

FCC OET BULLETIN 65 SUPPLEMENT C IC RSS-102 ISSUE 2

SAR EVALUATION REPORT

FOR

WIRELESS MICROPHONE (Receiver)

MODEL NUMBER: HCM-HW2(R)

FCC ID: GT3FC004

REPORT NUMBER: 08J12241-16

ISSUE DATE: DECEMBER 9, 2008

Prepared for

SMK CORPORATION 5-5 TOGOSHI 6-CHOME SHINAGAWA-KU TOKYO 142-8511 JAPAN

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, USA

NVLAP LAB CODE 200065-0

REPORT	NO: 08J12241-16	DATE: December 9, 2008	FCC ID: GT3FC004
Revision	History		
Rev.	Issued date	Revisions	Revised By
	December 9, 2008	Initial Issue	

TABLE OF CONTENTS

1	ATT	ESTATION OF TEST RESULTS	4
2	TES	ST METHODOLOGY	5
3	FAC	CILITIES AND ACCREDITATION	5
4	CAL	IBRATION AND UNCERTAINTY	5
	4.1	MEASURING INSTRUMENT CALIBRATION	5
5	ME	ASUREMENT UNCERTAINTY	5
6	DE\	/ICE UNDER TEST (DUT) DESCRIPTION	6
7	SYS	STEM DESCRIPTION	7
	7.1	COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	8
8	SIM	ULATING LIQUID PARAMETERS CHECK	9
	8.1	SIMULATING LIQUID PARAMETER CHECK RESULT	
9	SYS	STEM PERFORMANCE CHECK	
	9.1	SYSTEM PERFORMANCE CHECK RESULTS	
	9.2	DASY4 SAR MEASURMENT PROCEDURE	
10	PRO	DCEDURE USED TO ESTABLISH TEST SIGNAL	
11	SAF	R MEASURMENT RESULTS	
	11.1	SAR MEASUREMENT RESULTS USING BODY LIQUID	
	SAR	MEASUREMENT RESULTS USING HEAD LIQUID	
12	ATT	ACHMENTS	
13	PHO	DTOS	

1 ATTESTATION OF TEST RESULTS

COMPANY NAME:	SMK CORPORATION							
	5-5 TOGOSHI 6-CHOME	5-5 TOGOSHI 6-CHOME SHINAGAWA-KU						
	TOKYO, 142-8511, JAPA	N						
EUT DESCRIPTION:	WIRELESS MICROPHON	NE (Receiver)						
MODEL:	HCM-HW2(R)							
DEVICE CATEGORY:	Portable							
EXPOSURE CATEGOR	f : General Population/Uncor	ntrolled Exposure						
DATE TESTED:	November 24-25, 2008							
THE HIGHEST SAR VALUES:	See Table below							
FCC / IC Rule Parts	Frequency Range [MHz]	The Highest SAR Values (1g_mW/g)	Limit (mW/g)					
15.247/RSS-102	15.247/RSS-102 2400 – 2483.5 0.996 (Head) 0.694 (Body) 0.694 (Body)							

APPLICABLE STANDARDS									
STANDARD	TEST RESULTS								
FCC OET BULLETIN 65 SUPPLEMENT C	Pass								
RSS-102 ISSUE 2	Pass								

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Seenay Shih

SUNNY SHIH EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Tested By:

