

OET 65 TEST REPORT

Product Name	Tablet PC
Model	VS14140
FCC ID	GSS-VS14140
Client	ViewSonic Corporation

TA Technology (Shanghai) Co., Ltd.

TA Technology (Shanghai) Co	э.,	Ltd.
Test Report		

Page 2 of 110

GENERAL SUMMARY

Product Name	Tablet PC	Model	VS14140
FCC ID	GSS-VS14140		
Report No.	RZA1106-0987SAR01R1		
Client	ViewSonic Corporation		
Manufacturer	ViewSonic Corporation		
Reference Standard(s)	 IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radiofrequency Electromagnetic Fields, 3 KHz to 300 GHz. OET Bulletin 65 supplement C, published June 2001 including DA 02-1438, published June 2002: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits. Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65. KDB 248227 D01 SAR meas for 802 11 a b g v01r02: SAR Measurement Procedures for 802.11a/b/g Transmitters KDB 616217 D03 SAR Supp Note and Netbook Laptop v01: SAR Evaluation Considerations for Laptop/Notebook/Netbook and Tablet Computers - supplement to KDB 616217. KDB 447498 D01 Mobile Portable RF Exposure v04: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies 		
Conclusion Comment	This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards. General Judgment: Pass (Stamp) Date of issue: July 13 th , 2011 The test result only responds to the measured sample.		
Approved by	eke. Yang Revised by ector Si	AR Manager	ed by SAR Engineer

1. Ger	neral Information	. 5
1.1.	Notes of the Test Report	. 5
1.2.	Testing Laboratory	. 5
1.3.	Applicant Information	. 6
1.4.	Manufacturer Information	. 6
1.5.	Information of EUT	. 7
1.6.	The Maximum SAR _{1g} Values	. 8
1.7.	Power of Each Tested Mode	. 8
1.8.	Test Date	. 8
2. Ope	erational Conditions during Test	. 9
2.1.	General Description of Test Procedures	. 9
2.2.	WCDMA Test Configuration	. 9
2.3.	HSDPA Test Configuration	10
2.4.	HSUPA Test Configuration	12
2.5.	WIFI Test Configuration	14
2.6.	Position of Portable devices	15
3. SAF	R Measurements System Configuration	16
3.1.	SAR Measurement Set-up	
3.2.	DASY5 E-field Probe System	
3.2.	1. EX3DV4 Probe Specification	17
3.2.	2. E-field Probe Calibration	18
3.3.	Other Test Equipment	18
3.3.		
3.3.	2. Phantom	19
3.4.	Scanning Procedure	19
3.5.	Data Storage and Evaluation	
3.5.	5	
3.5.	5	
3.6.	System Check	
3.7.	Equivalent Tissues	
	oratory Environment	
5. Cha	aracteristics of the Test	27
5.1.	Applicable Limit Regulations	
5.2.	Applicable Measurement Standards	
6. Cor	ducted Output Power Measurement	
6.1.	Summary	
6.2.	Conducted Power Results	
	t Results	
7.1.	Dielectric Performance	
7.2.	System Check	
7.3.	Summary of Measurement Results	
7.3.		
7.3.	2. WCDMA Band V (WCDMA/HSDPA/HSUPA)	31

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1106-0987SAR01R1

Page 3 of 110

TABLE OF CONTENT

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1106-0987SAR01R1Page 4 of 1	
7.3.3. WIFI/BT Function	
8. Measurement Uncertainty	
9. Main Test Instruments	
ANNEX A: Test Layout	
ANNEX B: System Check Results	
ANNEX C: Graph Results	
ANNEX D: Probe Calibration Certificate	
ANNEX E: D835V2 Dipole Calibration Certificate	
ANNEX F: D1900V2 Dipole Calibration Certificate	
ANNEX G: D2450V2 Dipole Calibration Certificate	
ANNEX H: DAE4 Calibration Certificate	101
ANNEX I: The EUT Appearances and Test Configuration	106

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electrical report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing Laboratory

Company:	TA Technology (Shanghai) Co., Ltd.	
Address:	No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China	
City:	Shanghai	
Post code:	201201	
Country:	P. R. China	
Contact:	Yang Weizhong	
Contact: Telephone:	Yang Weizhong +86-021-50791141/2/3	
Telephone:	+86-021-50791141/2/3	

1.3. Applicant Information

Company:	ViewSonic Corporation		
Address:	381 Brea Canyon Road,Walnut,CA 91789,USA		
City:	1		
Postal Code:	1		
Country:	/		
Contact:	1		
Telephone:	1		
Fax:	/		

1.4. Manufacturer Information

Company:	ViewSonic Corporation		
Address:	381 Brea Canyon Road, Walnut, CA 91789, USA		
City:	1		
Postal Code:	1		
Country:	1		
Telephone:	1		
Fax:	1		

1.5. Information of EUT

General Information

Device Type:	Portable Device		
Exposure Category:	Uncontrolled Environment / General Population		
Name of EUT:	Tablet PC		
IMEI:	1		
Hardware Version:	P678A1-2.0.0		
Software Version:	BD_P678A1V1.0.0B02	2	
Antenna Type:	Internal Antenna		
Device Operating Configurations	:		
Supporting Mode(s):	WCDMA Band II/WCDMA Band V; (tested) WiFi(802.11b/g/n); (tested) BT; (untested)		
Test Modulation:	(WCDMA)QPSK		
Device Class:	В		
HSDPA UE Category:	8		
HSUPA UE Category:	6		
	Mode	Tx (MHz)	Rx (MHz)
Operating Frequency Range(s):	WCDMA Band II	1852.4 ~ 1907.6	1932.4 ~ 1987.6.
	WCDMA Band V	826.4 ~ 846.6	871.4 ~ 891.6
Dewer Clease	WCDMA Band II: 3, tested with power control all up bits		
Power Class:	WCDMA Band V: 3, tested with power control all up bits		
Test Channel: (Low - Middle - High)	9262 - 9400 - 9538 (WCDMA Band II) (tested) 4132 - 4183 - 4233 (WCDMA Band V) (tested) 1 - 6 - 11 (802.11b) (tested)		

Equipment Under Test (EUT) is a Tablet PC. The detail about EUT is in chapter 1.5 in this report. The EUT has a WCDMA antenna that is used for Tx/Rx, the second is WIFI antenna that can be used for Tx/Rx, and the third is BT antenna that can be used for Tx/Rx. During SAR test of the EUT, SAR is tested for WCDMA Band II, WCDMA Band V and WIFI.

The sample undergoing test was selected by the Client.

Components list please refer to documents of the manufacturer.

1.6. The Maximum SAR_{1g} Values

Mode	Channel	Position	SAR _{1g} (W/kg)
WCDMA Band II	Middle/9400	Test Position 1	0.716
WCDMA Band V	Middle/4183	Test Position 5	0.578
WIFI	High/11	Test Position 1	0.493

1.7. Power of Each Tested Mode

Mode	Max. Conducted Power (dBm)
WCDMA Band II	23.67
WCDMA Band V	24.37
WIFI	16.30

Note: The detail Power refer to Table 10 (Power Measurement Results).

