Signal Generator	Agilent	E4438C	MY42081396	250KHz~6GHz	2015/10/27	2016/10/26
PSG Analog Signal Generator	Agilent	N8257D	MY46520521	250KHz~20GHz	2015/11/19	2016/11/18
MXA Signal Analyzer	Agilent	N9020A	MY50510140	10Hz~26.5GHz	2015/10/27	2016/10/26
DC Power Supply	Agilent	E3642A	/	0-8V,5A/0-20V,2 .5A	2016/05/20	2017/05/19
RF Control Unit	Tonscend	JS0806-1	/	/	2015/11/19	2016/11/18
LTE Test Software	Tonscend	JS1120-1	/	Version: 2.5.7.0	N/A	N/A
X-series USB Peak and Aver age Power Sensor Agilent	Agilent	U2021XA	MY54080022	/	2015/10/27	2016/10/26
4 Ch.Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	MY54080016	/	2015/10/27	2016/10/26
Test Software	Ascentest	AT890-SW	20141230	Version: 20160630	N/A	N/A
Splitter/Combiner(Qty: 2)	Mini-Circuits	ZAPD-50W 4.2-6.0 GHz	NN256400424	/	2015/10/27	2016/10/26
Splitter/Combine(Qty: 2)	MCLI	PS3-7	4463/4464	/	2015/10/27	2016/10/26
ATT (Qty: 1)	Mini-Circuits	VAT-30+	30912	/	2015/10/27	2016/10/26

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 8 of 42

1.6 Statement of The Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.7 Measurement Uncertainty

Test Item	Frequency Range	Uncertainty	Note
	9KHz~30MHz	3.10dB	(1)
	30MHz~200MHz	2.96dB	(1)
Radiation Uncertainty :	200MHz~1000MHz	3.10dB	(1)
	1GHz~26.5GHz	3.80dB	(1)
	26.5GHz~40GHz	3.90dB	(1)
Conduction Uncertainty :	150kHz~30MHz	1.63dB	(1)
Power disturbance :	30MHz~300MHz	1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.8 Description Of Test Modes

Bluetooth operates in the unlicensed ISM Band at 2.4GHz. With the introduction of the enhanced data rate (EDR) feature, the data rates can be up to 3 Mb/s. An increase in the peak data rate beyond the basic rate of 1 Mb/s is achieved by modulating the RF carrier using GFSK techniques, resulting in an increase of two to three times the number of bits per symbol. The 2 Mb/s EDR packets use a π /4-DQPSK modulation and the 3 Mb/s EDR packets use 8DPSK modulation. The following operating modes were applied for the related test items. For radiated measurement, the test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position. All test modes were tested, only the result of the worst case was recorded in the report.

Mode of Operations	Frequency Range	Data Rate		
	(MHz)	(Mbps)		
	2402	1		
GFSK	2441	1		
	2480	1		
	2402	2		
π /4 DQPSK	2441	2		
	2480	2		
	2402	3		
8-DPSK	2441	3		
	2480	3		
H	For Conducted Emission			
Test Mode	,	TX Mode		
Test Mode	,	TX Mode		

Worst-case mode and channel used for 150kHz-30 MHz power line conducted emissions was the mode and channel with the highest output power, that was determined to be TX(1Mbps-Hopping Mode).

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was determined to be TX-Low Channel (2402MHz, 1Mbps).

***Note: Using a temporary antenna connector for the EUT when the conducted measurements are performed.

For pre-testing, when performed with LiPo Battery Charger, the input Voltage/Frequency AC 120V/60Hz and AC 240V/60Hz were used. Only recorded the worst case in this report.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2013, FCC CFR PART 15C 15.207, 15.209, 15.247 and DA 00-705.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209, 15.247 under the FCC Rules Part 15 Subpart C.

2.3 General Test Procedures

2.3.1 Conducted Emissions

According to the requirements in Section 6.2 of ANSI C63.10: 2013, AC power-line conducted emissions shall be measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table and the turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10: 2013

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a continuous transmit condition.

3.2 EUT Exercise Software

N/A.

3.3 Special Accessories

N/A.

3.4 Block Diagram/Schematics

Please refer to the related document.

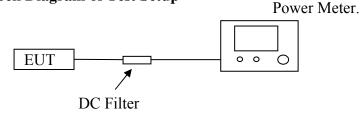
3.5 Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6 Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS


Applied Standard: FCC Part 15 Subpart C								
FCC Rules	Description of Test	Result						
§15.247(b)(1)	Maximum Conducted Output Power	Compliant						
§15.247(a)(1)	Frequency Separation And 20 dB Bandwidth	Compliant						
§15.247(a)(1)(iii)	Number Of Hopping Frequency	Compliant						
§15.247(a)(1)(iii)	Time Of Occupancy (Dwell Time)	Compliant						
§15.209, §15.247(d)	Radiated and Conducted Spurious Emissions	Compliant						
§15.205	Emissions at Restricted Band	Compliant						
§15.207(a)	Line Conducted Emissions	Compliant						
§15.203	Antenna Requirements	Compliant						

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 13 of 42

5. ANTENNA PORT MEASUREMENT

5.1 Maximum Conducted Output Power

5.1.1 Block Diagram of Test Setup

5.1.2 Limit

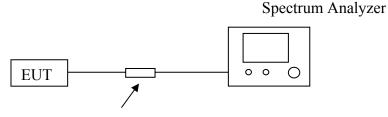
According to §15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

5.1.3 Test Procedure

The transmitter output is connected to the Power Meter.