Carol Baumann

CAROL BAUMANN EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

2 TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C and IC RSS 102 Issue 2: NOVEMBER 2005.

3 FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4 CALIBRATION AND UNCERTAINTY

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

5 MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz - 3000 MHz

Uncortainty component	Tol (+%)	Probe	Div	Ci(1a)	Ci (10a)	Std. Unc.(±%)		
Oncertainty component	101. (± /₀)	Dist.	Div.	Ci (ig)	CI (TUG)	Ui (1g)	Ui(10g)	
Measurement System								
Probe Calibration	4.80	Ν	1	1	1	4.80	4.80	
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92	
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92	
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58	
Linearity	4.70	R	1.732	1	1	2.71	2.71	
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58	
Readout Electronics	1.00	N	1	1	1	1.00	1.00	
Response Time	0.80	R	1.732	1	1	0.46	0.46	
Integration Time	2.60	R	1.732	1	1	1.50	1.50	
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92	
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00	
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23	
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67	
Extrapolation, interpolation, and integration algorithms for								
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25	
Test sample Related								
Test Sample Positioning	1.10	N	1	1	1	1.10	1.10	
Device Holder Uncertainty	3.60	Ν	1	1	1	3.60	3.60	
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89	
Phantom and Tissue Parameters								
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31	
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24	
Liquid Conductivity - Meas.	8.60	N	1	0.64	0.43	5.50	3.70	
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41	
Liquid Permittivity - Meas.	3.30	N	1	0.6	0.49	1.98	1.62	
Combined Standard Uncertainty			RSS			11.44	10.49	
Expanded Uncertainty (95% Confidence Interval)			K=2			22.87	20.98	
Notesfor table								
1. Tol tolerance in influence quaitity								
2 N. Nomal								

2. N - Nomal

3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient

6 DEVICE UNDER TEST (DUT) DESCRIPTION

WIRELESS MICROPHONE (Receiver)							
Normal Operation: Held to head or body							
Duty Cycle:	Bluetooth mode: 77.33% (Crest Factor= 1.29)						
Host Device: SONY HANDYCAM, Model: HDR-HC9							
Body Worn Accessory:	Headset						
Antenna(s)	Internal						
Power Supply: Power supplied through host device							

7 SYSTEM DESCRIPTION

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

7.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)									
(% by weight)	4	50	835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 MΩ+ resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

8 SIMULATING LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Set-up for liquid parameters check

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Bo	dy
raiget i requeitcy (Miriz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

8.1 SIMULATING LIQUID PARAMETER CHECK RESULT

Simulating Liquid Dielectric Parameter Check Result @ Muscle 2450 MHz

Room Ambient Temperature = 25°C; Relative humidity =36%

	Simulatir	ng Liquid			Parameters	Measured	Target	Deviation (%)	Limit (%)
	f (MHz)	Depth (cm)			r didiffecters	WicdSured	raiget	Deviation (70)	Linit (70)
	2450	15	e'	50.8668	Relative Permittivity (ε_r):	50.8668	52.7	-3.48	± 5
	2450	15	e"	14.9326	Conductivity (σ):	2.03526	1.95	4.37	± 5
Lia	uid Check								
Am	bient tempe	erature: 25 d	ea.	C: Liquic	temperature: 24 dec	a. C			
No	vember 24,	2008 02:07	PM	-, 1					
Fre	quency	e'			e"				
240	00000000.	5	50.74	455	14.7820				
240	05000000.	5	50.8	353	14.8354				
241	10000000.	5	50.8	075	14.7991				
241	15000000.	5	50.7	862	14.7586				
242	20000000.	5	50.74	420	14.8482				
242	25000000.	5	50.8	358	14.8119				
243	30000000.	5	50.7	690	14.8820				
243	35000000.	5	50.8	236	14.8671				
244	10000000.	5	50.7 [°]	753	14.8821				
244	15000000.	5	50.7	136	14.9281				
245	50000000.	5	50.8	668	14.9326				
245	55000000.	5	50.6	806	14.9185				
246	6000000.	5	50.8	019	14.9983				
246	65000000.	5	50.6	156	14.9777				
247	70000000.	5	50.7	096	15.0285				
247	75000000.	5	50.6	275	15.0352				
248	30000000.	5	50.6	101	14.9952				
248	35000000.	5	50.6	003	15.0863				
249	9000000.	5	50.5	792	15.1175				
249	95000000.	5	50.4	667	15.0598				
250	0000000.	5	50.5	187	15.2111				
The	The conductivity (σ) can be given as:								
σ=	= ωε _θ e''= 2	$\pi f arepsilon_{ heta}$ e"							
whe	ere $f = targ$	get $f * 10^{6}$							
	E _ = 8.8.	$54 * 10^{-12}$							

