FCC TEST REPORT

FOR

Shenzhen Linpa Technology Co.Ltd

Bluetooth Headset

Model No.: SBT523

Additional model No.: LBS32, PBT523

Prepared for Address	:	Shenzhen Linpa Technology Co.Ltd 114,C8,Flavor Commercial Street,Vanke Dream Town, Longgang District,Shenzhen City,China
Prepared by Address	:	Shenzhen LCS Compliance Testing Laboratory Ltd. 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China
Tel Fax Web Mail	: : :	(+86)755-82591330 (+86)755-82591332 www.LCS-cert.com webmaster@LCS-cert.com
Date of receipt of test sample Number of tested samples Serial number Date of Test	•	August 11, 2015 1 Prototype August 11, 2015 – August 13, 2015

: August 13, 2015

Date of Report

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 1 of 44 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: GTOLBS32 Report No.: LCS1508110522E

FCC TEST REPORT			
FCC CFR 47 PART 15 C(15.247): 2014			
Report Reference No: LCS1508110522E			
Date of Issue: :	August 13, 2015		
Testing Laboratory Name: Shenzhen LCS Compliance Testing Laboratory Ltd.			
Address::	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China		
Testing Location/ Procedure:	Full application of Harmonised standards		
	Partial application of Harmonised standards		
	Other standard testing method \Box		
Applicant's Name: Shenzhen Linpa Technology Co.Ltd			
Address :	114,C8,Flavor Commercial Street,Vanke Dream Town, Longgang District,Shenzhen City,China		
Test Specification			
Standard: :	FCC CFR 47 PART 15 C(15.247): 2014		
Test Report Form No: :	LCSEMC-1.0		
TRF Originator: :	Shenzhen LCS Compliance Testing Laboratory Ltd.		
Master TRF: :	Dated 2011-03		

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description : Bluetooth Headset
Trade Mark: : Linpa World/Sharper Image/Polaroid
Model/ Type reference:: SBT523
Ratings: DC 3.7V by battery
Result: Positive

Compiled by:

Jacky L

Jacky Li/ File administrators

Supervised by:

Approved by:

Glin Lu/ Technique principal

Gavin Liang/ Manager

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 2 of 44
 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.
 FCC ID: GTOLBS32

Report No.: LCS1508110522E

FCC -- TEST REPORT

Test Report No. : LCS1508110522E

August 13, 2015 Date of issue

Type / Model	: SBT523
EUT	: Bluetooth Headset
Applicant	: Shenzhen Linpa Technology Co.Ltd
Address	: 114,C8,Flavor Commercial Street,Vanke Dream Town,
	Longgang District, Shenzhen City, China
Telephone	: 86-755-89506972
Fax	: 86-755-89506972
Manufacturer	: LINPA WORLD., Ltd
	: 4 Floor B2 budlding Huaxing industrial park, Buxin village,
	Yantian district, Fenggang Town Dongguan City, China
Telephone	:/
Fax	: /
Factory	: LINPA WORLD., Ltd
	4 Floor B2 budlding Huaxing industrial park, Buxin village,
	Yantian district, Fenggang Town Dongguan City, China
Telephone	
Fax	: /

Test Result	Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 3 of 44

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: GTOLBS32

Report No.: LCS1508110522E

TABLE OF CONTENTS

Description	Page
1. GENERAL INFORMATION	5
1.1 Description of Device (EUT)	5
1.2 Support equipment List	
1.3 External I/O Cable	
1.4 Description of Test Facility	
1.5 Statement of The Measurement Uncertainty	
1.6 Measurement Uncertainty	
1.7 Description Of Test Modes	
2. TEST METHODOLOGY	
2.1 EUT Configuration	
2.2 EUT Exercise	
2.3 General Test Procedures	8
3. SYSTEM TEST CONFIGURATION	9
3.1 Justification	9
3.2 EUT Exercise Software	
3.3 Special Accessories	
3.4 Block Diagram/Schematics	
3.5 Equipment Modifications	
3.6 Test Setup	
4. SUMMARY OF TEST RESULTS	
5. SUMMARY OF TEST EQUIPMENT	
6. ANTENNA PORT MEASUREMENT	
6.1 Peak Power	12
6.2 Frequency Separation And 20 dB Bandwidth	
6.3 Number Of Hopping Frequency	
6.4 Time Of Occupancy (Dwell Time)	
6.5 Conducted Spurious Emissions and Band Edges Test	
7. RADIATED MEASUREMENT	
7.1 Block Diagram of Test Setup	
7.2 Radiated Emission Limit	
7.3 Instruments Setting	
7.4 Test Procedures	
7.5 Results for Radiated Emissions	
7.6 Results for Band edge Testing (Radiated)	
7.7. Power line conducted emissions	
8. ANTENNA REQUIREMENT	
8.1 Standard Applicable	
8.2 Antenna Connected Construction	43

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 4 of 44

1. GENERAL INFORMATION 1.1 Description of Device (EUT)

EUT	: Bluetooth Headset
Model No.	: SBT523
Frequency Range	: 2.402-2.480GHz
Channel Number	: 79
Channel frequency	: 2402.00-2480.00MHz (Channel Frequency=2402+1(K-1), K=1, 2, 379);
Channel Spacing	: 1MHz
Modulation Type	: GFSK, π /4-DQPSK, 8-DPSK
Bluetooth Version	: V2.1+EDR
Antenna Gain	: PCB antenna, 0dBi(Max.)
Input Voltage	: DC 3.7V by battery

Additional models No.				
LBS32	PBT523			
Remark: PCB board, structure and internal of these model(s) are the same, So no addit				
ional models were tested.				