1.8. Test Date

The test is performed from June 16, 2011 to June 17, 2011 and from July 3,2011 to July 4, 2011.

2. Operational Conditions during Test

2.1. General Description of Test Procedures

A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 9262, 9400 and 9538 respectively in the case of WCDMA Band II, allocated to 4132, 4183 and 4233 in the case of WCDMA Band V. The EUT is commanded to operate at maximum transmitting power.

Connection to the EUT is established via air interface with E5515C, and the EUT is set to maximum output power by E5515C. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

2.2. WCDMA Test Configuration

As the SAR body tests for WCDMA Band II and WCDMA band V, we established the radio link through call processing. The maximum output power were verified on high, middle and low channels for each test band according to 3GPP TS 34.121 with the following configuration:

- 1) 12.2kbps RMC, 64,144,384 kbps RMC with TPC set to all "all '1's"
- 2) Test loop Mode 1

For the output power, the configurations for the DPCCH and DPDCH₁ are as followed (EUT do not support the DPDCH_{2-n})

	Channel Bit Rate(kbps)	Channel Symbol Rate(ksps)	Spreading Factor	Spreading Code Number	Bits/Slot
DPCCH	15	15	256	0	10
	15	15	256	64	10
	30	30	128	32	20
	60	60	64	16	40
DPDCH ₁	120	120	32	8	80
	240	240	16	4	160
	480	480	8	2	320
	960	960	4	1	640

Table 1: The configurations for the DPCCH and DPDCH₁

SAR is tested with 12.2kps RMC and not required for other spreading codes (64,144, and 384 kbps RMC) and multiple DPDCH_n, because the maximum output power for each of these other configurations<0.25dB higher than 12.2kbps RMC and the multiple DPDCH_n is not applicable for the EUT.

2.3. HSDPA Test Configuration

SAR for body exposure configurations is measured according to the "Body SAR Measurements" procedures of 3G device. In addition, body SAR is also measured for HSDPA when the maximum average output of each RF channel with HSDPA active is at least 1/4 dB higher than that measured without HSDPA using 12.2kbps RMC or the maximum SAR 12.2kbps RMC is above 75% of the SAR limit. Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA.

HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission condition, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCH power offset parameters(\triangle ACK, \triangle NACK, \triangle CQI)should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Sub-set	ß	ß	β_{d} β_{c}/β_{d} (SF)		β_{hs}	CM(dB)	MPR(dB)
3ub-3et	β _c	β_d			(note 1, note 2)	(note 3)	WF K(UB)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15	15/15	64	12/15	24/15	1.0	0.0
2	(note 4)	(note 4)	04	(note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Table 2: Subtests for UMTS Release 5 HSDPA

Note1: \triangle_{ACK} , \triangle_{NACK} and \triangle_{CQI} = 8 \Leftrightarrow $A_{hs} = \beta_{hs}/\beta_c = 30/15$ \Leftrightarrow $\beta_{hs} = 30/15*\beta_c$

Note2:For the HS-DPCCH power mask requirement test in clause 5.2C,5.7A,and the Error Vector Magnitude(EVM) with HS-DPCCH test in clause 5.13.1.A,and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle_{ACK} and \triangle_{NACK} = 8 (A_{hs} =30/15) with β_{hs} =30/15* β_{c} ,and \triangle_{CQI} = 7 (A_{hs} =24/15) with β_{hs} =24/15* β_{c} .

Note3: CM=1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4:For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to β_c =11/15 and β_d =15/15.

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1106-0987SAR01R1

Page 11 of 110

Table 3: Settings of required H-Set 1 QPSK in HSDPA mode

Parameter	Unit	Value
Nominal Avg. Inf. Bit Rate	kbps	534
Inter-TTI Distance	TTI's	3
Number of HARQ Processes	Processes	2
Information Bit Payload (NINF)	Bits	3202
Number Code Blocks	Blocks	1
Binary Channel Bits Per TTI	Bits	4800
Total Available SML's in UE	SML's	19200
Number of SML's per HARQ Proc.	SML's	9600
Coding Rate	/	0.67
Number of Physical Channel Codes	Codes	5
Modulation	/	QPSK

Table 4: HSDPA UE category

HS-DSCH Category	Maximum HS-DSCH Codes Received	Minimum Inter-TTI Interval	Maximum Transport Bits/HS-DSCH	Total Channel
1	5	3	7298	19200
2	5	3	7298	28800
3	5	2	7298	28800
4	5	2	7298	38400
5	5	1	7298	57600
6	5	1	7298	67200
7	10	1	14411	115200
8	10	1	14411	134400
9	15	1	25251	172800
10	15	1	27952	172800
11	5	2	3630	14400
12	5	1	3630	28800
13	15	1	34800	259200
14	15	1	42196	259200
15	15	1	23370	345600
16	15	1	27952	345600

2.4. HSUPA Test Configuration

Body SAR is also measured for HSPA when the maximum average output of each RF channel with HSPA active is at least ¼ dB higher than that measured without HSPA using 12.2 kbps RMC or the maximum SAR for 12.2 kbps RMC is above 75% of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.2 kbps RMC without HSPA.⁴⁰

Due to inner loop power control requirements in HSPA, a commercial communication test set should be used for the output power and SAR tests.⁴¹ The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA should be configured according to the β values indicated below as well as other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of 3 G device.

Sub- set	β _c	β_d	β _d (SF)	β_c/β_d	${\beta_{hs}}^{(1)}$	β _{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	311/15	β _{ed1} 47/15 β _{ed2} 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Table 5: Sub-Test 5 Setup for Release 6 HSUPA

Note 1: Δ_{ACK} , $\Delta NACK$ and $\Delta_{CQI} = 8$ _ $A_{hs} = \underline{\beta}_{hs}/\underline{\beta}_{c} = 30/15$ _ $\underline{\beta}_{hs} = 30/15 * \beta_{c}$.

Note 2: CM = 1 for $\beta c/\beta d$ =12/15, $\underline{\beta}_{hs}/\underline{\beta}_{c}$ =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-

DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the $\beta c/\beta d$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the

signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 10/15$ and $\beta d = 15/15$.

Note 4: For subtest 5 the $\beta c/\beta d$ ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the

signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 14/15$ and $\beta d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.

Note 6: βed can not be set directly; it is set by Absolute Grant Value.