Simulating Liquid Dielectric Parameter Check Result @ Muscle 2450 MHz

Room Ambient Temperature = 25°C; Relative humidity =39%

	Simulating Liquid				Parameters	Measured	Target	Deviation (%)	Limit (%)
	f (MHz)	Depth (cm)			modourou	Talget		(()0)	
	2450	15	e'	50.1273	Relative Permittivity (ε_r):	50.1273	52.7	-4.88	± 5
	2430	15	e"	14.9786	Conductivity (σ):	2.04153	1.95	4.69	± 5
Lig	uid Check								
Am	, hbient tempe	erature: 25 d	leg.	C; Liquic	l temperature: 24 dec	g. C			
No	vember 25,	2008 08:31	АМ	•					
Fre	equency	e'			e"				
24	00000000.	5	50.2	483	14.8913				
24	05000000.	5	50.2	284	14.8185				
24	10000000.	5	50.2	691	14.7144				
24	15000000.	5	50.2	942	14.7043				
242	20000000.	5	50.1	804	14.7321				
242	25000000.	5	50.1	882	14.7313				
24	30000000.	5	50.1	694	14.8417				
24	35000000.	5	50.1	288	14.9061				
24	40000000.	5	50.0	408	14.8753				
24	45000000.	4	9.9	911	14.9006				
24	50000000.	5	50.1	273	14.9786				
24	55000000.	5	50.0	475	15.0694				
24	60000000.	5	50.1	679	15.1449				
24	65000000.	5	50.1	231	15.1432				
24	70000000.	5	50.1	732	15.2344				
24	75000000.	5	50.0	972	15.3690				
24	80000000.	5	50.0	322	15.3191				
24	85000000.	5	50.0	087	15.4235				
24	90000000.	5	50.0	211	15.3349				
24	95000000.	4	9.8	769	15.2882				
25	250000000. 49.9889		15.3409						
The conductivity (σ) can be given as:									
σ=	= ωε _θ e''= 2	$\pi f arepsilon_{ heta}$ e"							
wh	ere $f = target$	get $f * 10^6$							
	E ₀ = 8.8.	54 * 10 ⁻¹²							

Simulating Liquid Dielectric Parameter Check Result @ Head 2450 MHz

Room Ambient Temperature = 25°C; Relative humidity = 39%

	Simulating Liquid				Parameters	Measured	Target	Deviation (%)	Limit (%)
	f (MHz)	Depth (cm)			modourou	Talget	2011011011 (70)		
	2450	15	e'	38.8693	Relative Permittivity (ε_r):	38.8693	39.2	-0.84	± 5
	2430	15	e"	13.6894	Conductivity (σ):	1.86582	1.80	3.66	± 5
Liau	uid Check								
Am	bient tempe	erature: 25 d	leq.	C: Liquic	I temperature: 24 dec	a. C			
Nov	, /ember 25,	2008 02:51	РЙ	<i>,</i> 1		, ,			
Fre	quency	e'			e"				
240	0000000.	3	8.8	663	13.7374				
240	5000000.	3	38.9	486	13.7035				
241	0000000.	3	8.8	714	13.6422				
241	5000000.	3	8.8	926	13.6054				
242	20000000.	3	8.8	010	13.6374				
242	5000000.	3	8.8	227	13.6143				
243	0000000.	3	8.8	931	13.6063				
243	5000000.	3	8.8	113	13.6725				
244	0000000.	3	8.8	295	13.6549				
244	5000000.	3	8.8	683	13.6814				
245	0000000.	3	8.8	693	13.6894				
245	5000000.	3	88.7	611	13.7060				
246	0000000.	3	8.8	078	13.8202				
246	5000000.	3	8.6	979	13.7552				
247	0000000.	3	88.74	409	13.8279				
247	5000000.	3	88.6	251	13.8573				
248	0000000.	3	8.6	032	13.8101				
248	5000000.	3	8.6	042	13.9075				
249	0000000.	3	88.6	361	13.8647				
249	5000000.	3	38.5	293	13.8542				
250	0000000.	3	38.5241		13.9789				
The	e conductivi	ty (σ) can be	e giv	en as:					
$\sigma =$	<i>ωε_θ</i> e''= 2	$\pi f arepsilon_{ heta}$ e"							
whe	there $f = target$	get $f * 10^{6}$							
	E _0 = 8.8.	$54 * 10^{-12}$							

9 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7 x 7 x 7 fine cube was chosen for cube integration(dx=dy=5mm; dz=5mm). For 5 GHz band - Special 7 x 7 x 7 fine cube was chosen for cube integration (dx=dy=4.3mm; dz=3mm)
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using the finite-difference time-domain method and the geometry parameters.