5.1.4 Test Results

Channel	Frequency (MHz)	Output Power (dBm, Peak)	Output Power (mW)	Limit (mW)	Result
	2402	6.382	4.35	125	Pass
GFSK	2441	7.588	5.74	125	Pass
	2480	7.340	5.42	125	Pass
	2402	4.889	3.08	125	Pass
$\pi/4$	2441	6.807	4.79	125	Pass
DQPSK	2480	7.443	5.55	125	Pass
	2402	4.997	3.16	125	Pass
8-DPSK	2441	6.836	4.83	125	Pass
	2480	7.443	5.55	125	Pass


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 14 of 42

5.2 Frequency Separation And 20 dB Bandwidth

5.2.1 Limit

According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

5.2.2 Block Diagram of Test Setup

DC Filter

5.2.3 Test Procedure

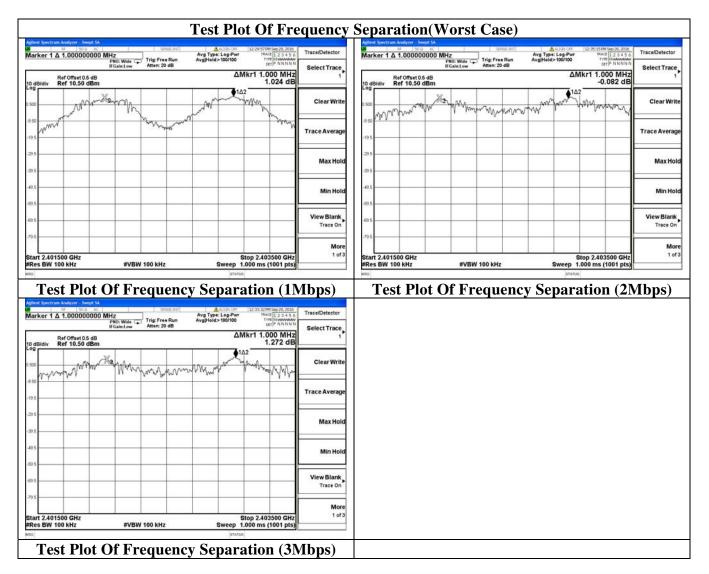
A. Place the EUT on the table and set it in transmitting mode.

- B. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.
- C. Set to the maximum power setting and enable the EUT transmit continuously.
- D. For carrier frequency separation measurement, use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels; RBW / VBW=100KHz / 300KHz; Sweep = auto; Detector function = peak; Trace = max hold.

E. For 20dB bandwidth measurement, use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; RBW/VBW=30KHz / 100KHz; Sweep = auto; Detector function = peak; Trace = max hold.

J.2.4	lest Results									
The Measurement Result With 1Mbps For GFSK Modulation										
	20dB Bandwidth Measurement									
C	hannel	20dB Ban	dwidth (MHz)	Lin	nit					
	Low	1	1.212	Non-spe	ecified					
1	Middle]	1.222	Non-specified						
	High]	1.222		ecified					
	C	hannel Separa	tion Measurement	t						
Channel	Channel Separ	ation (MHz)	Limit (N	IHz)	Result					
Low	1.000		0.808		Pass					
Middle	1.000		0.815		Pass					
High	1.000		0.815		Pass					


5.2.4	Test	Results
-------	------	---------

The Measurement Result With 2Mbps For π /4 DQPSK Modulation									
	20dB Bandwidth Measurement								
Channel20dB Bandwidth (MHz)Limit									
	Low	1	.212	Non-spe	cified				
1	Middle 1		1.221 Non-sp		pecified				
	High	1	1.219 Non-s		cified				
	С	hannel Separat	ion Measurement	ţ					
Channel	Channel Separ	ation (MHz)	Limit (N	IHz)	Result				
Low	1.000		0.808		Pass				
Middle	1.000		0.814	Ļ	Pass				
High	1.000		0.813		Pass				

The Measurement Result With 3Mbps For 8-DPSK Modulation									
	20dB Bandwidth Measurement								
C	hannel	20dB Ban	dwidth (MHz)	Lin	nit				
	Low]	1.205	Non-spe	ecified				
l	Middle		1.207 Nor		specified				
	High]	1.207	Non-specified					
	C	hannel Separa	tion Measuremen	t					
Channel	Channel Separ	ation (MHz)	Limit (N	IHz)	Result				
Low	1.000		0.803	3	Pass				
Middle	1.000		0.805		Pass				
High	1.00	0	0.805	5	Pass				

The test data refer to the following page.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 16 of 42 For Frequency Separation Measurement, the Low, Mid and High channels were performed and only recorded the worst test plots for Low in this report.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 17 of 42

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: GTOSBT608 Report No.: LCS1609120749E

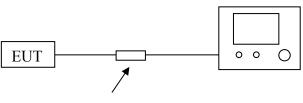
Measure	ement of	20dB Bandwidth
Algebreit Spectrum Anderzer - Occupied Bolf Concupied Spectrum Concupied Spectrum	Trace/Detector	Aglent Spectrum Analyzer - Occupied BW
000 000 100 300	Clear Write	Log 0.00 100 300
	Average	Average
	Max Hold	460
Center 2.402 GHz Span 3 MHz #Res BW 30 kHz Sweep 4.133 ms Occupied Bandwidth Total Power 10.5 dBm	Min Hold	Center 2.402 GHz Span 3 MHz #Res BW 30 kHz #VBW 100 kHz Sweep 4.133 ms Occupied Bandwidth Total Power 10.3 dBm
1.1650 MHz Transmit Freq Error 13.142 kHz OBW Power 99.00 % x dB Bandwidth 1.212 MHz x dB -20.00 dB	Detector Average≯ Auto Man	1.1641 MHz Detector Transmit Freq Error 13.747 kHz OBW Power 99.00 % x dB Bandwidth 1.212 MHz x dB -20.00 dB
Test frequency: 2402MHz(1Mbps	s)	Test frequency: 2402MHz(2Mbps)
Agthert Spectrum Analyser = Occupied BW 100 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trace/Detector	Agtivet Spectrum Analysm - Occupied BW 100 00 00 00 00 00 000 000 000 000 000
10 dB/div Ref 10.00 dBm	Clear Write	10 Bildiv Ref 10.00 dBm
400 600	Average	400 Average
	Max Hold	600 Max Hold
Center 2.441 GHz Span 3 MHz #Res BW 30 kHz Sweep 4.133 ms Occupied Bandwidth Total Power 12.6 dBm	Min Hold	Center 2.441 GHz Span 3 MHz #Res BW 30 kHz #VBW 100 kHz Sweep 4.133 ms Occupied Bandwidth Total Power 13.0 dBm
1.2157 MHz Transmit Freq Error 4.959 kHz OBW Power 99.00 % x dB Bandwidth 1.222 MHz x dB -20.00 dB	Detector Average≯ <u>Auto</u> Man	1.2098 MHz Detector Transmit Freq Error 4.828 kHz OBW Power 99.00 % x dB Bandwidth 1.221 MHz x dB -20.00 dB
Test frequency: 2441MHz(1Mbps	<u> </u>	Test frequency: 2441MHz(2Mbps)
Addient Spectrum Andrew : Conceled BW Center Freq 2.480000000 GHz Fill Grain.Lew Radio Stat: None Radio Stat: None Radio Device: BTS Ref Offset 0.5 dB	Trace/Detector	Applied Synethes Andrywer - Occepted EW Center Freq 2.480000000 GHz // Gainst.ew // Gainst.ew Ref Offset 0.5 dB Ref Offset 0.5 dB
	Clear Write	Clear Write
	Average	400 Average
370	Max Hold	70 0 Max Hold
#Res BW 30 kHz #VBW 100 kHz Sweep 4.133 ms Occupied Bandwidth Total Power 13.7 dBm	Min Hold	PRes BW 30 kHz #VBW 100 kHz Sweep 4.133 ms Occupied Bandwidth Total Power 13.5 dBm
1.2122 MHz Transmit Freq Error 4.815 kHz OBW Power 99.00 % x dB Bandwidth 1.222 MHz x dB -20.00 dB	Detector Average≯ <u>Auto</u> Man	1.2096 MHz Detector Transmit Freq Error 2.645 kHz OBW Power 99.00 % x dB Bandwidth 1.219 MHz x dB -20.00 dB
Toot from on 2490MHz(1Mbro		Toot far own ove 2480MUz(2Mbac)