1.2 Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate

1.3 External I/O Cable

I/O Port Description	Quantity	Cable
USB	1	N/A

FCC ID: GTOLBS32

1.4 Description of Test Facility

Site Description	
EMC Lab.	: CNAS Registration Number. is L4595.
	FCC Registration Number. is 899208.
	Industry Canada Registration Number. is 9642A-1.
	VCCI Registration Number. is C-4260 and R-3804.
	ESMD Registration Number. is ARCB0108.
	UL Registration Number. is 100571-492.
	TUV SUD Registration Number. is SCN1081.
	TUV RH Registration Number. is UA 50296516-001

1.5 Statement of The Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6 Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
Radiation Uncertainty	:	9KHz~30MHz	3.10dB	(1)
		30MHz~200MHz	2.96dB	(1)
		200MHz~1000MHz	3.10dB	(1)
		1GHz~26.5GHz	3.80dB	(1)
		26.5GHz~40GHz	3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	1.63dB	(1)
Power disturbance	:	30MHz~300MHz	1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7 Description Of Test Modes

Bluetooth operates in the unlicensed ISM Band at 2.4GHz. With the introduction of the enhanced data rate (EDR) feature, the data rates can be up to 3 Mb/s. An increase in the peak data rate beyond the basic rate of 1 Mb/s is achieved by modulating the RF carrier using GFSK techniques, resulting in an increase of two to three times the number of bits

per symbol. The 2 Mb/s EDR packets use $a\pi/4$ -DQPSK modulation and the 3 Mb/s EDR packets use 8DPSK modulation. The EUT works in the X-axis. The following operating modes were applied for the related test items. All test modes were tested, only the result of the worst case was recorded in the report.

Mode of Operations	Frequence	ey Range	Data Rate
	(M)	Hz)	(Mbps)
	24	02	1
GFSK	24	41	1
	24	80	1
	24	02	2
π /4 DQPSK	24	41	2
	24	80	2
	24	02	3
8-DPSK	24	41	3
	24	80	3
F	For Conducted	l Emission	
Test Mode		Г	TX Mode
	For Radiated	Emission	
Test Mode		Г	TX Mode

Worst-case mode and channel used for 150kHz-30 MHz power line conducted emissions was the mode and channel with the highest output power, that was determined to be TX(1Mbps-Hopping Mode).

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be TX(1Mbps---Low Channel).

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, RSS-210, FCC CFR PART 15C 15.207, 15.209, 15.247 and DA 00-705.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209, 15.247 under the FCC Rules Part 15 Subpart C and RSS-210.

2.3 General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane for below 1GHz and 1.5 for above 1GHz. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a continuous transmit condition.

3.2 EUT Exercise Software

N/A.

3.3 Special Accessories

N/A.

3.4 Block Diagram/Schematics

Please refer to the related document.

3.5 Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

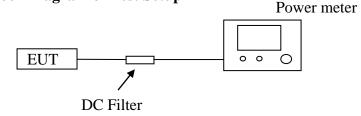
3.6 Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

A	Applied Standard: FCC Part 15 Subpart C	
FCC Rules	Description of Test	Result
§15.247(b)(1)	Maximum Conducted Output Power	Compliant
§15.247(c)	Frequency Separation And 20 dB Bandwidth	Compliant
§15.247(a)(1)(ii)	Number Of Hopping Frequency	Compliant
§15.247(a)(1)(iii)	Time Of Occupancy (Dwell Time)	Compliant
§15.209, §15.205	Conducted Spurious Emissions and Band Edges Test	Compliant
§15.209, §15.247(d)	Radiated and Conducted Spurious Emissions	Compliant
§15.205	Emissions at Restricted Band	Compliant
§15.207(a)	Conducted Emissions	Compliant
§15.203	Antenna Requirements	Compliant
§15.247(i) §2.1093	RF Exposure	Compliant

5. SUMMARY OF TEST EQUIPMENT


Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1	Power Sensor	R&S	NRV-Z51	100458	2015-06-18	2016-06-17
2	Power Sensor	R&S	NRV-Z32	10057	2015-06-18	2016-06-17
3	Power Meter	R&S	NRVS	100444	2015-06-18	2016-06-17
4	DC Filter	MPE	23872C	N/A	2015-06-18	2016-06-17
5	RF Cable	Harbour Industries	1452	N/A	2015-06-18	2016-06-17
6	SMA Connector	Harbour Industries	9625	N/A	2015-06-18	2016-06-17
7	Spectrum Analyzer	Agilent	N9020A	MY50510140	2014-10-27	2015-10-26
8	Signal analyzer	Agilent	E4448A(Exte rnal mixers to 40GHz)	US44300469	2015-06-16	2016-06-15
9	RF Cable	Hubersuhne	Sucoflex104	FP2RX2	2015-06-18	2016-06-17
10	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2015-06-18	2016-06-17
11	Amplifier	SCHAFFNER	COA9231A	18667	2015-06-18	2016-06-17
12	Amplifier	Agilent	8449B	3008A02120	2015-06-16	2016-06-15
13	Amplifier	MITEQ	AMF-6F-260 400	9121372	2015-06-16	2016-06-15
14	Loop Antenna	R&S	HFH2-Z2	860004/001	2015-06-18	2016-06-17
15	By-log Antenna	SCHWARZBE CK	VULB9163	9163-470	2015-06-10	2016-06-09
16	Horn Antenna	EMCO	3115	6741	2015-06-10	2016-06-09
17	Horn Antenna	SCHWARZBE CK	BBHA9170	BBHA9170154	2015-06-10	2016-06-09
18	RF Cable-R03m	Jye Bao	RG142	CB021	2015-06-18	2016-06-17
19	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2015-06-18	2016-06-17
20	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	101142	2015-06-18	2016-06-17
21	EMI Test Receiver	ROHDE & SCHWARZ	ESPI	101840	2015-06-18	2016-06-17
22	Artificial Mains	ROHDE & SCHWARZ	ENV216	101288	2015-06-18	2016-06-17
23	EMI Test Software	AUDIX	E3	N/A	2015-06-18	2016-06-17

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 11 of 44

6. ANTENNA PORT MEASUREMENT

6.1 Peak Power

6.1.1 Block Diagram of Test Setup

6.1.2 Limit

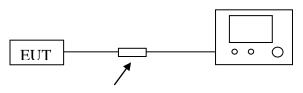
According to § 15.247(b)(1), For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

6.1.3 Test Procedure

The transmitter output is connected to the Power Meter.

