MATSUSHITA-KOTOBUKI

SAUO DIVISION ADDRESS: 〒793-8510 247 FUKUTAKE, SAUO, EHIME, JAPAN TELEPHONE: +81--897--56--1111 FAX: +81-897-56-8142

Date: July 22, 1998

Report of Measurements (Part I)

) SUBPART B (TV INTERFACE DEVICE) REQUIRED IN (

(X) SUBPART B (DIGITAL DEVICE)

EXHIBIT # 3-1

FCC ID

: GSS99003

OUR REF.

: MKS98-F009

MODEL NO.: VPRJ21452

Sheet 1 of 9 Sheets

Name of Manufacturer: Matsushita-Kotobuki Electronics Industries Ltd.

Address of Manufacturer: 247 Fukutake, Saijo, Ehime, Japan.

Device Under Measurement

FCC ID

: GSS99003

Model No.

: VPRJ21452

Trade Name

: ViewSonic

Applicant

: ViewSonic Corporation

This device is a representative model of SP-25S chassis group.

Certification

On the basis of the measurement data contained in Part II, all devices bearing the aforementioned FCC ID (model No., chassis No., and trade names) are stated by the undersigned to be capable of complying with the applicable sections of Part 15 of the FCC rules governing restricted radiation devices at the time of manufacture and may be expected to continue to comply under normal conditions and with usual maintenance. The undersigned also states that the device measured was an engineering prototype, pre-production, or production unit. If changes are applied to future units and such changes adversely alter spurious radiation, an amended report of measurements will be supplied to the FCC.

K. Ishikawa

Sr. Engineer

MATSUSHITA-KOTOBUKI ELECTRONICS INDUSTRIES LTD.

SALJO DMSKON ADDRESS: 〒793-6510 247 FUKUTAKE SALJO, EHIME JAPAN TELEPHONE:+81-897-66-1111 FAX:+81-897-56-8142

Part 15 Subpart B. (Digital Device) - Part II

Sheet 2 of 9 Sheets

1) 15.107 Power Line Conducted Voltage

Frag	Limits	Interference (dBuV)							
Freq. (MHz)	(dBuV)	1-end &	The other-						
(141112)	(ubuv)	Grounded	End & Gro.						
0.58	48.0	27.7	27.3						
0.82	48.0	26.6	26.3						
0.91	48.0	28.3	27.9						
1.13	48.0	35.6	35.4						
7.01	48.0	33.1	32.7						
29.90	48.0	23.4	23.1						

(Refer to Sheet 3, 5, 7 of 9 Sheets)

2) 15.109 Radiated Emission

Freq.	Limits	Emission	(dBuV/m)
(MHz)	(dBuV/m)	Horiz.	Vert.
40.00	40.0	21.4	26.1
46.20	40.0	24.1	34.2
80.00	40.0	27.6	33.4
119.96	43.5	27.4	36.9
160.01	43.5	31.5	32.1
216.00	43.5	33.4	33.6

(Refer to Sheet 4, 6, 8, 9 of 9 Sheets)

MEASUERMENT SITE: MKS SITE

MEASUERMENT PROCEDURE: ANSI C63.4-1992

Note:

(1) Detailed report: Refer to attached sheets.

I HEREBY STATE THAT: The measurements shown in Part II of this form were made in accordance with The procedures indicated and the energy emitted by this equipment was found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements and vouch for the Qualifications of all persons taking them.

I FURTHER STATE THAT: On the basis of the measurements made, the device tested is capable of operation in compliance with the requirements of Part 15 of the FCC Pules under normal use and maintenance.

T. Watanabe

Engineer

1) 15.107 Power Line Conducted Voltage

Frog	Meter Read	ling (dBuV)	LISN	Matching	Interferen	ce (dBuV)		
Freq. (MHz)	1-end &	The other-	Factor	Pad Loss	1-end &	The other-		
(MITIZ)	Grounded	End & Gro.	(dB)	(dB)	Grounded	End & Gro		
0.58	21.4	21.0	0.1	6.2	27.7	27.3		
0.82	20.3	20.0	0.1	6.2	26.6	26.3		
0.91	22.0	21.6	0.1	6.2	28.3	27.9		
1.13	29.3	29.1	0.1	6.2	35.6	35.4		
7.01	26.5	26.1	0.4	6.2	33.1	32.7		
29.90	16.2	15.9	1.0	6.2	23.4	23.1		

Note:

1. Sample calculation at

<u>1-end & Gro., 0.58 MHz</u>; 21.4 + 0.1 + 6.2 = 27.7 (dBuV)

2. Measuring Instruments:

a) Field strength meter

- Kyoritsu Electric Work Co., Ltd.