Test frequency: 2480MHz(1Mbps)

Test frequency: 2480MHz(2Mbps)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 18 of 42

		Measure	ment of	20dB Bandw	ridth			
Agtient Spectrum Analyzer - Occupied EW B FP 50 % AC Center Freq 2.402000000 GHz FFGalact Ref Offset 0.5 dB T0 dB/div	Center Freq: 2.402000000 GHz Trig: Free Run Avg Hold>	ALIGN OFF 11:02:50 AM Sep 20, 2015 Radio Std: None	Trace/Detector	Advient Spectrum Analyzer - Occupied 29 Ref Value 10.00 dBm Ref Value 10.00 dBm 10 dB/div Ref 10.00 dBm	IFGain:Low Atten: 3	req: 2.441000000 GHz e Run Avg Hold: 0 dB	ALION CEE 111 02:51 AM Sep 28, 2016 Radie Std: None Radie Device: BTS	Trace/Detector
Log 0.00 10.0 20.0	m		Clear Write	1000 -100 -200	- market	m	\	Clear Write
300 400		m	Average	-30.0			mann	Average
-70.0 -70.0 -80.0			Max Hold	-60.0 -70.0 -80.0				Max Hold
Center 2.402 GHz #Res BW 30 kHz	#VBW 100 kHz	Span 3 MHz Sweep 4.133 ms	Min Hold	Center 2.441 GHz #Res BW 30 kHz	54.0	BW 100 kHz	Span 3 MHz Sweep 4.133 ms	Min Hold
	Total Power MHZ 262 kHz OBW Power 205 MHz x dB	10.7 dBm 99.00 % -20.00 dB	Detector Average≯ <u>Auto</u> Man	Occupied Bandwidti 1. Transmit Freq Error x dB Bandwidth	h 1871 MHz 21.146 kHz 1.207 MHz	Total Power OBW Power x dB	13.0 dBm 99.00 % -20.00 dB	Detector Average≯ Auto Man
MSG		STATUS		MIG	_		STATUS	
Adrent Spectrum Analyzer - Occupied 19/ 1900 - 40 Center Freq 2.480000000 GHz #FGaind 0 dB/div Ref 00fset 0.5 dB	Center Freq: 2.480000000 GHz Trig: Free Run Avg Hold>	Radio Std: None	Trace/Detector	10511	requency	y. 2 44 11)	MHz(3Mbps	<i>.</i> ,
100 -100	manum	V.	Clear Write					
400 400 600		Marine Marine	Average					
-70.0 -80.0 Center 2.48 GHz		Span 3 MHz	Max Hold					
#Res BW 30 kHz Occupied Bandwidth	#VBW 100 kHz Total Power	Sweep 4.133 ms 13.7 dBm	Min Hold					
	MHZ 317 kHz OBW Power 207 MHz x dB	99.00 % -20.00 dB	Detector Average≯ <u>Auto</u> Man					
MSG		STATUS						
Test free	quency: 2480N	1Hz(3Mbps	s)					


5.3 Number Of Hopping Frequency

5.3.1 Limit

According to §15.247(a)(1)(iii), Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

5.3.2 Block Diagram of Test Setup

Spectrum Analyzer

DC Filter

5.3.3 Test Procedure

- A. Place the EUT on the table and set it in transmitting mode.
- B. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.
- C. Set Spectrum Analyzer Start=2400MHz, Stop = 2483.5MHz, Sweep = auto.
- D. Set the Spectrum Analyzer as RBW, VBW=1MHz.
- E. Max hold, view and count how many channel in the band.

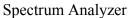
5.3.4 Test Results

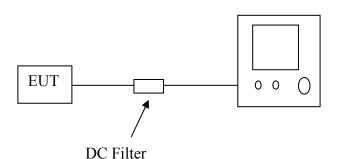
Test Mode	Measurement Result (No. of Ch)	Limit (No. of Ch)	Result
Hopping(GFSK)	79	≥15	Pass
Hopping(π /4-DQPSK)	79	≥15	Pass
Hopping(8-DPSK)	79	≥15	Pass

The worst test data refer to the following page.