Channel	Frequency (MHz)	Peak Output Power (dBm)	Peak Output Power (mw)	Limit (mW)	Result
	2402	0.588	1.145	1000	Pass
GFSK	2441	-0.735	0.844	1000	Pass
	2480	-1.724	0.672	1000	Pass
	2402	-1.551	0.700	1000	Pass
π/4-DQPSK	2441	-2.796	0.525	1000	Pass
	2480	-3.814	0.416	1000	Pass
	2402	-1.347	0.733	1000	Pass
8-DPSK	2441	-2.461	0.567	1000	Pass
	2480	-3.514	0.445	1000	Pass

6.1.4 Test Results


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 12 of 44

6.2 Frequency Separation And 20 dB Bandwidth

6.2.1 Limit

According to \$15.247(c) or A8.1(a), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in15.209(a).

6.2.2 Block Diagram of Test Setup

DC Filter

6.2.3 Test Procedure

Frequency separation test procedure:

- A. Place the EUT on the table and set it in transmitting mode.
- B. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.
- C. Set center frequency of Spectrum Analyzer = middle of hopping channel.
- D. Set the Spectrum Analyzer as RBW = 100kHz, VBW = 300kHz, Span = wide enough to capture the peaks of two adjacent channels, Sweep = auto.
- E. Max hold, mark 2 peaks of hopping channel and record the 2 peaks frequency.

20dB bandwidth test procedure:

- A. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel.
- B. RBW \geq 1% of the 20 dB bandwidth, VBW \geq RBW.
- C. Detector function = peak.
- D. Trace = max hold.

Th	e Measurement Res	ult With 1Mbps For	GFSK Modulatio	n
		Channel		

6.2.4 Test Results

111	e measurement Kes	uit with hyppy for	GFSK Mouulauo	11
Channel	20dB Bandwidth (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
Low	1.044		>=25 KHz or 2/3 20 dB BW	Pass
Middle	1.098	1.000	>=25 KHz or 2/3 20 dB BW	Pass
High	1.046		>=25 KHz or 2/3 20 dB BW	Pass

The M	leasurement Result	With 2Mbps For π	/4 DQPSK Modul	ation
Channel	20dB Bandwidth (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
Low	1.382		>=25 KHz or 2/3 20 dB BW	Pass
Middle	1.383	1.000	>=25 KHz or 2/3 20 dB BW	Pass
High	1.379		>=25 KHz or 2/3 20 dB BW	Pass

The	Measurement Resu	lt With 3Mbps For 8	8-DPSK Modulati	on
Channel	20dB Bandwidth (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
Low	1.367		>=25 KHz or 2/3 20 dB BW	Pass
Middle	1.372	1.000	>=25 KHz or 2/3 20 dB BW	Pass
High	1.372		>=25 KHz or 2/3 20 dB BW	Pass

The test data refer to the following page.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 14 of 44

Test Plot Of Frequency Separation (1Mbps)

Test Plot Of Frequency Separation (2Mbps)