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E- DCH TTI (ms)	Minimum Spreading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)
1	1	4	10	4	7110	0.7296
0	2	8	2	4	2798	4.4500
2	2	4	10	4	14484	1.4592
3	2	4	10	4	14484	1.4592
	2	8	2	2	5772	2.9185
4	2	4	10	2	20000	2.00
5	2	4	10	2	20000	2.00
6	4	8	2		11484	5.76
(No DPDCH)	4	4	10	2 SF2 & 2 SF4	20000	2.00
7	4	8	2		22996	?
(No DPDCH)	4	4	10	2 SF2 & 2 SF4	20000	?
NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4. UE Categories 1 to 6 supports QPSK only. UE Category 7 supports QPSK and 16QAM. (TS25.306-7.3.0)						

Table 6: HSUPA UE category

2.5. WIFI Test Configuration

For the 802.11b/g SAR tests, a communication link is set up with the test mode software for WIFI mode test. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 1, 6 and 11 respectively in the case of 2450 MHz. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate. SAR is not required for other data rates when the maximum average output power is less than 0.25dB higher than that measured on the lowest data rate.

802.11b/g operating modes are tested independently according to the service requirements in each frequency band.802.11b/g modes are tested on channels1,6,11;however,if output power reduction is necessary for channels 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels must be tested instead.

SAR is not required for 802.11g channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels. When the maximum average output channel in each frequency band is not included in the "default test channels", the maximum channel should be tested instead of an adjacent "default test channels", these are referred to as the "required test channels" and are illustrated in table 7.

			Turbo	"Default Test Channels"			
Mode	GHz	Channel	Chan	15.	247	UNII	
			nel	802.11b	802.11g	UNII	
	2.412	1#		\checkmark	*		
802.11b/g	2.437	6	6	\checkmark	*		
	2.462	11 [#]		\checkmark	*		

Table 7: "Default Test Channels"

Note: [#]=when output power is reduced for channel 1 and /or 11to meet restricted band requirements the highest out put channels closet to each of these channels should be tested.

 $\sqrt{=}$ "default test channels"

* =possible 802.11g channels with maximum average output 0.25dB>=the "default test channels"

2.6. Position of Portable devices

For tablets with a display or overall diagonal dimension 30.5 cm > 20 cm, the SAR procedures in KDB 447498 should be used.

According to KDB 447498 D01 Mobile Portable RF Exposure v04 SAR is required for both back and edge with the most conservative exposure conditions, the EUT is tested at the following 5 test positions:

- Test Position 1: The back side of the EUT towards and directed tightly to touch the bottom of the flat phantom. (ANNEX I Picture 6) 0 cm from WCDMA antenna-to-user and 0 cm from WiFi antenna-to-user (Please see ANNEX I Picture 5)
- Test Position 2: The top side of the EUT towards and directed tightly to touch the bottom of the flat phantom. (ANNEX I Picture 7) 4.8 cm from WCDMA antenna-to-user and 12 cm from WiFi antenna-to-user (Please see ANNEX I Picture 5)
- Test Position 3: The bottom side of the EUT towards and directed tightly to touch the bottom of the flat phantom. (ANNEX I Picture 8) 5.4 cm from WCDMA antenna-to-user and 5.4 cm from WiFi antenna-to-user (Please see ANNEX I Picture 5)
- Test Position 4: The left side of the EUT towards and directed tightly to touch the bottom of the flat phantom. (ANNEX I Picture 9) 23.9 cm from WCDMA antenna-to-user and 23.9 cm from WiFi antenna-to-user (Please see ANNEX I Picture 5)
 (This is not the most conservative antenna to user distance at edge mode. According to KDB 447498 4) ii) (2) –SAR is required only the edge with the most conservative exposure conditions, No SAR)
- Test Position 5: The right side of the EUT towards and directed tightly to touch the bottom of the flat phantom. (ANNEX I Picture 10) 2.5 cm from WCDMA antenna-to-user and 2.5 cm from WiFi antenna-to-user (Please see ANNEX I Picture 5)

3. SAR Measurements System Configuration

3.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

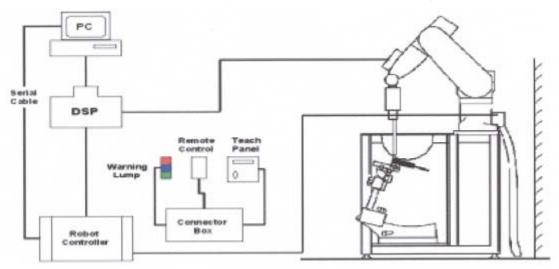


Figure 1. SAR Lab Test Measurement Set-up

3.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

3.2.1. EX3DV4 Probe Specification

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	/
Calibration	ISO/IEC 17025 calibration service available	
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)	
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal probe axis)	Figure 2.EX3DV4 E-field Probe
Dynamic Range	10 μ W/g to > 100 mW/g Linearity:	
	\pm 0.2dB (noise: typically < 1 μ W/g)	
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.	Figure 3. EX3DV4 E-field probe

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1106-0987SAR01R1

3.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure. Or

$$\mathbf{SAR} = \frac{|\mathbf{E}|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

3.3. Other Test Equipment

3.3.1. Device Holder for Transmitters

Construction: Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.) It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin SAM, ELI4 and SAM v6.0 Phantoms.

Material: POM, Acrylic glass, Foam

3.3.2. Phantom

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (Oval Flat) phantom defined in IEEE 1528-2003, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of wireless portable device usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Shell Thickness 2 ±0.2 mm Filling Volume Approx. 30 liters Dimensions 190×600×400 mm (H×L×W)

Figure 4.ELI4 Phantom

3.4. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)
- Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1106-0987SAR01R1

spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

• Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

• A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

3.5. Data Storage and Evaluation

3.5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

3.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	•	Normi, a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	Dcpi
Device parameters:	- Frequency	f
•	- Crest factor	cf
Media parameters:	- Conductivity	

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With	V_i = compensated signal of channel i	(i = x, y, z)
	U _i = input signal of channel i	(i = x, y, z)
	<i>Cf</i> = crest factor of exciting field	(DASY parameter)
	dcp_i = diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field p	probes:	$E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$	
H-field p	probes:	$H_{i} = (V_{i})^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^{2}) / f$	
With	V _i	= compensated signal of channel i	(i = x, y, z)
	Norm _i	= sensor sensitivity of channel i	(i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF	= sensitivity enhancement in solution

a_{ij} = sensor sensitivity factors for H-field probes

- **f** = carrier frequency [GHz]
- E_i = electric field strength of channel i in V/m
- H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

SAR =
$$(E_{tot}^{2} \cdot ...) / (.... 1000)$$

with **SAR** = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^{2} / 3770$$
 or $P_{pwe} = H_{tot}^{2} \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

*E*_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

3.6. System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 12.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system $(\pm 10 \%)$.