									Analyzer - Swe		
Trace/Detector	1 Sep 28, 2016 E 1 2 3 4 5 6 E MWWWWW	TRAC	ALIGN OFF e: Log-Pwr I:>100/100	Avg Typ				00000 M	RF 50 Ω 78.00000		<mark>x</mark> Marl
Select Trace		DE	ANY THE CONTROL OF STREET	Arginoic		Atten: 2	NO: Fast 🔾 Gain:Low				
1	0 MHz 119 dB	r1 78.000 3	ΔMkr						ef Offset 0.5 ef 10.50 c		10 dE
Clear Write	····· \ ∆2			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	****	www	~~~~~~	******	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X 2	Log
										1	0.500
		6			8						-9.50
Trace Average		~									-19.5
	۱ ۱		-							7	-29.5
Max Hold											-39.5
											-49.5
Min Hold											
	8				8	6				0	-59.5
View Blank Trace On						-				-	-69.5
		6								5	-79.5
More 1 of 3											
	3350 GHz 1001 pts)	Stop 2.48 1.000 ms (Sweep 1		z	(1.0 MHz	#VBW			t 2.40000 s BW 1.0	
Ľ		JS	STATU								MSG

Test Plot For Number of Hopping Channel (GFSK / Worst Case)


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 21 of 42


5.4 Time Of Occupancy (Dwell Time)

5.4.1 Limit

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

5.4.2 Block Diagram of Test Setup

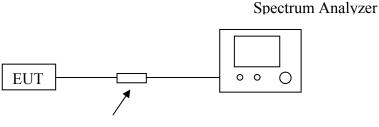

5.4.3 Test Procedure

- A. Place the EUT on the table and set it in transmitting mode.
- B. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.
- C. Set center frequency of Spectrum Analyzer = operating frequency.
- D. Set the Spectrum Analyzer as RBW, VBW=1MHz, Span = 0Hz, Sweep = auto.
- E. Repeat above procedures until all frequency measured were complete.

The Measurement Result With The Worst Case of 1Mbps For GFSK Modulation									
Channel	Time of Pulse for DH5 (ms)	Period Time (s)	Sweep Time (ms)	Limit (ms)					
Low	2.920	31.6	311.47	400					
Middle	2.960	31.6	315.73	400					
High	2.960	31.6	315.73	400					

5.4.4 Test Results

Calculation formula: Dwell Time(DH5)=Burst Length(ms)*(1600/6)/79*31.6


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 23 of 42

5.5 Conducted Spurious Emissions and Band Edges Test

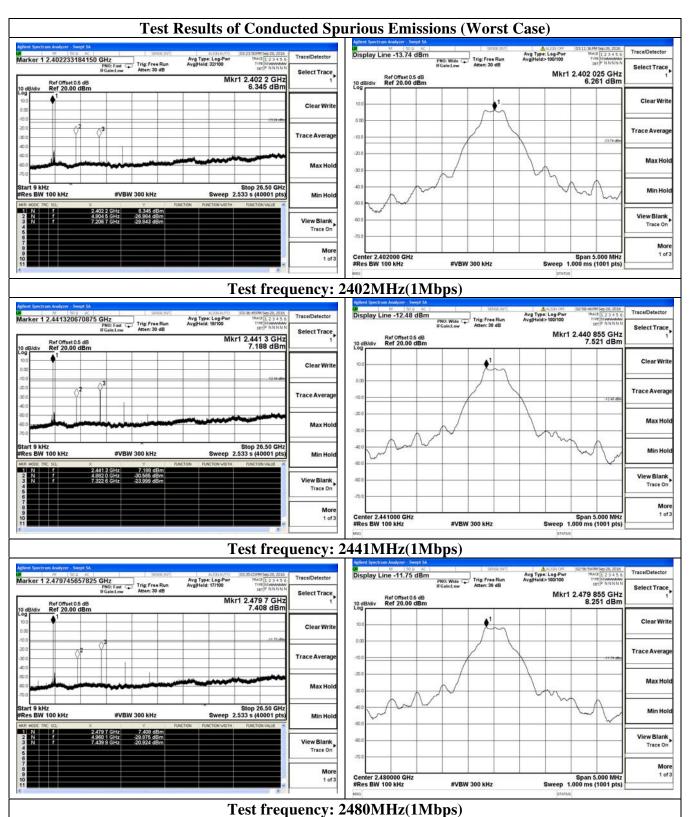
5.5.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a)is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see§15.205(c)).

5.5.2 Block Diagram of Test Setup

DC Filter

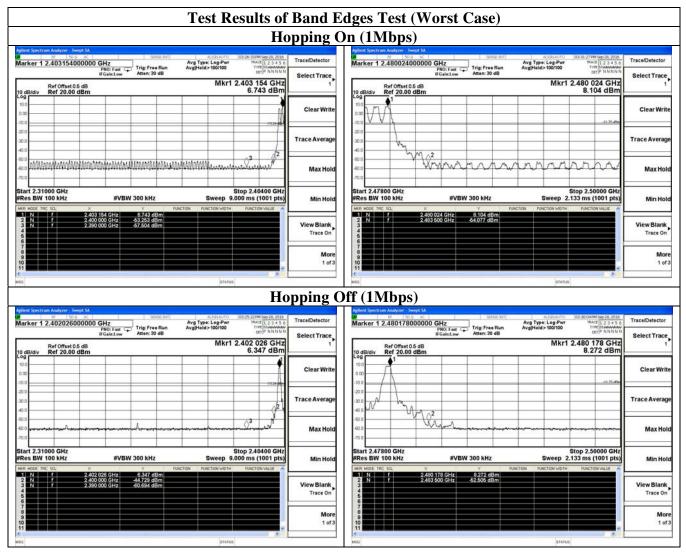
5.5.3 Test Procedure


Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 KHz. The video bandwidth is set to 300 KHz.