Marker	M Aug 11, 2015	TRA	LIGN AUTO		E:PULSE				Δ 1.0000	ker 1	lar
Select Marke	et <mark>P N N N N N</mark>	C		Avg Hold	e Run) dB	Trig: Fre Atten: 20	NO: Wide Ģ Gain:Low	P IF			
·	00 MHz .073 dB	/lkr1 1.0 -0							Ref Offset	3/div	0 d
Norm			<u>_</u> 1∆:								
			~~~		~~			X2	~~~~	~~	
Del											
Fixe											
c											
Properties											
Ma 1 o											
10	3500 GHz (1001 pts)	top 2.40 .000 ms	Sweep 1			100 kHz	#VBW		1500 GHz 100 kHz		

#### **Test Plot Of Frequency Separation (3Mbps)**



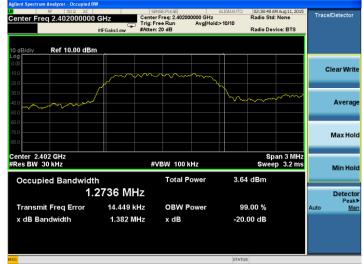
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 15 of 44

#### Measurement of 20dB Bandwidth

#### Test frequency: 2402MHz(1Mbps)

20 RF 50 2 AC Center Freq 2.402000000	GHz Cente Trig: F	r Freq: 2.402000000 GHz r Freq: 2.402000000 GHz ree Run Avg Ho : 20 dB	ALIGN AUTO 2 bid:>10/10	02:36:05 Al Radio Std: Radio Dev		Trac	Trace/Detector
10 dB/div Ref 10.00 dBm							
0.00		~~~~					Clear Write
20 0 30 0 40 0 50 0			n h h	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Averag
80.0							Max Hol
Center 2.402 GHz #Res BW 30 kHz		VBW 100 kHz		Swee	an 3 MHz p 3.2 ms		Min Hol
Occupied Bandwidti 94	ո 45.21 kHz	Total Power	7.49	dBm			Detecto
Transmit Freq Error	-3.241 kHz	OBW Power	99	.00 %		Auto	Peakl <u>Ma</u> i
x dB Bandwidth	1.044 MHz	x dB	-20.0	00 dB			
<u>a</u>			STATUS				

#### Test frequency: 2441MHz(1Mbps)




#### Test frequency: 2480MHz(1Mbps)

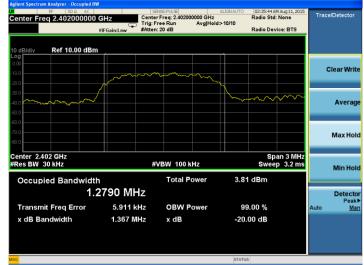


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 16 of 44

#### Test frequency: 2402MHz(2Mbps)



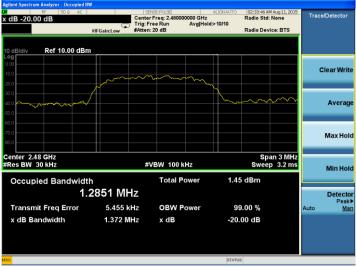
#### Test frequency: 2441MHz(2Mbps)




#### Test frequency: 2480MHz(2Mbps)



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 17 of 44


#### Test frequency: 2402MHz(3Mbps)



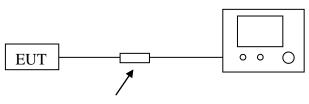
#### Test frequency: 2441MHz(3Mbps)



#### Test frequency: 2480MHz(3Mbps)



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 18 of 44


## 6.3 Number Of Hopping Frequency

## 6.3.1 Limit

According to §15.247(a)(1)(ii) or A8.1 (d), Frequency hopping systems operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels.

## 6.3.2 Block Diagram of Test Setup

Spectrum Analyzer



DC Filter

## 6.3.3 Test Procedure

- A. Place the EUT on the table and set it in transmitting mode.
- B. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.
- C. Set Spectrum Analyzer Start=2400MHz, Stop = 2483.5MHz, Sweep = auto.
- D. Set the Spectrum Analyzer as RBW, VBW=1MHz.
- E. Max hold, view and count how many channel in the band.

#### 6.3.4 Test Results

The Measurement R	esult With The Worst	Case of 1Mbps For C	<b>FSK Modulation</b>
Total No. of	Measurement Result (No. of Ch)	Limit (MHz)	Result
Hopping Channel	79	≥15	Pass

The test data refer to the following page.

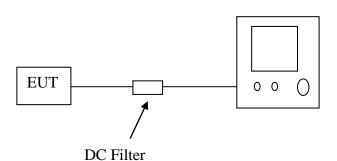
	50 AM Aug 11, 2015 TRACE 1 2 3 4 5 6 TYPE MWWWWWW		ALIGNAUTO e: Log-Pwr		E:PULSE		MHz	DQ AC	RF 50 ▲ 39,000	arker 1
Select Marke	DET P N N N N	т	>100/100	Avg Hold		Trig: Fre Atten: 20	PNO: Fast 🕞 IFGain:Low			
Z	0.000 MHz -1.109 dB	(r1 39.) 	ΔΜΙ					0.5 dB ) dBm	Ref Offset Ref 10.00	dB/div
2 Norn	1Δ2							~~~~~~		
Ě										
De										.0
										.0
Fixe										.0
										.0
										.0
Propertie										.0
eporac										.0
<b>M</b> d										
Z	.44100 GHz is (1001 pts)	Stop 2.4 .000 ms	Sweep 1			1.0 MHz	#VBN		000 GHz 1.0 MHz	

#### **Test Plot-1 For Number of Hopping Channel**

## **Test Plot-2 For Number of Hopping Channel**



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 20 of 44


## 6.4 Time Of Occupancy (Dwell Time)

## 6.4.1 Limit

According to \$15.247(a)(1)(iii) or A8.1 (d), Frequency hopping systems operating in the 2400MHz- 2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