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

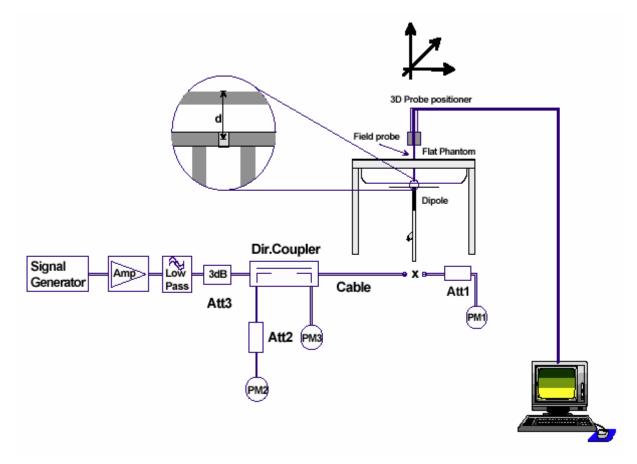


Figure 5. System Check Set-up

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1106-0987SAR01R1

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 450824:

Dipole D835V2 SN: 4d092					
Body					
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ	
1/14/2010	-25.6 0.4%		47.6	0.2Ω	
1/13/2011	-25.7	0.4%	47.4	0.212	

Dipole D1900V2 SN: 5d018					
Body					
Date of Measurement	Return Loss(dB) Δ%		Impedance (Ω)	ΔΩ	
6/15/2010	-27.6		47.4	1.3Ω	
6/14/2011	-26.4	4.3 %	48.7	1.322	

Dipole D2450V2 SN: 712					
Body					
Date of Measurement	Return Loss(dB) Δ%		Impedance (Ω)	ΔΩ	
2/19/2010	-25.7 3.1%		50.1	1.7Ω	
2/18/2011	-26.5	3.1%	51.8	1.752	

3.7. Equivalent Tissues

The liquid is consisted of water, sugar, salt, Glycol monobutyl, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The Table 8 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by OET 65.

Table 8: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body) 835MHz		
Water	52.5		
Sugar	45		
Salt	1.4		
Preventol	0.1		
Cellulose	1.0		
Dielectric Parameters Target Value	f=835MHz ε=55.2 σ=0.97		

MIXTURE%	FREQUENCY (Body) 1900MHz		
Water	69.91		
Glycol monobutyl	29.96		
Salt	0.13		
Dielectric Parameters	f=1000MU= c=52.2 ==1.52		
Target Value	f=1900MHz ε=53.3 σ=1.52		

MIXTURE%	FREQUENCY (Body) 2450MHz		
Water	73.2		
Glycol	26.7		
Salt	0.1		
Dielectric Parameters Target Value	f=2450MHz ε=52.70 σ=1.95		

4. Laboratory Environment

Temperature Min. = 20°C, Max. = 25 °C				
Relative humidityMin. = 30%, Max. = 70%				
Ground system resistance $< 0.5 \Omega$				
Ambient noise is checked and found very low and in compliance with requirement of standards.				
Reflection of surrounding objects is minimized and in compliance with requirement of standards.				

5. Characteristics of the Test

5.1. Applicable Limit Regulations

IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

5.2. Applicable Measurement Standards

SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438, published June 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radio frequency Emissions.

KDB 248227 D01 SAR meas for 802 11 a b g v01r02: SAR Measurement Procedures for 802.11a/b/g Transmitters

KDB 616217 D03 SAR Supp Note and Netbook Laptop v01: SAR Evaluation Considerations for Laptop/Notebook/Netbook and Tablet Computers - supplement to KDB 616217.

KDB 447498 D01 Mobile Portable RF Exposure v04: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

6. Conducted Output Power Measurement

6.1. Summary

The DUT is tested using an E5515C communications tester as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted power. Conducted output power was measured using an integrated RF connector and attached RF cable. This result contains conducted output power for the EUT.

6.2. Conducted Power Results

Table 10: Conducted Power Measurement Results

WCDMA Band II	Conducted Power (dBm)			
	Channel 9262	Channel 9400	Channel 9538	
RMC	23.58	23.67	23.52	
HSDPA	23.25	23.38	23.25	
HSUPA	23.36	23.46	23.35	
WCDMA Band V	Conducted Power (dBm)			
	Channel 4132	Channel 4183	Channel 4233	
RMC	24.18	24.37	24.27	
HSDPA	23.83	24.06	23.98	
HSUPA	23.96	24.16	24.10	

7. Test Results

7.1. Dielectric Performance

Table 11: Dielectric Performance of Body Tissue Simulating Liquid

Frequency	Description	Dielectric Par	Temp		
Frequency	Description	٤ _r	σ(s/m)	°C	
	Target value	55.20	0.97	,	
835MHz (body) Me	±5% window	52.44 — 57.96	0.92 — 1.02	1	
	Measurement value 2011-7-3	55.89	0.99	21.5	
	Target value	53.30	1.52		
1900MHz (body)	±5% window	50.64 — 55.97	1.44 — 1.60	/	
	Measurement value 2011-6-16	51.47	1.55	21.7	
2450MHz	Target value ±5% window	52.70 50.07 — 55.34	1.95 1.85 — 2.05	1	
(body)	Measurement value 2011-7-4	51.73	1.97	21.8	

7.2. System Check

Table 12: System Check for Body Tissue Simulating Liquid

Frequency	Description	SAR(W/kg)		Dielectric Parameters		Temp
		10g	1g	٤ _r	σ(s/m)	°C
	Recommended result	1.63	2.49	54.6	0.98	/
835MHz	±10% window	1.47 — 1.79	2.24 — 2.74	54.0	0.00	7
OSSIMITZ	Measurement value 2011-7-3	1.65	2.52	55.89	0.99	21.5
1900 MHz	Recommended result	5.52	10.3	53.5	1.54	1
	±10% window	4.97 — 6.07	9.27 — 11.33	55.5		1
	Measurement value 2011-6-16	5.20	9.82	51.47	1.55	21.7
2450MHz	Recommended value	5.97	13	51.8	2.01	,
	±10% window	5.37 — 6.57	11.7 — 14.3	51.6	2.01	'
	Measurement value 2011-7-4	6.16	14.00	51.73	1.97	21.8

Note: 1. The graph results see ANNEX B.

2. Target Values used derive from the calibration certificate and 250 mW is used as feeding power to the Calibrated dipole.

7.3. Summary of Measurement Results

7.3.1. WCDMA Band II (WCDMA/HSDPA/HSUPA)

Table 13: SAR Values [WCDMA Band II (WCDMA/HSDPA/HSUPA)]

Limit of SAR		10 g Average	1g Average	Power Drift		
		2.0 W/kg	1.6 W/kg	\pm 0.21 dB	Graph	
Test Case O	of Body	Measurement	Result (W/kg)	Power Drift	Results	
Test Position	Channel	10 g Average 1 g Average		(dB)		
	Test Ca	se Position of RM	C (Distance 0mm)			
	High/9538	0.325	0.710	0.092	Figure 9	
Test Position 1	Middle/9400	0.316	0.716	0.014	Figure 10	
	Low/9262	0.274	0.619	0.003	Figure 11	
Test Position 2	Middle/9400	0.022	0.048	0.019	Figure 12	
Test Position 3	N/A	N/A	N/A	N/A	N/A	
Test Position 4	N/A	N/A	N/A	N/A	N/A	
Test Position 5	Middle/9400	0.160	0.311	0.056	Figure 13	
Worst Case Position of RMC with HSDPA (Distance 0mm)						
Test Position 1	Middle/9400	0.317	0.713	-0.009	Figure 14	
	Worst Case Po	sition of RMC with	HSUPA (Distance	0mm)		
Test Position 1	Middle/9400	0.289	0.649	0.056	Figure 15	

Note: 1.The value with blue color is the maximum SAR Value of each test band.

2. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB (< 0.8W/kg) lower than the SAR limit, testing at the high and low channels is optional.</p>

3. Upper and lower frequencies were measured at the worst case.

7.3.2. WCDMA Band V (WCDMA/HSDPA/HSUPA)

Table 14: SAR Values [WCDMA Band V (WCDMA/HSDPA/HSUPA)]

-	-					
Limit of SAR		1g Average	Power Drift			
		2.0 W/kg 1.6 W/kg		Graph		
of Body	Measurement	Result (W/kg)	Power Drift	Results		
Channel	10 g Average	1 g Average	(dB)			
Test Case	e Position of RMC	(Distance 0mm)				
Middle/4183	0.212	0.382	-0.065	Figure 16		
Middle/4183	0.019	0.033	0.007	Figure 17		
N/A	N/A	N/A	N/A	N/A		
N/A	N/A	N/A	N/A	N/A		
High/4233	0.261	0.509	0.092	Figure 18		
Middle/4183	0.293	0.572	-0.036	Figure 19		
Low/4132	0.230	0.469	0.145	Figure 20		
Worst Case Position of RMC with HSDPA(Distance 0mm)						
Middle/4183	0.288 0.578		0.092	Figure 21		
Worst Case Pos	ition of RMC with	HSUPA(Distance	0mm)			
Middle/4183	0.226	0.461	0.055	Figure 22		
	Df Body Channel Test Case Middle/4183 Middle/4183 N/A N/A High/4233 Middle/4183 Low/4132 Worst Case Pos Middle/4183	2.0 W/kgof BodyMeasurementChannel10 g AverageTest Case Position of RMCMiddle/41830.212Middle/41830.019N/AN/AN/AN/AHigh/42330.261Middle/41830.293Low/41320.230Worst Case Position of RMC withMiddle/41830.288Worst Case Position of RMC with	SAR2.0 W/kg1.6 W/kgof BodyMeasurement Result (W/kg)Channel10 g Average1 g AverageTest Case Position of RMC (Distance 0mm)Middle/41830.2120.382Middle/41830.0190.033N/AN/AN/AN/AN/AN/AHigh/42330.2610.509Middle/41830.2930.572Low/41320.2300.469Worst Case Position of RMC with HSDPA(DistanceMiddle/41830.2880.578	SAR Image: Construction of the construction of		

Note: 1.The value with blue color is the maximum SAR Value of each test band.

2. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB (< 0.8W/kg) lower than the SAR limit, testing at the high and low channels is optional.</p>

3. Upper and lower frequencies were measured at the worst case.

TA Technology (Shanghai)	Co.,	Ltd.
Test Report		

7.3.3. WIFI/BT Function

The distance between WIFI antenna and BT antenna is >5cm, between BT antenna and WCDMA antenna is >5cm. The location of the antennas refers to ANNEX I:

Output Power Thresholds for Unlicensed Transmitters

	2.45	5.15 - 5.35	5.47 - 5.85	GHz			
P _{Ref}	12	6	5	mW			
Device output power should be rounded to the nearest mW to compare with values specified							
in this table.							

The output power of BT antenna is as following:

Channel	Conducted Power (dBm)						
Channel	Channel 0	Channel 39	Channel 78				
GFSK	4.84	5.10	4.66				
Pi/4QPSK	3.08	3.16	2.71				
8DPSK	3.08	3.08	2.75				

The output power of WIFI antenna is as following:

Channel	Conducted Power (dBm)						
Channel	Channel 1	Channel 6	Channel 11				
802.11b	16.30	16.08	15.98				
802.11g	15.78	15.67	15.75				
802.11n (20MHz)	14.58	14.33	14.31				
Channel	Conducted Power (dBm)						
Channel	Channel 3	Channel 7	Channel 9				
802.11n (40MHz)	13.14	13.32	13.48				

Stand-alone SAR

According to the output power measurement result and the distance between WIFI antenna and BT antenna we can draw the conclusion that:

WIFI antenna is >5cm from BT antenna. stand-alone SAR are required for WIFI, because the output power of WIFI transmitter is $\ge 2P_{Ref}=13.8$ dBm.

Limit of SAR		10 g Average 1g Average		Power Drift	
		2.0 W/kg	1.6 W/kg	\pm 0.21 dB	Graph
Test Case C	of Body	Measurement	Result (W/kg)	Power Drift	Results
Test Position	Channel	10 g Average	1 g Average	(dB)	
	High/11	0.208	0.493	0.008	Figure 23
Test Position 1	Middle/6	0.169	0.392	-0.058	Figure 24
	Low/1	0.207	0.486	0.076	Figure 25
Test Position 2	N/A	N/A	N/A	N/A	N/A
Test Position 3	Middle/6	0.012	0.026	0.099	Figure 26
Test Position 4	N/A	N/A	N/A	N/A	N/A
Test Position 5	Middle/6	0.131	0.272	-0.011	Figure 27

Table 15: SAR Values [802.11b]

BT antenna is >5cm from WCDMA antenna. stand-alone SAR are not required for BT, because the output power of BT transmitter is $\leq 2P_{Ref}$ =13.8dBm.

BT antenna is >5cm from WIFI antenna. stand-alone SAR are not required for BT, because the output power of BT transmitter is $\leq 2P_{Ref}$ =13.8dBm.

Simultaneous transmit

About BT and WIFI Antenna, because BT antenna is >5cm from WIFI Antenna, Stand-alone SAR is not required for BT, so Simultaneous SAR are not required for BT and WIFI Antenna.

About BT and WCDMA Antenna, because BT antenna is >5cm from WCDMA Antenna, Stand-alone SAR is not required for BT, so Simultaneous SAR are not required for BT and WCDMA Antenna.

WIFI and WCDMA can't simultaneous transmit.