Measurements are made over the 9kHz to 26.5GHz range with the transmitter set to the lowest, middle, and highest channels

5.5.4 Test Results of Conducted Spurious Emissions


No non-compliance noted. Only record the worst test result (TX-GFSK) in this report. The test data refer to the following page.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 25 of 42

5.5.5 Test Results of Band Edges Test

No non-compliance noted. Only record the worst test result in this report. The test data refer to the following page.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 26 of 42

	advzer - Sweet SA	pping C	110	trum Analyzer - Swept SA	a front of the second second
Trace/Detecto	# 50 g AC SEMERENT ALSONAUTO (04:34:40PM Sep 20, 20	Trace/Detector	AUXIAUTO 04:29:08PM Sep 28, 2016 Avg Type: Log.Pwr TRACE 1 2 3 4 5 6	NF 50.0 AC SEMIE.247	
NV IN	ISO024000000 GHz Avg Type: Leg.Pwr PN0: Fast Trig: Free Run Avg]Held>100/100 Trig: Pree Run Avg]Held>100/100 Oct PNNIJ		Avg Type: Log-Pwr Avg Hold>100/100 Det P N N N N N	1 2.40400000000 GHz PNO: Fast Trig: Free Run B Gain: Low Atten: 30 dB	arker 1 2.4
z Select Trac	Mkr1 2.480 024 GH	Select Trace	Mkr1 2.404 000 GHz	Ref Offset 0.5 dB	P
n	ef 20.00 dBm 7.313 dBr		5.284 dBm	Ref 20.00 dBm	dB/div R
ClearW	1	Clear Write	1 JA		00 00 00
Trace Avera	lm nn 2	Trace Average			0.0 0.0
Max H	- Mannana manna	Max Hold	Un William and a fragment	and which we are a subscription of the second	00 00 MMAnu
iz s) Min H	O GHz Stop 2.50000 GH 0 KHz #VBW 300 kHz Sweep 2.133 ms (1001 pt 0 L X Y Function	Min Hold	Stop 2.40400 GHz Sweep 9.000 ms (1001 pts) FUNCTION FUNCTION WOTH FUNCTION WALKE	/ 100 kHz #VBW 300 kHz	art 2.31000 Res BW 100
View Blan Trace C	2,480 024 GHz 7,313 dBm 7 2,483 500 GHz 49,284 dBm	View Blank Trace On	Fore from Fore from which Fore from the de	f 2.404 000 GHz 5.294 dBm f 2.400 000 GHz -51.716 dBm f 2.390 000 GHz -59.970 dBm	
- Mi 1.	bps)	More 1 or 3	status Ho		
Trace/Detecto	bbps) memory dama & A memor	1 of 3	Avg Type: Log-Pwr AvgTrieid: 100/20 Tree: Do: 2016 Tree: Log-Pwr AvgTrieid: 100/100	Inne Audrine - Sweet SA In 2000 AC 2.402214000000 GHz Project Autor Broancar Broancar	
20 5 6 5 6 WWW Select Trace	Margarer - Sweet d All All (Statute of the statute of th	1 or 3 pping C	HO	12.402214000000 GHz IFGeint.tow Ref Offset 0.5 dB	arker 1 2.4 Ri
20 5 6 5 6 WWW Select Trace	Busic Busic <th< td=""><td>1 or 3 pping C</td><td>Hoo</td><td>12.402214000000 GHz PN0: Fast C</td><td>arker 1 2.4</td></th<>	1 or 3 pping C	Hoo	12.402214000000 GHz PN0: Fast C	arker 1 2.4
20 5 5 5 5 5 5 5 5 5 5 5 5 5	Margine - Sweet 6A Stree 3x1 Aug 1/201 OU.201 OU.201 <thou.201< th=""> <thou.201< th=""></thou.201<></thou.201<>	1 of 3 pping C Trace/Detector Select Trace, 1	Hoo	12.402214000000 GHz IFGeint.tow Ref Offset 0.5 dB	arker 1 2.4
x 11	Busyle Server 3 March 10 Server 3 March 10 Server 3 March 10 Server 3 March 10 Server 3 March 100	Trace/Detector Select Trace, Clear Write	Hoo	12.402214000000 GHz IFGeint.tow Ref Offset 0.5 dB	arker 1 2.4
Trace/Detecto Select Trac Clear W Trace Avera Max H	By Solution State of the solution State	Trace/Detector Select Trace Clear Write	Hoo	With State With State 12.402214000000 GHz Trigs Free Run Blank 30 dB Ref Other 0.5 dB Ref 20.00 dBm Image: State State State Image: State Sta	dB/div R dB/div R dB/
Trace/Detects	Marrier Sweed Marrier Area Type: Leg Prov Marrier Sweed Marrier 179870000000 GHz Trigs Free Run Arg Type: Leg Prov Marrier Sweed Marrier ef Offset D.5 dB Freisin Lew Trigs Free Run Arg Type: Leg Prov Marrier Sweed Marrier ef Offset D.5 dB Mkr1 2.479 870 GH Trigs Free Run Mkr1 2.479 870 GH ef Offset D.5 dB Mkr1 2.479 870 GH Trigs Free Run Arg Type: Leg Prov ef Offset D.5 dB Mkr1 2.479 870 GH Trigs Free Run Arg Type: Leg Prov ef Offset D.5 dB Mkr1 2.479 870 GH Trigs Free Run Arg Type: Leg Prov of Offset D.5 dB Gradue Harge Harge Type: Leg Prov Harge Type: Leg Prov of Offset D.5 dB Gradue Harge Type: Leg Prov Harge Type: Leg Prov Harge Type: Leg Prov of Offset D.5 dB Gradue Harge Type: Leg Prov Harge Type: Leg Prov Harge Type: Leg Prov Harge Type: Leg Prov of Offset D.5 dB Gradue Harge Type: Leg Prov Harge Type: Leg Prov Harge Type: Leg Prov Harge Type: Leg Prov 0 GHz Stop 2.50000 GH Harge Type: Leg Prov Stop 2.50000 GH Harge Type: Leg Type: Leg Type: L	Trace/Detector Select Trace 1 Clear Write Trace Average Max Hold	Hoo	With State With State 12.402214000000 GHz Trigs Free Run Blank 30 dB Ref Other 0.5 dB Ref 20.00 dBm Image: State State State Image: State Sta	and Spectrum A arker 1 2.4 arker 1 2.4 ark

6. RADIATED MEASUREMENT

6.1 Standard Applicable

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies(MHz)	Field Strength(microvolts/meter)	Measurement Distance(meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

6.2 Instruments Setting

The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
Receiver Parameter	Setting

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for QP

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 28 of 42

6.3 Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 0.8mm height is used.