## 6.4.2 Block Diagram of Test Setup





# 6.4.3 Test Procedure

- A. Place the EUT on the table and set it in transmitting mode.
- B. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.
- C. Set center frequency of Spectrum Analyzer = operating frequency.
- D. Set the Spectrum Analyzer as RBW, VBW=1MHz, Span = 0Hz, Sweep = auto.
- E. Repeat above procedures until all frequency measured were complete.

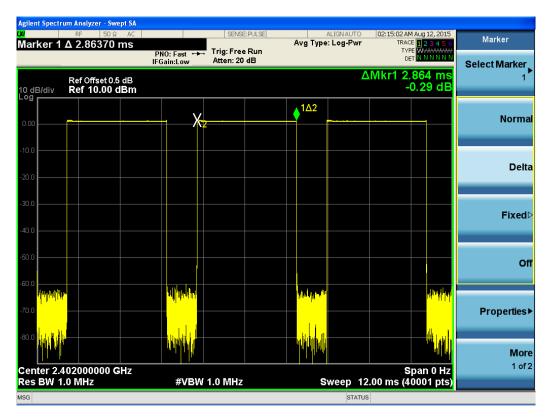
The Measurement Result With The Worst Case of 3Mbps For 8-DPSK Modulation									
Channel	Time of Pulse for DH5 (ms)	Period Time (s)	Sweep Time (ms)	Limit (ms)					
Low	2.864	31.6	305.49	400					
Middle	2.871	31.6	306.24	400					
High	2.872	31.6	306.35	400					

#### 6.4.4 Test Results

#### Low Channel

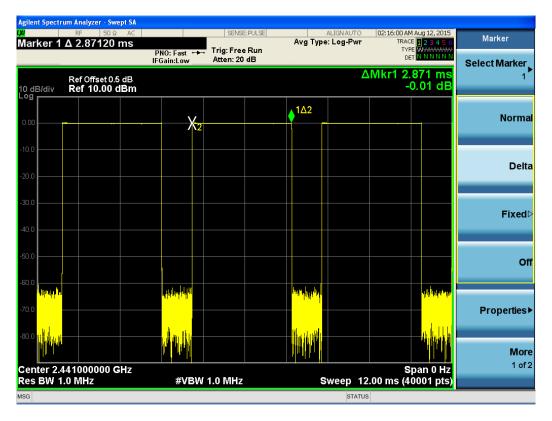
2.864*(1600/6)/79*31.6=305.49ms

#### Middle Channel

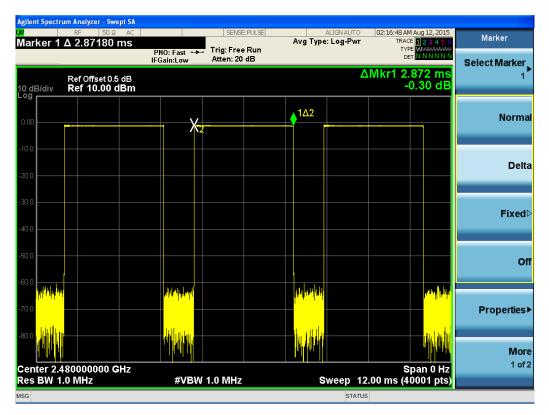

2.871*(1600/6)/79*31.6=306.24ms

#### **High Channel**

2.872*(1600/6)/79*31.6=306.35ms


The test data refer to the following:

#### Low Channel



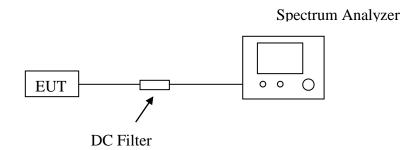

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 22 of 44

#### **Middle Channel**



#### **High Channel**




This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 23 of 44

# 6.5 Conducted Spurious Emissions and Band Edges Test

## 6.5.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(a).

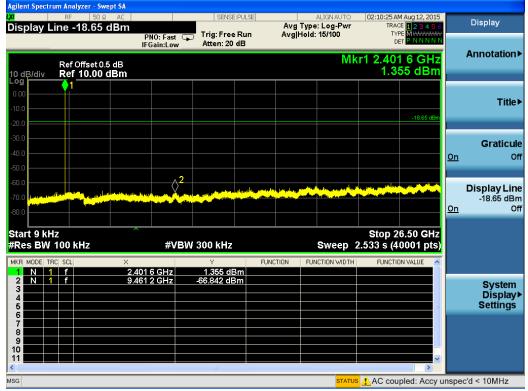
## 6.5.2 Block Diagram of Test Setup



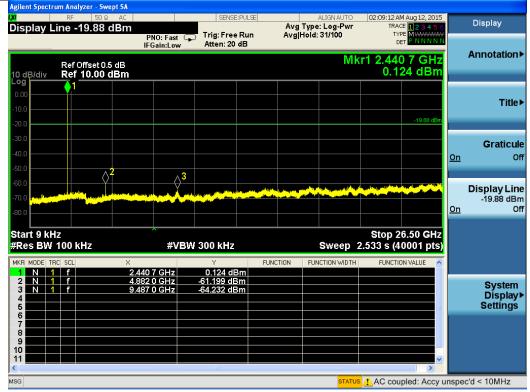
# 6.5.3 Test Procedure

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 KHz. The video bandwidth is set to 300 KHz.


Measurements are made over the 9kHz to 25GHz range with the transmitter set to the lowest, middle, and highest channels

## 6.5.4 Test Results of Conducted Spurious Emissions


No non-compliance noted. Only record the worst test result (TX-GFSK) in this report. The test data refer to the following page.

#### Test Plot

#### 9KHz-25GHz Low Channel(GFSK)



#### 9KHz-25GHz Middle Channel(GFSK)



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 25 of 44

## 9KHz-25GHz High Channel(GFSK)

Agilent Spectr	um Analyzer										
IXI Dioplay I	RF	50 Ω AC		SENSE	PULSE	Ανα Τγρ	ALIGNAUTO E: Log-Pwr		M Aug 12, 2015		Display
Display L	.ine -20.	о0 авті	PNO: Fast	🖵 Trig: Free		Avg Hold		TY			
			IFGain:Low	Atten: 20	dB			D	31 <u>1- 1414 1414</u>		Annotation
	Ref Offs	et 0.5 dB					Mk	r1 2.47			Annotation
10 dB/div Log	Ref 10	.00 dBm						-0.7	99 dBm		
0.00	<u>1</u>										
-10.0											Title▶
									-20.80 dBm		
-20.0											
-30.0											Graticule
-40.0										<u>On</u>	Off
-50.0			<u>^2</u>								
-60.0			<b>^</b> _		I and the state		ويكلل بير يعتبك	والمنافر بتعرير ويعالم واط	la stran a third and a state		<b>Display Line</b>
-70.0 hundred		e de la delaterte ha	in the second					State of Street Street	No. And Address of Control of Con		-20.80 dBm
-80.0		<u></u>								<u>0n</u>	Off
	-							Otom 0	c ĉo ou-		
Start 9 kH #Res BW			#VB	W 300 kHz			Sween		6.50 GHz 0001 pts)		
MKR MODE TI		×		Y	FUNC		NCTION WIDTH		IN VALUE		
		2.4	79 7 GHz	-0.799 dB	m		ACTION WIDTH	FONCIN	IN VALUE		
2 N 1	f	9.4	102 2 GHz	-65.932 dB	m						System
4											Display►
5									=		Settings
7											
8					_						
10											
11									>		
MSG							STATU	AC cou	pled: Accy L	inspe	c'd < 10MHz
									. ,		

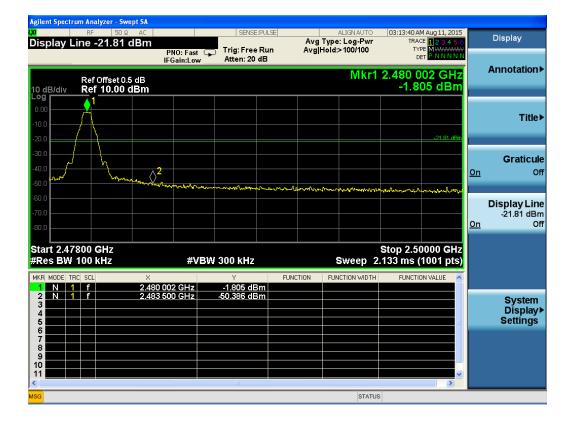
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 26 of 44

No non-compliance noted. Only record the worst test result in this report. The test data refer to the following page.

FCC ID: GTOLBS32

## Test Plot

## Hopping On - (GFSK)




Agilent Spectrum Analyzer - Swept SA		SENSE:PULSE		ALIGN AUTO	03:18:22 AM Aug 11, 2015	_	
Display Line -21.71 dBm	PNO: Fast 🖵 IFGain:Low		Avg	Type: Log-Pwr Hold:>100/100	TRACE 12345 TYPE MWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	5	Display