8. Measurement Uncertainty

9. Main Test Instruments

No.	source	Туре	Uncertainty Value (%)	Probability Distribution	k	Ci	Standard ncertainty $u_i'(\%)$	Degree of freedom V _{eff} or v _i
1	System repetivity	А	0.5	Ν	1	1	0.5	9
		Mea	asurement syste	em				
2	-probe calibration	В	5.9	Ν	1	1	5.9	∞
3	-axial isotropy of the probe	В	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞
4	- Hemispherical isotropy of the probe	В	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	∞
6	-boundary effect	В	1.9	R	$\sqrt{3}$	1	1.1	∞
7	-probe linearity	В	4.7	R	$\sqrt{3}$	1	2.7	8
8	- System detection limits	В	1.0	R	$\sqrt{3}$	1	0.6	∞
9	-readout Electronics	В	1.0	Ν	1	1	1.0	8
10	-response time	В	0	R	$\sqrt{3}$	1	0	∞
11	-integration time	В	4.32	R	$\sqrt{3}$	1	2.5	∞
12	-noise	В	0	R	$\sqrt{3}$	1	0	8
13	-RF Ambient Conditions	В	3	R	$\sqrt{3}$	1	1.73	∞
14	-Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	∞
15	-Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	ø
16	-Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	×
		Tes	st sample Relate	ed				
17	-Test Sample Positioning	А	2.9	Ν	1	1	4.92	71
18	-Device Holder Uncertainty	А	4.1	Ν	1	1	4.1	5
19	-Output Power Variation - SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.9	∞
		Ph	iysical paramete	er				

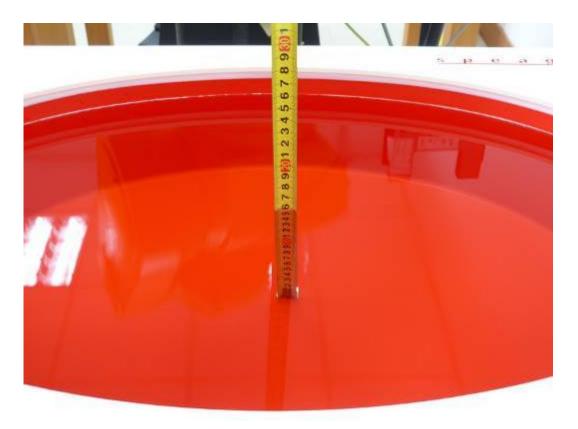
TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1106-0987SAR01R1

Page 35 of 110

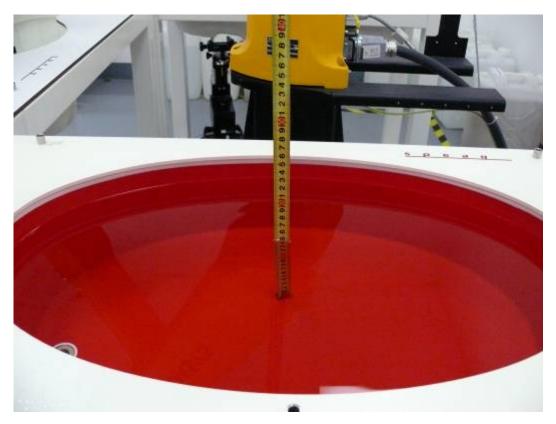
20	-phantom	В	4.0	R	$\sqrt{3}$	1	2.3	∞
21	-liquid conductivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.64	1.8	×
22	-liquid conductivity (measurement uncertainty)	В	0.77	N	1	0.64	0.493	9
23	-liquid permittivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.6	1.7	×
24	-liquid permittivity (measurement uncertainty)	В	0.29	N	1	0.6	0.174	9
Combined standard uncertainty		<i>u</i> _c =	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$				11.36	
-	Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$	N	k=	=2	22.72	

Table 16: List of Main Instruments

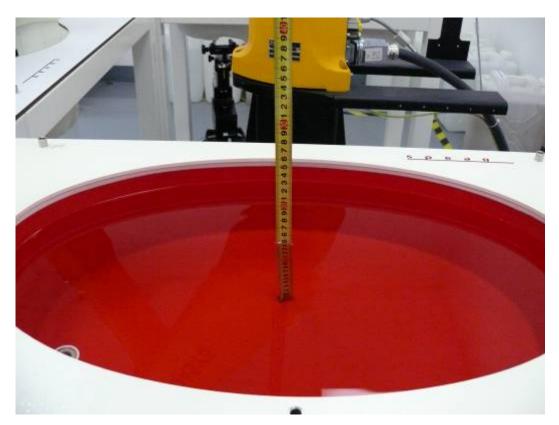

No.	Name	Туре	Serial Number	Calibration Date Valid Period	
01	Network analyzer	Agilent 8753E	US37390326	September 13, 2010	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Request	ed
03	Power meter	Agilent E4417A	GB41291714	March 12, 2011	One year
04	Power sensor	Agilent N8481H	MY50350004	September 26, 2010 One ye	
05	Signal Generator	HP 8341B	2730A00804	September 13, 2010 One ye	
06	Amplifier	IXA-020	0401	No Calibration Requested	
07	BTS	E5515C	MY48360988	December 3, 2010 One year	
08	E-field Probe	EX3DV4	3677	November 24, 2010	One year
09	DAE	DAE4	871	November 18, 2010 One year	
10	Validation Kit 835MHz	D835V2	4d092	January 14, 2010	Two years
11	Validation Kit 1900MHz	D1900V2	5d018	June 15, 2010	Two years
12	Validation Kit 2450MHz	D2450V2	712	February 19, 2010	Two years

END OF REPORT BODY

ANNEX A: Test Layout



Picture 1: Specific Absorption Rate Test Layout



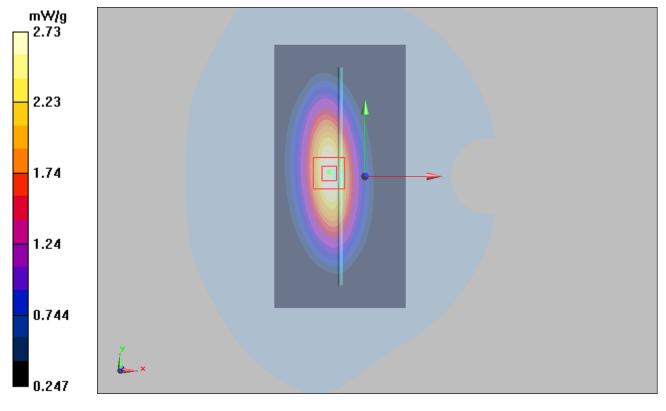
Picture 2: Liquid depth in the Flat Phantom (835 MHz, 15.4cm depth)

Report No. RZA1106-0987SAR01R1

Picture 3: Liquid depth in the Flat Phantom (1900 MHz, 15.2cm depth)

Picture 4: Liquid depth in the flat Phantom (2450 MHz, 15.3cm depth)

ANNEX B: System Check Results


System Performance Check at 835 MHz DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d092 Date/Time: 7/3/2011 7:23:20 PM Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.99 mho/m; ϵ_r = 55.89; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