Model: KNM-402C

(1) Detector function

: CISPR Q-PEAK

(2) IF band width

: 9 kHz

(3) Input impedance

: 75 ohms

b) Line impedance stabilized network (LISN)

- Kyoritsu Electric Work Co., Ltd.

Model: KNW-406, KNW-407

50 ohms / 50 uh network

c) Matching pad

- Kyoritsu Electric Work Co., Ltd.

Model: KPD-401

3. The spectrum was checked from 0.45 MHz to 30 MHz and the six highest emissions relative to the appropriate limit were measured and reported.

2) 15.109 Radiated Emission

Freq.		Reading lt. (dBuV)	Correction Factor (dB)		ssion at s (dBuV)			
(MHz)	Horiz.	Vert.	Open Vol.	Horiz. Vert				
40.00	5.4	10.1	16.0	21.4	26.1			
46.20	9.6	19.7	14.5	24.1	34.2			
80.00	18.9	24.7	8.7	27.6	33.4			
119.96	12.4	21.9	15.0	27.4	36.9			
160.01	13.4	14.0	18.1	31.5	32.1			
216.00	13.4	13.6	20.0	33.4	33.6			

Note:

1. Sample calculation at

<u>Horiz.</u>, 40.00 MHz; 5.4 + 16.0 = 21.4 (dBuV/m)

2. Measuring Instruments:

a) Field strength meter

- Rohde & Schwarz

(for 30 MHz to 1 G Hz)

Model: ESVP

(1) Frequency range

: 20 MHz to 1300 MHz

(2) RF Input

: 50 ohms

(3) IF band width

: 7.5 kHz / 12 kHz/

120 kHz / 1 MHz

(4) Detector function: Average/

CISPR Q-PERK/PERK

c) Receiving antenna

- Schwarzbeck

Model: VHA9103

30 - 300 MHz

Model: UHALP9107

300 - 1000 MHz

- The Electro-Machanics Company

Model: 3115

1 - 18G Hz

3. The Spectrum was checked from 30 MHz to 1000 MHz and the six highest emissions relative to the appropriate limit were measured and reported.

		JO.																		Sł	nee	 t	7	of	_9		ho	o+o	-	
		10																		:;::;	;;;;;	- :::::	 ::::::	:::::	_ 		nie.	ets Hiii		
		CV.	11					114												5									111	
										Ш										.										
		100								i Fili																				
		9							1121								1	İ		ร์									21.1	
									:11:		::::			1					C	}										
														::::							::::			i H		::!!	4		::::	
												1				1	-			ļ	1			1111		11::		1 1		
							111												2_		::::		i::!			<u> </u>				::!!
																		_												
																		-	-											
1																			_10											
	<u> </u>		! [] ! 	HHI.				1111		[-			-						-	1-1-										
	· · · · - _.																							ļ						
									::::!										-~	<u> </u>										
			_																											
			Ä														 													
			TOR TOR	F F							i														7			.,.,		
	LISN		FACTOR	1.::		-					;. 										MHZ									
	1		Z											1.		.:::) Y									
	KNW-406		LISN													- :			-0		requency		::::							
	MAI CINE														::::				10		edı									
																			Ö		F									
																														·
																			ပိ						:::: :::1:::					
t: ::-	1			1																:::::	11;									
				7							1.	:1::							-6				::::			1:		1144 1144		
						-				•	4				····i			:J.								#				
							(i															1 1 0 0 0 1 1 1 0 1 1 1 0								
		11111	HILLI		11 111		- 1 1 1		11111	1111		111				****	11111	****	1	****	****	****	1111	111	::-: 		! ! ! 			
	!::::!::::::::::::::::::::::::::::::::		444411																2										# 1	
			:::::::	::::/::	:::::::::::::::::::::::::::::::::::::::	: :: ::	:::::	:2:1:		:::	:::1								20			:::: ::::					::::	### 		
	 								441	444								Ш	8-1											
																			المرا											
																			-8						1111					
			12.2														- :::		2		•===		- :							
 														:L	:	<u>_</u> :	:		8	- 1		··- :	٠.			- 1				
															:	. :	٠.			-		:	٠,			!				
					:	. !		: !		:		. !			!					! !					٠.					
	i .			··· -		ď	>	Ŋ		4		(*		~	-				8									e e i		:

 $\overline{}$

CORRECTION FACTOR OF BBA9106

E = V + K

: Correction Factor

E: Field Strength

---: Antenna Factor

V: Correction Factor (dB)

----: Cable Loss

CORRECTION FACTOR OF UHALP9107

E = V + K — : Correction Factor

E : Field Strength — ---: Antenna Factor

V : Correction Factor (dB) ----: Cable Loss

Block Diagram of System for Measurements

EXHIBIT # : <u>3-2</u>

FCC ID : <u>GSS99003</u>

OUR REF. : MKS98-F009

MODEL NO.: VPRJ21452

Page 1/3

Type of Interface Cable

1. Power Cord

2. Printer Cable (2.0 m)

: Shielded Cable ; Circular Cable

3. SCSI Cable (0.5 m)

: Shielded Cable with a Ferrite Core ; Circular Cable

4. Audio Cable (1.9 m)

: Shielded Cable

5. Tranceiver Cable (0.5 m)

: Shielded Cable

(Permanently attached to the Ethernet Tranceiver)

6. Audio Cable (2.0 m)

: Shielded Cable

7. Monitor Cable (2.0 m)

: Shielded Cable

8. RS-232C Cable (2.0 m)

: Shielded Cable

9. RS-232C Mac Adaptor (0.2m): Shielded Cable

10. VGA Cable (2.0 m)

: Shielded Cable with Two Ferrite Cores (PROUIDED WITH EUT)

11. Keyboard Cable (0.9m)

: Shielded Curl Cable

(Permanently attached to the Keyboard)

12. Mouse Cable (0.8 m)

: Shielded Cable

(Permanently attached to the Mouse)

13. S-Video Cable (1.4 m)

: Shielded Cable

14. Video Cable (1.4 m)

: Shielded Cable

15. Audio Cable (1.4 m)

: Shielded Cable

16. Mac Adaptor

Description

Computer

(Certified Device)

Model No. Trade Name

: M9040 : Apple

FCC ID

: BCGM9040

Keyboard

(Certified Device)

Model No. Trade Name : M0487

: Apple

FCC ID

: BCGM0487

Mouse

(Certified Device)

Model No.

: M2706

Trade Name

: Apple

FCC ID

: BCGM2706

Printer

(Certified Device)

Model No.

: M2003

Trade Name : Apple

FCC ID

: BCGM2003

Monitor

(Certified Device)

Model No.

: M2978

Trade Name : Apple

FCC ID

: BEJCA500

Video Cassette Recorder

(Certified Device)

Model No.

: PV-S7680

Trade Name : Panasonic

FCC ID

: ACJ927104AHS

CD-ROM Drive

(Certified Device)

Model No.

: M2918

Trade Name : Apple

FCC ID

: BCGM2918

PC Card

Model No.

: LSFA0005

Trade Name : Panasonic

Model No.

PC Card Adapter

: KXL-D55

Trade Name : Panasonic

FCC ID

: Panasonic : AC3526KXL-602A PARATOR : MO437

Ethernet Transceiver

Model No.

: M0437

(Certified Device)

Trade Name : Apple

LCD Projector

(Application Device)

Model No.

: VPRJ21452

Trade Name : ViewSonic

FCC ID

: GSS99003

MORE COM

AUG 03 1998

EXHIBIT # :

: <u>4-1</u> : GSS99003

OUR REF.