Ref Offset 0.5 dB 10 dB/div Ref 10.00 dBm				Mkr1	2.479 078 GHz -1.707 dBm		Annotation
					-21.71 dBn		Title
-30.0	Whytherester	n them was wellen				<u>On</u>	<b>Graticul</b> O
-60.0 -70.0 -80.0				9~L.A.A.p~n.Bargn.A.A.a.p.	hayan yamar yan yange	<u>On</u>	Display Lin -21.71 dBr 0
Start 2.47800 GHz #Res BW 100 kHz	#VBW	300 kHz		Sweep 2	Stop 2.50000 GHz .133 ms (1001 pts		
MKR MODE TRC SCL X	078 GHz	Y -1.707 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE		
3 4 4 5 4 5 4 5 4 5 4 5 5 5 5 5 5 5 5 5	500 GHz	-51.038 dBm					System Display Settings
6 7 8 9 10							
11					~		
					>		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 27 of 44

#### Hopping Off - (GFSK)

Agilent Spectrum Analyzer - Swept SA				
X RF 50 Ω AC Display Line -19.74 dBm	SENSE:PULSE	ALIGNAUTO Avg Type: Log-Pwr	02:48:46 AM Aug 11, 2015 TRACE 1 2 3 4 5 6	Display
Ref Offset 0.5 dB	PN0: Fast IFGain:Low Atten: 20 dB	Avg Hold>100/100	2.402 026 GHz 0.262 dBm	Annotation►
-10.0			-19.74 pBm	Title►
-30.0	and the second s	مر المراجع الم	3 2	Graticule On Off
-60.0 -70.0				Display Line -19.74 dBm On Off
Start 2.31000 GHz #Res BW 100 kHz	#VBW 300 kHz		Stop 2.40400 GHz .000 ms (1001 pts)	
1         N         1         f         2.402           2         N         1         f         2.400           3         N         1         f         2.390           4         5         5         5         5	026 GHz 0.262 dBm 000 GHz -42.801 dBm 000 GHz -49.181 dBm			System Display▶ Settings
6 7 8 9 10 11				
MSG	ш	STATUS		



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 28 of 44

#### Hopping On - (8-DPSK)

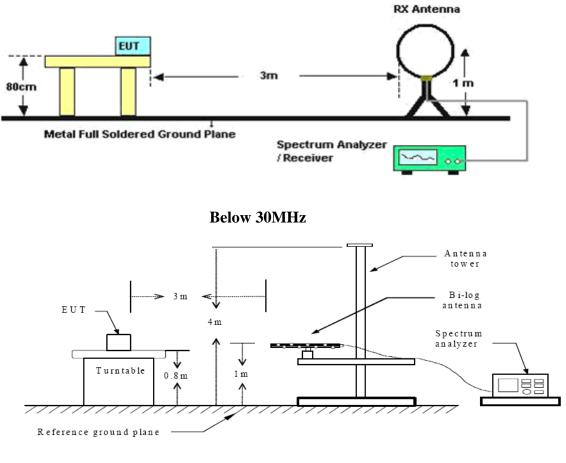
Agilent Spectr	r <mark>um Analyzer - Swept SA</mark> RF 50 Ω AC		SENSE:PUL	ec l	ALIGN AUTO	03:01:46 AM Aug 11, 201	
Display L	_ine -21.67 dBm			Avg	Type: Log-Pwr Hold:>100/100	TRACE 1 2 3 4 5 TYPE MWWWWW	Display
10 dB/div	Ref Offset 0.5 dB Ref 10.00 dBm	PNO: Fast G IFGain:Low	Atten: 20 dB			2.401 838 GHz -1.674 dBm	Annotation►
0.00						-21.67 xBr	Title►
-30.0	ዀጕዹቝዀጜኯኯኯ	በምለምት የሶሱዮዮሶ	nn him an	<u>ุกับคาหินุกษณ์ตามหลุม</u>	When the state	3 Landred and a second second	Graticule <u>On</u> Off
-60.0 -70.0 -80.0							Display Line -21.67 dBm <u>On</u> Off
Start 2.31 #Res BW	100 kHz	#VB\	N 300 kHz		Sweep 9	Stop 2.40400 GHz .000 ms (1001 pts	
MKR MODE TH		1 838 GHz	۲ -1.674 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
4 5	f 2.400	0000 GHz 0000 GHz	-31.366 dBm -47.711 dBm				System Display▶ Settings
6 7 8 9 10							
11						>	
MSG					STATUS	3	



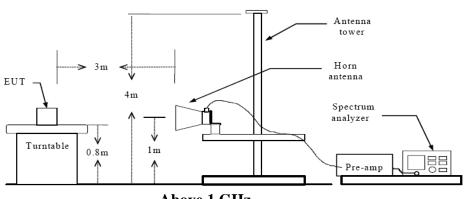
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 29 of 44

#### Hopping Off - (8-DPSK)




Agilent Spectrum Analyzer - Swept SA		SENSE:PU	- CF	ALIGN AUTO	03:23:20 AM Aug 11,	2015	
Display Line -26.73 dBm			Avg	Type: Log-Pwr Hold:>100/100	TRACE 1 2 3 TYPE MWW	456	Display
	PNO: Fast 😱 IFGain:Low	Atten: 20 dB		100/100	DET PNN	NNN	Annetation
Ref Offset 0.5 dB 10 dB/div Ref 10.00 dBm				Mkr1	2.479 958 G -6.730 dl		Annotation►
Log 0.00 -10.0 -20.0							Title►
	,				-26.7	3 dBm	
	^^					0	Graticule
-50.0	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	No					
-60.0		and the second second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and and the second and the second sec		<b>Display Line</b>
-70.0						o	-26.73 dBm n Off
							_
Start 2.47800 GHz #Res BW 100 kHz	#VBW	300 kHz		Sweep 2	Stop 2.50000 C .133 ms (1001	SHZ ots)	
MKR MODE TRC SCL X	958 GHz	⊻ -6.730 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE		
	500 GHz	-39.131 dBm					System
4							Display▶ Settings
6							octangs
8							
10							
<		1111				>	
MSG				STATUS	\$		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 30 of 44 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.