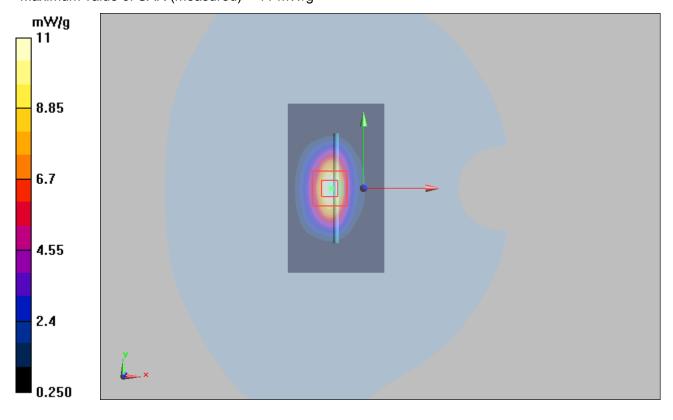
d=15mm, Pin=250mW/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.72 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 50.9 V/m; Power Drift = 0.023 dB Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.52 mW/g; SAR(10 g) = 1.65 mW/g

Maximum value of SAR (measured) = 2.73 mW/g

Page 39 of 110


TA Technology (Shanghai) Co., Ltd. Test Report

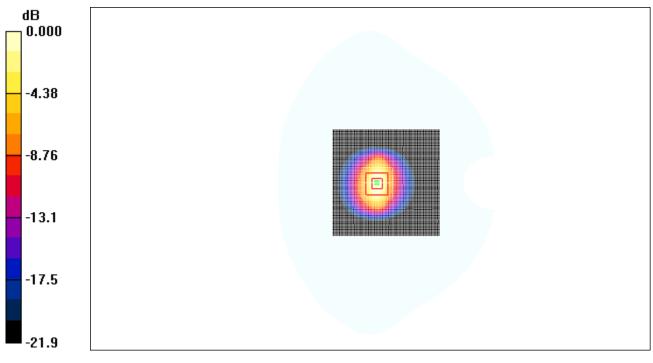
System Performance Check at 1900 MHz DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d018 Date/Time: 6/16/2011 7:21:19 PM Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.55mho/m; ε_r = 51.47; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.7 °C DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.9 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 80.8 V/m; Power Drift = -0.063 dB Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 9.82 mW/g; SAR(10 g) = 5.2 mW/g

Maximum value of SAR (measured) = 11 mW/g

Test Report


Report No. RZA1106-0987SAR01R1

System Performance Check at 2450 MHz DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 712 Date/Time: 7/4/2011 10:12:36 AM Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.97 mho/m; ϵ r = 51.73 ρ = 1000 kg/m3 Ambient Temperature:22.3 °C Liqiud Temperature: 21.8 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.46, 7.46, 7.46); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

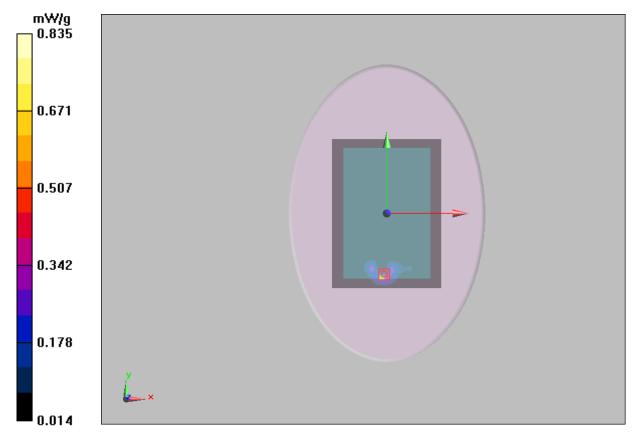
d=10mm, Pin=250mW/Area Scan (71x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 21.5 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 71.0 V/m; Power Drift = 0.011 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 14 mW/g; SAR(10 g) = 6.16 mW/g Maximum value of SAR (measured) = 19.8 mW/g

TA Technology (Shanghai) Co., Ltd.

 $0 \, dB = 19.8 \, mW/g$

ANNEX C: Graph Results


WCDMA Band II Test Position 1 High

Date/Time: 6/16/2011 11:47:32 PM Communication System: WCDMA Band II; Frequency: 1907.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1908 MHz; σ = 1.56 mho/m; ϵ_r = 51.4; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Test Position 1 High/Area Scan (111x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.435 mW/g

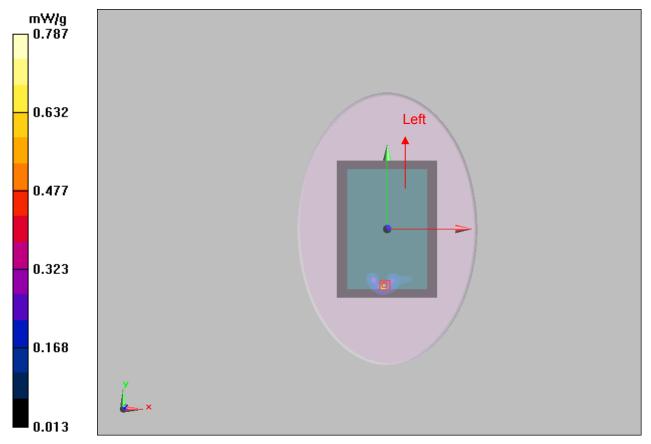
Test Position 1 High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.44 V/m; Power Drift = 0.092 dB Peak SAR (extrapolated) = 1.48 W/kg SAR(1 g) = 0.710 mW/g; SAR(10 g) = 0.325 mW/g

Maximum value of SAR (measured) = 0.835 mW/g

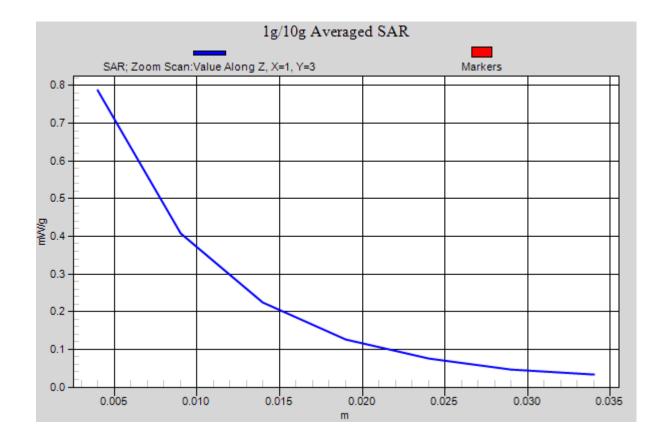
TA Technology (Shanghai) Co., Ltd. Test Report

Page 42 of 110

WCDMA Band II Test Position 1 Middle


Date/Time: 6/16/2011 11:16:47 PM Communication System: WCDMA Band II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.52 mho/m; ϵ_r = 51.6; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Test Position 1 Middle/Area Scan (111x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.437 mW/g


Test Position 1 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.76 V/m; Power Drift = 0.014 dB Peak SAR (extrapolated) = 1.58 W/kg