--- If the EUT is a floor-standing and typically installed with its base in direct electrical contact with, or connected to, a grounded metal floor or grid, the EUT shall be connected to, or placed directly on, the test site (or turntable) reference ground plane in a manner representative of this contact or connection.

---If the EUT is a floor-standing and not typically installed with its base in direct electrical contact with, or connected to, a metal floor or grid, the EUT shall not be placed in direct electrical contact with the test site (or turntable) reference ground plane. If necessary to prevent direct metallic contact of the EUT and the reference ground plane, insulating material (up to 12 mm thick) shall be placed under the EUT.

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna height is 0.8 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8m height is used, which is placed on the ground plane.

--- If the EUT is a floor-standing and typically installed with its base in direct electrical contact with, or connected to, a grounded metal floor or grid, the EUT shall be connected to, or placed directly on, the test site (or turntable) reference ground plane in a manner representative of this contact or connection.

--- If the EUT is a floor-standing and not typically installed with its base in direct electrical contact with, or connected to, a metal floor or grid, the EUT shall not be placed in direct electrical contact with the test site (or turntable) reference ground plane. If necessary to prevent direct metallic contact of the EUT and the reference ground plane, insulating material (up to 12 mm thick) shall be placed under the EUT.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position $(\pm 45^\circ)$ and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 30 of 42

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user ---The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor-standing and typically installed with its base in direct electrical contact with, or connected to, a grounded metal floor or grid, the EUT shall be connected to, or placed directly on, the test site (or turntable) reference ground plane in a manner representative of this contact or connection.

--- If the EUT is a floor-standing and not typically installed with its base in direct electrical contact with, or connected to, a metal floor or grid, the EUT shall not be placed in direct electrical contact with the test site (or turntable) reference ground plane. If necessary to prevent direct metallic contact of the EUT and the reference ground plane, insulating material (up to 12 mm thick) shall be placed under the EUT.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 31 of 42

4) Sequence of testing above 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor-standing and typically installed with its base in direct electrical contact with, or connected to, a grounded metal floor or grid, the EUT shall be connected to, or placed directly on, the test site (or turntable) reference ground plane in a manner representative of this contact or connection.

--- If the EUT is a floor-standing and not typically installed with its base in direct electrical contact with, or connected to, a metal floor or grid, the EUT shall not be placed in direct electrical contact with the test site (or turntable) reference ground plane. If necessary to prevent direct metallic contact of the EUT and the reference ground plane, insulating material (up to 12 mm thick) shall be placed under the EUT.

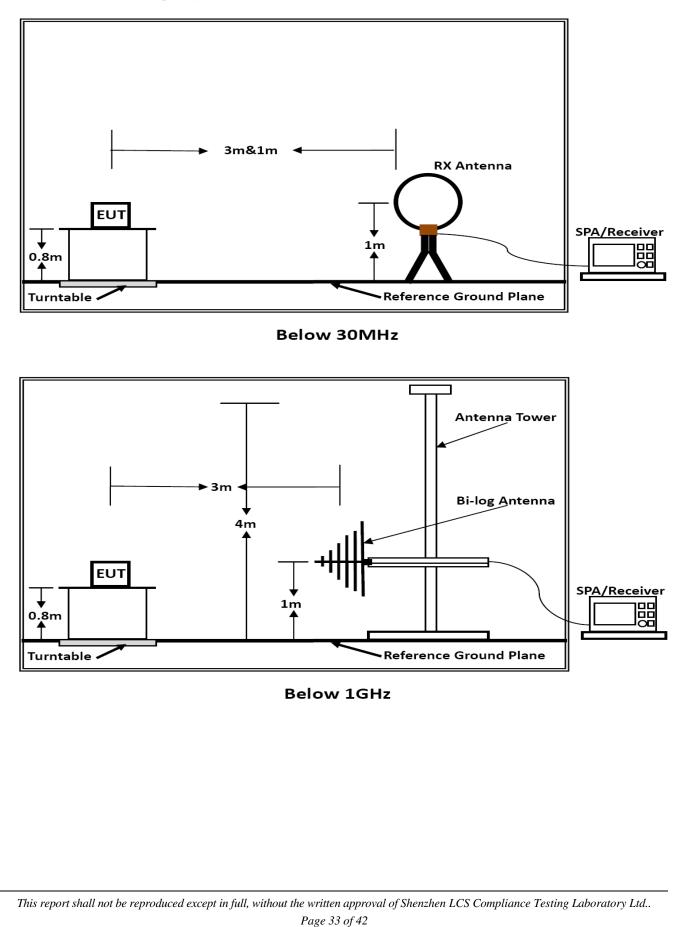
--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

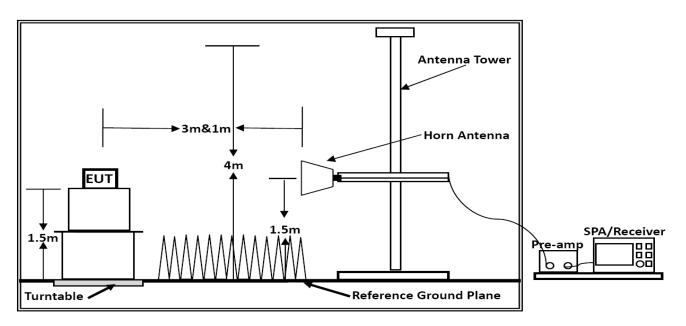
--- The measurement distance is 1 meter.

--- The EUT was set into operation.