Report No.: LCS1508110522E

# 7. RADIATED MEASUREMENT

## 7.1 Block Diagram of Test Setup



Below 1 GHz



Above 1 GHz

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 31 of 44

## 7.2 Radiated Emission Limit

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

 $2 \otimes 38.6$ 

Part 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector.

Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Part 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 32 of 44

# 7.3 Instruments Setting

## The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for QP

## 7.4 Test Procedures

#### 1) Sequence of testing 9 kHz to 30 MHz

#### Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions.

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

#### **Premeasurement:**

--- The turntable rotates from 0 ° to 315 ° using 45 ° steps.

--- The antenna height is 1.5 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

#### **Final measurement:**

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0 ° to 360 °) and by rotating the elevation axes (0 ° to 360 °).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

#### 2) Sequence of testing 30 MHz to 1 GHz

#### Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

#### **Premeasurement:**

- --- The turntable rotates from 0  $^{\circ}$  to 315  $^{\circ}$  using 45  $^{\circ}$  steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

#### **Final measurement:**

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position ( $\pm 45$  °) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

#### 3) Sequence of testing 1 GHz to 12.75 GHz

#### Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

#### **Premeasurement:**

--- The turntable rotates from 0  $^{\circ}$  to 315  $^{\circ}$  using 45  $^{\circ}$  steps.

--- The antenna is polarized vertical and horizontal.

--- The antenna height is 1.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

#### **Final measurement:**

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum found antenna polarisation and turntable position of the premeasurement the software maximizes the peaks by rotating the turntable position (0  $^{\circ}$  to 360  $^{\circ}$ ). This measurement is repeated for different EUT-table positions (0  $^{\circ}$  to 150  $^{\circ}$  in 30  $^{\circ}$ -steps). This procedure is repeated for both antenna polarisations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

#### 4) Sequence of testing above 12.75 GHz

#### Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 1 meter.

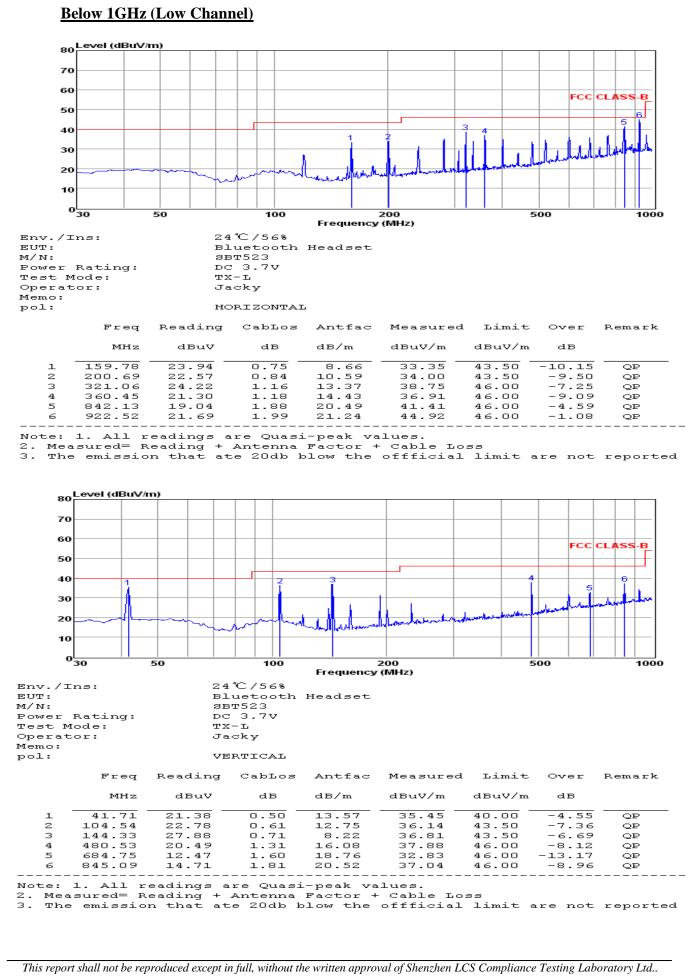
--- The EUT was set into operation.

#### **Premeasurement:**

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

#### **Final measurement:**

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and RMS detector.


--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

## 7.5 Results for Radiated Emissions

#### PASS.

Only record the worst test result in this report. The test data please refer to following page:

Report No.: LCS1508110522E



Page 38 of 44

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: GTOLBS32

#### Above 1GHz

The worst test result for GFSK, Tx-Low Channel:

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4804.19	52.42	33.06	35.04	3.94	54.38	74	-19.62	Peak	Horizontal
4804.19	37.06	33.06	35.04	3.94	39.02	54	-14.98	Average	Horizontal
4804.19	50.75	33.06	35.04	3.94	52.71	74	-21.29	Peak	Vertical
4804.19	35.49	33.06	35.04	3.94	37.45	54	-16.55	Average	Vertical

The worst test result for GFSK, Tx-Middle Channel:

Freq. MHz	Reading Dbuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4882.05	52.57	33.16	35.15	3.96	54.54	74	-19.46	Peak	Horizontal
4882.05	37.11	33.16	35.15	3.96	39.08	54	-14.92	Average	Horizontal
4882.05	50.16	33.16	35.15	3.96	52.13	74	-21.87	Peak	Vertical