FCC ID

: MKS98-F009

MODEL NO.: VPRJ21452

Page 1/2

Technical Specification

Power Supply

: Voltage

: AC 100 - 240 V, 50 / 60 Hz

: Power Consumption

: 2.6-1.2 A

Video Input Signal

:NTSC Composite Video, 1 Vp-p, 75 ohms

S-Video Input Signal

: Y (luminance signal), 1 Vp-p, 75 ohms

: C (chrominance signal), 0.286 Vp-p, 75 ohms

RGB Input Signal

Video Signal

: RGB Analog (0.7 Vp-p, 1.0 Vp-p with sync on green,

75 ohms) Unlimited numers of colors

Sync Signal

: H/V separate, H/V composite, or Sync-on-Green

H-Frequency

: 24.83 - 60.24 kHz (TTL Level)

V-Frequency

:56.25 - 85.1 Hz (TTL Level)

Terminals

: S-Video Input

: Mini DIN 4-pin \times 1

: NTSC Video Input

: RCA pin \times 1

: Audio / Video Input

: RCA pin \times 2 (L + R)

: Serial Port (RS-232C)

: Mini DIN 8-pin \times 1

: RGB Display Input

: D-Sub mini 15-pin \times 1

: RGB Audio Input

: M3 stereo mini pin \times 1

: RGB Display Output

: D-Sub mini 15-pin \times 1

: Audio Output

: M3 stereo mini pin \times 1

: PC Card Slot

: PCMCIA Type $II \times 1$

Operating Temperature

:41 ° F - 104 ° F (5 °C - 40 °C)

Operating Humidity

:10 % - 80 %

Block Diagram

3

EXHIBIT # : <u>4-2</u>

FCC ID : <u>GSS99003</u>

OUR REF. : <u>MKS98-F009</u>
MODEL NO. : <u>VPRJ21452</u>

List of Frequency

The CLOCK of LCD Projector

CIRCUIT Name	CLOCK							
BALLAST	4. 00 MHz							
SYSTEM CONTROL	14. 32 MHz							
VIDEO SIGNAL	503 kHz							
VIDEO SIGNAL	3. 58 MHz							
PLL	14. 30 MHz							
LCD DRIVE TIMING CONTROL	36.00 MHz							
PC CARD CONTROL	12.50 MHz							

The CLOCK of PLL1/2 BLOCK

VIDEO	SIGNAL	CLOCK (MHz)
VIDEO MODE	PAL	15. 16
	SECAM	15. 16
	PAL-N	15. 16
	PAL-M	15. 64
	NTSC	15. 64
:	NTSC4.43	15. 64
RGB MODE	VGA @60Hz	25. 18
	VGA @72Hz	31. 50
	VGA @75Hz	31. 50
	VGA @85Hz	36. 00
	MAC 13"	30. 24
	SVGA @56Hz	36. 00
	SVGA @60Hz	40. 00
	SVGA @72Hz	50. 00
	SVGA @75Hz	49. 50
	SVGA @85Hz	56. 25
	MAC 16"	57. 28
	XGA @60Hz	65. 00
	XGA @70Hz	75. 00
	XGA @75Hz	78. 75
	MAC 19"	80. 00
PC CARD MODE		38. 00
NO SIGNAL	_	38. 00

Device Operation Description

Performance Explanation of LCD Projector

This projector is equipped with the function to project video images onto a large screen Using monitor signal from PCs or video signal from VCRs, etc. And the audio signal from PC or VCR is output by projector's internal speaker. The following describes how the video signal is processed.

- Video signal which is input to S-VIDEO input terminal or VIDEO input terminal is supplied
 to Digital block after Video signal processing. In the digital block, in order to perform
 INTERLACE → Non-INTERLACE conversion, the signals are digitally processed and
 converted to RGB signal which is the same format as PC monitor signals. Then
 Synchronizing signals which are separated by video signal processing circuit is supplied to
 LCD drive timing control circuit and system control circuit.
- 2. One of the RGB signals mentioned above, or the monitor signal which is supplied to monitor input terminal from a PC, is selected and processed and then supplied to digital block as RGB signal. After that the signal is supplied to block gamma correction. Synchronizing signal, which is produced by the Synchronizing signal processing is added to LCD drive timing control circuit and system control circuit.
- 3. Synchronizing signal, which is supplied to each circuit, is used to process synchronization of system control and LCD drive.
- 4. PLL oscillation clock of LCD drive timing control circuit and OSD clock which is supplied to signal process circuit are adjusted to the proper frequency for each PC by the system control circuit which distinguishes the input Synchronizing signal.
- 5. In the PC Card block, JPEG data of ATA Flash Card is read out, JPEG Expansion is done, then it is converted to RGB data. And Storing it in the frame memory of Digital Block makes it a still (frozen) image.