Dipole Type	Distance (mm)	Frequency (MHz)	SAR (1g) [W/kg]	SAR (10g) [W/kg]	SAR (peak) [W/kg]
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6

Note: All SAR values normalized to 1 W forward power.

9.1 SYSTEM PERFORMANCE CHECK RESULTS

System Validation Dipole: D2450V2 SN: 748

The dipole input power (forward power): 250 mW

<u>Results</u>

Date: November 24, 2008 (Muscle 2450 MHz Liquid)

Ambient Temperature = 25°C; Relative humidity = 36%

Body Simulating Liquid		Normalized		Target	Deviation	Lim it	
f(MHz)	Temp.(°C)	Depth (cm)	to 1 W		Target	(%)	(%)
2450	24	15	1 g	51.8	51.2	1.17	± 10
2450	24	15	10g	23.8	23.7	0.42	± 10

Date: November 25, 2008 (Muscle 2450 MHz Liquid)

Ambient Temperature = 25°C; Relative humidity = 39%

Measured by: Carol Baumann

Body	Body Simulating Liquid		Body Simulating Liquid Normalized Target		quid Normalized		Taraet	Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)	to 1 W		rarget	(%)	(%)		
2450	24	15	1 g	52.3	51.2	2.15	± 10		
2450	24	15	10g	24.1	23.7	1.69	± 10		

9.2 DASY4 SAR MEASURMENT PROCEDURE

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures 7 x 7 x 9 points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

For 5 GHz band – Same as above except the Zoom Scan measures 7 x 7 x 9 points.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

10 PROCEDURE USED TO ESTABLISH TEST SIGNAL

The following procedures had been used to prepare the EUT for the SAR test.

The client provided a special driver and program, RFtestE.exe (version 121B), which enables a user to control the frequency and output power of the module.

The cable assembly insertion loss of 10.5 dB (including 10 dB attenuator and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RF Conducted Output Power Measurement Results:

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low (0)	2402	10.45
Middle (39)	2441	9.36
High (78)	2480	9.14

11 SAR MEASURMENT RESULTS

11.1 SAR MEASUREMENT RESULTS USING BODY LIQUID

EUT Front Face (Worst case position – antenna closest to flat phantom)

Channel	Freq. (MHz)	Measured SAR 1g_(mW/g)	Limit (mW/g)
0	2402	0.694	
39	2441	0.501	1.6
78	2480	0.237	

EUT Right Side

Channel	Freq. (MHz)	Measured SAR 1g_(mW/g)	Limit (mW/g)
0	2402	0.129	
39	2441		1.6
78	2480		

EUT Left Side

Channel	Freq. (MHz)	Measured SAR 1g_(mW/g)	Limit (mW/g)
0	2402	0.169	
39	2441		1.6
78	2480		

EUT Top

Channel	Freq. (MHz)	Measured SAR 1g_(mW/g)	Limit (mW/g)
0	2402	0.129	
39	2441		1.6
78	2480		

Notes:

- a. The modes with highest output power channel were chosen for the testing.
- b. The SAR measured at the low channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at middle & high channel is optional.

SAR MEASUREMENT RESULTS USING HEAD LIQUID

EUT Front Face (Worst case position – antenna closest to flat phantom)

Channel	Freq. (MHz)	Measured SAR 1g_(mW/g)	Limit (mW/g)
0	2402	0.996	
39	2441	0.758	1.6
78	2480	0.348	

EUT Right Side

Channel	Freq. (MHz)	Measured SAR 1g_(mW/g)	Limit (mW/g)
0	2402	0.193	
39	2441		1.6
78	2480		

EUT Left Side

	Channel	Freq. (MHz)	Measured SAR 1g_(mW/g)	Limit (mW/g)
	0	2402	0.247	
ĺ	39	2441		1.6
	78	2480		

EUT Top

Channel	Freq. (MHz)	Measured SAR 1g_(mW/g)	Limit (mW/g)
0	2402	0.163	
39	2441		1.6
78	2480		

Notes:

- c. The modes with highest output power channel were chosen for the testing.
- d. The SAR measured at the low channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at middle & high channel is optional.

12 ATTACHMENTS

No.	Contents	No. Of Pages
1	System Performance Check Plots	4
2	SAR Test Plots	13
3	Certificate of E-Field Probe - EX3DV3SN3531	10
4	Certificate of System Validation Dipole - D2450V2 SN:748	6