4882.05	35.75	33.16	35.15	3.96	37.72	54	-16.28	Average	Vertical

The worst test result for GFSK, Tx-High Channel:

Freq. MHz	Reading DBuv	Ant. Fac dB/m	Pre. Fac dB	Cab. Los dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4960.11	51.95	33.26	35.14	3.98	54.05	74	-19.95	Peak	Horizontal
4960.11	37.03	33.26	35.14	3.98	39.13	54	-14.87	Average	Horizontal
4960.11	50.32	33.26	35.14	3.98	52.42	74	-21.58	Peak	Vertical
4960.11	35.59	33.26	35.14	3.98	37.69	54	-16.31	Average	Vertical

Notes:

- 1. Measuring frequencies from 9k~10th harmonic (ex. 26GHz), No emission found between lowest internal used/generated frequency to 30 MHz.
- 2. Radiated emissions measured in frequency range from 9k~10th harmonic (ex. 26GHz) were made with an instrument using Peak detector mode.

3. 18~25GHz at least have 20dB margin. No recording in the test report.

# 7.6 Results for Band edge Testing (Radiated)

Only record the worst test case (Tx, GFSK, Non-hopping) as following:

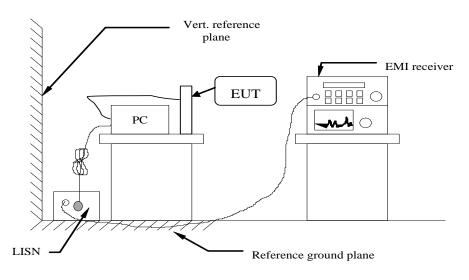
## Tx-2402, GFSK, Non-hopping

Freq. MHz	Readin g Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measure d dBuV/m	Limit dBuV/ m	Margin dB	Remark	Pol.
2390.00	51.35	32.89	35.16	3.51	52.59	74	-21.41	Peak	Horizonta I
2390.00	37.32	32.89	35.16	3.51	37.32	54	-16.68	Averag e	Horizonta I
2400.00	54.16	32.92	35.16	3.54	54.16	74	-19.84	Peak	Horizonta I
2400.00	38.52	32.92	35.16	3.54	38.52	54	-15.48	Averag e	Horizonta I
2390.00	51.79	32.89	35.16	3.51	51.79	74	-22.21	Peak	Vertical
2390.00	34.68	32.89	35.16	3.51	34.68	54	-19.32	Averag e	Vertical
2400.00	52.41	32.92	35.16	3.54	52.41	74	-21.59	Peak	Vertical
2400.00	36.75	32.92	35.16	3.54	36.75	54	-17.25	Averag e	Vertical

## Tx-2480, GFSK, Non-hopping

Freq. MHz	Readin g Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measure d dBuV/m	Limit dBuV/ m	Margin dB	Remark	Pol.
2483.50	52.90	33.06	35.18	3.60	54.38	74	-19.62	Peak	Horizonta I
2483.50	36.28	33.06	35.18	3.60	37.76	54	-16.24	Averag e	Horizonta I
2483.50	51.64	33.06	35.18	3.60	53.12	74	-20.88	Peak	Vertical
2483.50	34.76	33.06	35.18	3.60	36.24	54	-17.76	Averag e	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 40 of 44

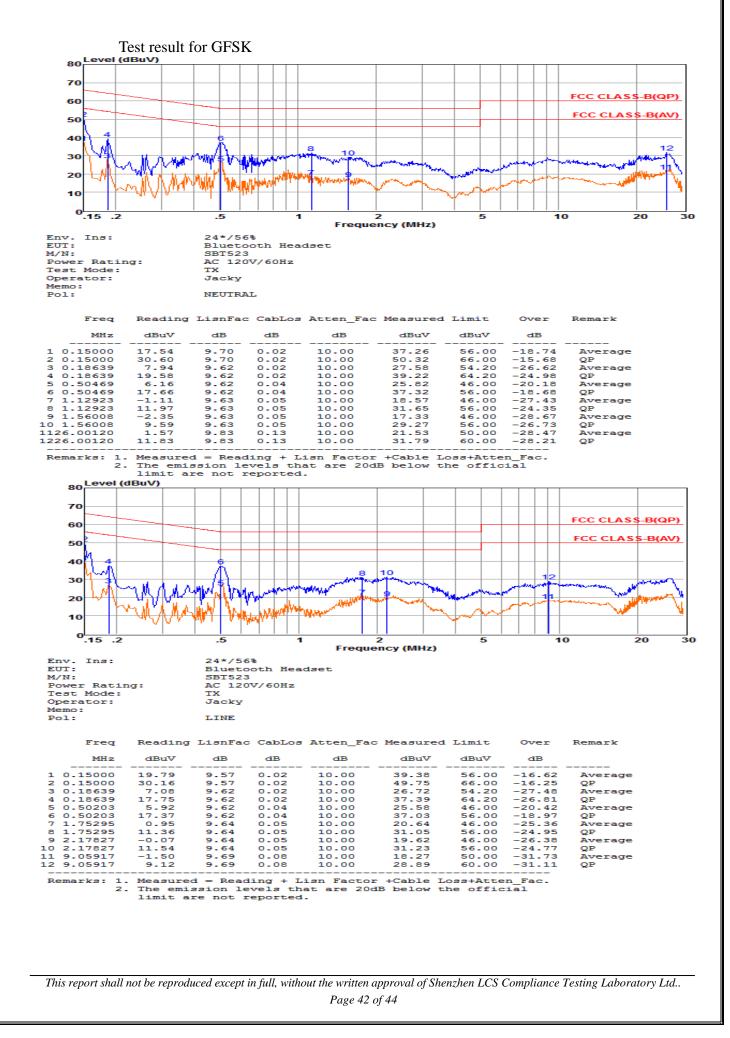

## 7.7. Power line conducted emissions

### 7.7.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits (dBµV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

#### 7.7.2 Block Diagram of Test Setup




#### 7.7.3 Test Results

#### PASS.

The test data please refer to following page.

Report No.: LCS1508110522E



# 8. ANTENNA REQUIREMENT

## 8.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to \$15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

## 8.2 Antenna Connected Construction

#### 8.2.1. Standard Applicable

According to §15.203 & RSS-Gen, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

#### 8.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 0dBi, and the antenna is connect to PCB board and no consideration of replacement. Please see EUT photo for details.

8.2.3. Results: Compliance.

# Measurement parameters:

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	3 MHz			
Video bandwidth:	3 MHz			
Trace-Mode:	Max hold			

Note: The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal Bluetooth devices, the GFSK mode is used.

# Limits:

FCC	IC				
Antenna Gain					
6dBi					

Tnom	Vnom	Lowest channel 2402 MHz	Middle channel 2441 MHz	Highest channel 2480 MHz
Conducted power [dBm] Measured with GFSK modulation		0.588	-0.735	-1.724
Radiated power [dBm] Measured with GFSK modulation		0.574	-0.760	-1.741
Gain [dBi] Calculated		-0.014	-0.025 -0.017	
M	easurement unce	ertainty	$\pm~$ 1.5 dB (cond	l.) / ± 3 dB (rad.)

Result: -/-

-----THE END OF REPORT------

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 44 of 44