Premeasurement:


--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

Final measurement:


--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

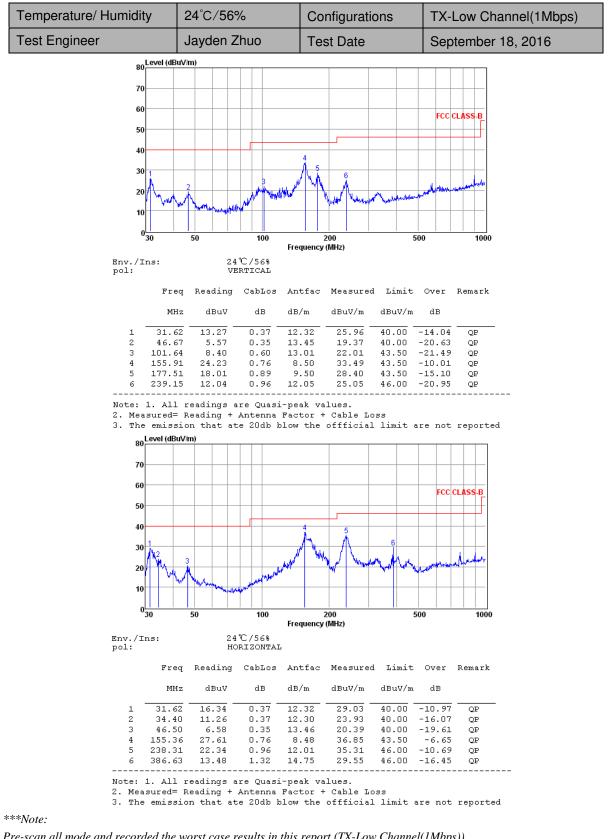
6.4 Test Setup Layout

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: GTOSBT608 Report No.: LCS1609120749E

Above 1GHz

6.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.


6.6 Results for Radiated Emissions

PASS.

Only record the worst test result in this report. The radiated emissions from 9kHz to 30MHz are at least 20dB below the official limit and no need to report. The test data please refer to following page:

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 34 of 42

Below 1GHz

Pre-scan all mode and recorded the worst case results in this report (TX-Low Channel(1Mbps)). Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 35 of 42

Above 1GHz

The worst test result for GFSK, Tx-Low Channel:

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4804.19	47.84	33.06	35.04	3.94	49.80	74	-24.20	Peak	Horizontal
4804.19	37.57	33.06	35.04	3.94	39.53	54	-14.47	Average	Horizontal
4804.14	52.38	33.06	35.04	3.94	54.34	74	-19.66	Peak	Vertical
4804.20	33.57	33.06	35.04	3.94	35.53	54	-18.47	Average	Vertical

The worst test result for GFSK, Tx-Middle Channel:

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4882.21	44.34	33.16	35.15	3.96	46.31	74	-27.69	Peak	Horizontal
4882.20	37.52	33.16	35.15	3.96	39.49	54	-14.51	Average	Horizontal
4882.14	45.79	33.16	35.15	3.96	47.76	74	-26.24	Peak	Vertical
4882.24	34.41	33.16	35.15	3.96	36.38	54	-17.62	Average	Vertical

The worst test result for GFSK, Tx-High Channel:

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4960.31	43.19	33.26	35.14	3.98	45.29	74	-28.71	Peak	Horizontal
4960.38	32.37	33.26	35.14	3.98	34.47	54	-19.53	Average	Horizontal
4960.25	45.82	33.26	35.14	3.98	47.92	74	-26.08	Peak	Vertical
4960.36	36.54	33.26	35.14	3.98	38.64	54	-15.36	Average	Vertical

Notes:

1. Measuring frequencies from 9k~10th harmonic (ex. 26GHz), No emission found between lowest internal used/generated frequency to 30MHz.

2. Radiated emissions measured in frequency range from 9k~10th harmonic (ex. 26GHz) were made with an instrument using Peak detector mode.

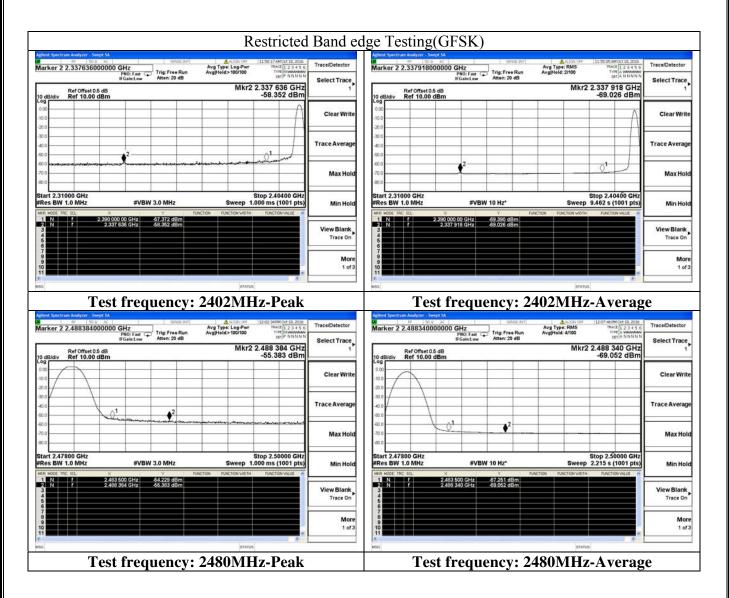
3. 18~25GHz at least have 20dB margin. No recording in the test report.

6.7 Results for Band edge Testing (Radiated)

Note: Only recorded the worst test result.

Tx-2402, GFSK, Non-hopping

Freq. MHz	Reading Level dBm	Antenna Gain dBi	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark
2337.64	-58.35	0.00	36.85	74	-37.15	Peak
2337.92	-69.03	0.00	26.17	54	-27.83	Average
2390.00	-57.37	0.00	37.83	74	-36.17	Peak
2390.00	-69.39	0.00	25.81	54	-28.19	Average


Tx-2480, GFSK, Non-hopping

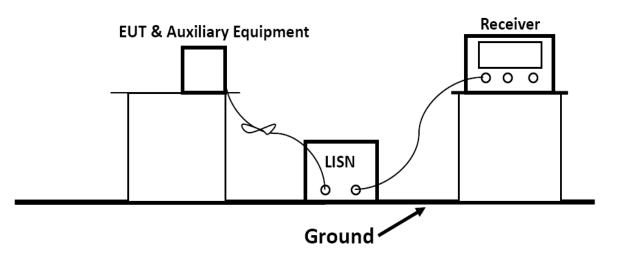
Freq. MHz	Reading Level dBm	Antenna Gain dBi	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark
2483.50	-54.23	0.00	40.97	74	-33.03	Peak
2483.50	-67.25	0.00	27.95	54	-26.05	Average
2488.38	-55.38	0.00	39.82	74	-34.18	Peak
2588.34	-69.05	0.00	26.15	54	-27.85	Average

Note:

1). All modes have been tested and we only record the worst test result;

2). Measured E=Reading Level+Antenna Gain+95.2

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 38 of 42


7. LINE CONDUCTED EMISSIONS

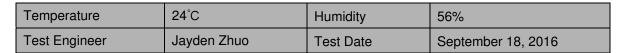
7.1 Standard Applicable

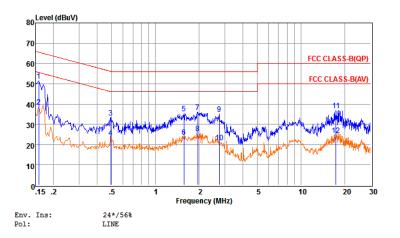
According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolt (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Fraguency Dange (MIIg)	Limits (dB	uV)		
Frequency Range(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

7.2 Block Diagram of Test Setup

7.3 Test Results

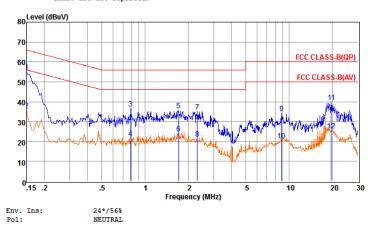

PASS.


The test data please refer to following page.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 39 of 42

FCC ID: GTOSBT608 R

Report No.: LCS1609120749E



Freq Reading LisnFac CabLos Atten_Fac Measured Limit Over Remark

MHz	dBuV	dB	dB	dB	dBuV	dBuV	dB	
1 0.15816 2 0.15826 3 0.49411 4 0.49421 5 1.56837 6 1.56937 7 1.94890 8 1.94990 9 2.75015	31.83 19.04 13.78 3.75 15.67 4.02 16.34 5.97 15.33	9.58 9.58 9.62 9.64 9.64 9.64 9.64 9.64	0.02 0.02 0.04 0.04 0.05 0.05 0.05 0.05 0.05	10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	51.43 38.64 33.44 23.41 35.36 23.71 36.03 25.66 35.02	65.56 55.55 56.10 46.10 56.00 46.00 56.00 46.00 56.00	-14.13 -16.91 -22.66 -22.69 -20.64 -22.29 -19.97 -20.34 -20.98	QP Average QP Average QP Average QP Average QP
10 2.75115 1117.38262 1217.38362	1.28 17.07 4.85	9.64 9.73 9.73	0.05 0.11 0.11	10.00 10.00 10.00	20.97 36.91 24.69	46.00 60.00 50.00	-25.03 -23.09 -25.31	Average QP Average

Remarks: 1. Measured = Reading + Lisn Factor +Cable Loss+Atten_Fac. 2. The emission levels that are 20dB below the official limit are not reported.

	Freq	Reading	LisnFac	CabLos	Atten_Fac	Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dB	
1	0.15000	35.37	9.70	0.02	10.00	55.09	66.00	-10.91	QP
2	0.15010	15.90	9.70	0.02	10.00	35.62	55.99	-20.37	Average
3	0.79180	16.87	9.63	0.04	10.00	36.54	56.00	-19.46	QP
4	0.79190	2.13	9.63	0.04	10.00	21.80	46.00	-24.20	Average
5	1.70712	15.87	9.63	0.05	10.00	35.55	56.00	-20.45	QP
6	1.70812	4.48	9.63	0.05	10.00	24.16	46.00	-21.84	Average
7	2.30899	15.48	9.63	0.05	10.00	35.16	56.00	-20.84	QP
8	2.30999	1.65	9.63	0.05	10.00	21.33	46.00	-24.67	Average
9	8.86920	14.37	9.71	0.08	10.00	34.16	60.00	-25.84	QP
10	8.87020	0.77	9.71	80.0	10.00	20.56	50.00	-29.44	Average
111	9.63536	19.80	9.88	0.12	10.00	39.80	60.00	-20.20	QP
121	9.63636	5.64	9.88	0.12	10.00	25.64	50.00	-24.36	Average

Remarks: 1. Measured = Reading + Lisn Factor +Cable Loss+Atten_Fac. 2. The emission levels that are 20dB below the official

limit are not reported.

Note: Pre-scan all modes and recorded the worst case results in this report.(AC 120V/60Hz)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 40 of 42

8. ANTENNA REQUIREMENT

8.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

8.2 Antenna Connected Construction

8.2.1. Standard Applicable

According to § 15.203 & RSS-Gen, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

8.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 0dBi, and the antenna is connected to PCB board and no consideration of replacement. Please see EUT photo for details.

8.2.3. Results: Compliance.

Measurement

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Conducted power refers ANSI C63.10:2013 Output power test procedure for frequency-hopping spread-spectrum (FHSS) devices.

Radiated power refers to ANSI C63.10:2013 Radiated emissions tests.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 41 of 42

Measurement parameters:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	1 MHz		
Video bandwidth:	3 MHz		
Trace-Mode:	Max hold		

Note: The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal Bluetooth devices, the GFSK mode is used.

Limits:

FCC	IC			
Antenna Gain				
6.0dBi				

Tnom	Vnom	lowest channel 2402 MHz	middle channel 2441 MHz	highest channel 2480 MHz
Measu	power [dBm] red with nodulation	6.38	7.59	7.34
Radiated power [dBm] Measured with GFSK modulation		6.06	7.54	6.95
Gain [dBi]	Calculated	-0.32	-0.05	-0.39
Measurement uncertainty		± 1.6 dB (cond.) / ± 3.8 dB (rad.)		

Result: -/-

-----THE END OF REPORT------

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 42 of 42