SAR(1 g) = 0.716 mW/g; SAR(10 g) = 0.316 mW/g

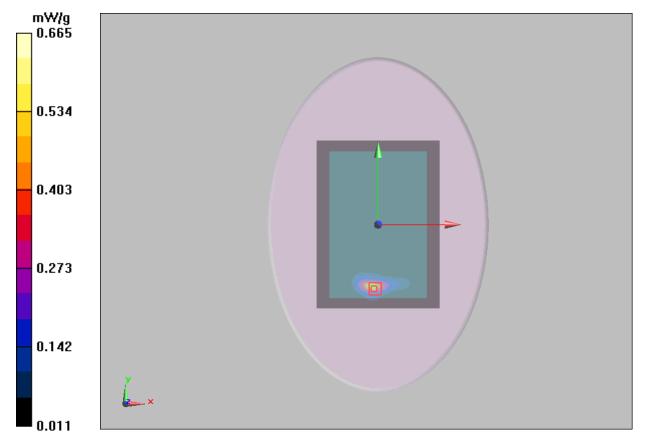
Maximum value of SAR (measured) = 0.787 mW/g

Report No. RZA1106-0987SAR01R1

Figure 10 WCDMA Band II Test Position 1 Channel 9400

Page 44 of 110

WCDMA Band II Test Position 1 Low


Date/Time: 6/17/2011 12:19:13 AM Communication System: WCDMA Band II; Frequency: 1852.4 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1852.4 MHz; σ = 1.5 mho/m; ϵ_r = 51.7; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Test Position 1 Low/Area Scan (111x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.532 mW/g

Test Position 1 Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.59 V/m; Power Drift = 0.003 dB Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.619 mW/g; SAR(10 g) = 0.274 mW/g

Maximum value of SAR (measured) = 0.665 mW/g

TA Technology (Shanghai) Co., Ltd. Test Report

Page 45 of 110

WCDMA Band II Test Position 2 Middle

Date/Time: 6/16/2011 9:55:54 PM Communication System: WCDMA Band II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.52 mho/m; ϵ_r = 51.6; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Test Position 2 Middle/Area Scan (41x141x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.042 mW/g

Test Position 2 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.19 V/m; Power Drift = 0.019 dB Peak SAR (extrapolated) = 0.126 W/kg SAR(1 g) = 0.048 mW/g; SAR(10 g) = 0.022 mW/g

Maximum value of SAR (measured) = 0.044 mW/g

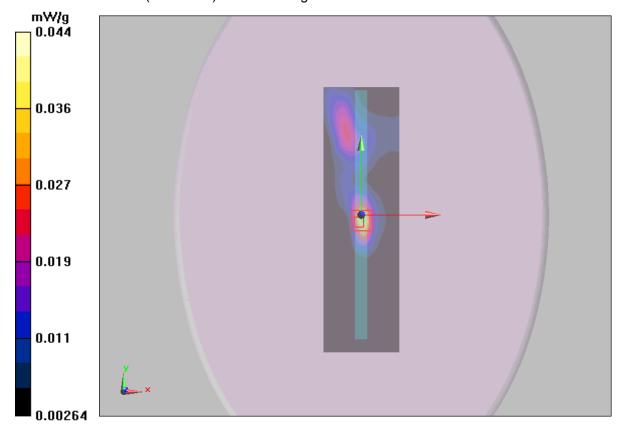


Figure 12 WCDMA Band II Test Position 2 Channel 9400

TA Technology (Shanghai) Co., Ltd. Test Report

Page 46 of 110

WCDMA Band II Test Position 5 Middle

Date/Time: 6/16/2011 8:50:53 PM Communication System: WCDMA Band II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.52 mho/m; ϵ_r = 51.6; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Test Position 5 Middle/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.358 mW/g

Test Position 5 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.6 V/m; Power Drift = 0.056 dB Peak SAR (extrapolated) = 0.626 W/kg SAR(1 g) = 0.311 mW/g; SAR(10 g) = 0.160 mW/g

Maximum value of SAR (measured) = 0.347 mW/g

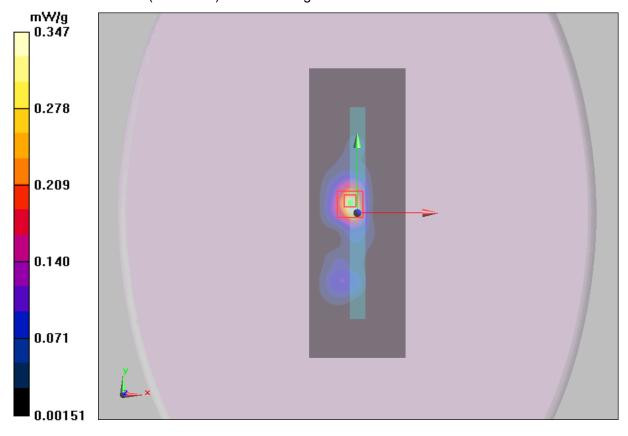


Figure 13 WCDMA Band II Test Position 5 Channel 9400

WCDMA Band II HSDPA Test Position 1 Middle

Date/Time: 6/17/2011 2:29:22 AM Communication System: WCDMA Band II+HSDPA; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.52 mho/m; ϵ_r = 51.6; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Test Position 1 Middle /Area Scan (111x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.497 mW/g

Test Position 1 Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.71 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 1.48 W/kg SAR(1 g) = 0.713 mW/g; SAR(10 g) = 0.317 mW/g

Maximum value of SAR (measured) = 0.768 mW/g



Figure 14 WCDMA Band II HSDPA Test Position 1 Channel 9400

WCDMA Band II HSUPA Test Position 1 Middle

Date/Time: 6/17/2011 1:56:51 AM Communication System: WCDMA Band II+HSUPA; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.52 mho/m; ϵ_r = 51.6; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Test Position 1 Middle/Area Scan (111x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.459 mW/g

Test Position 1 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.77 V/m; Power Drift = 0.056 dB Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.649 mW/g; SAR(10 g) = 0.289 mW/g

Maximum value of SAR (measured) = 0.694 mW/g

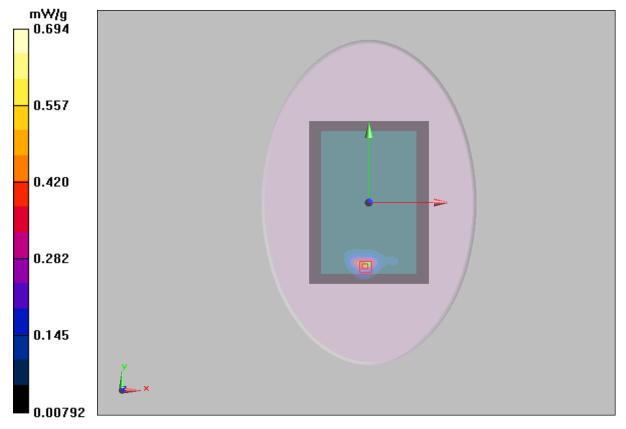
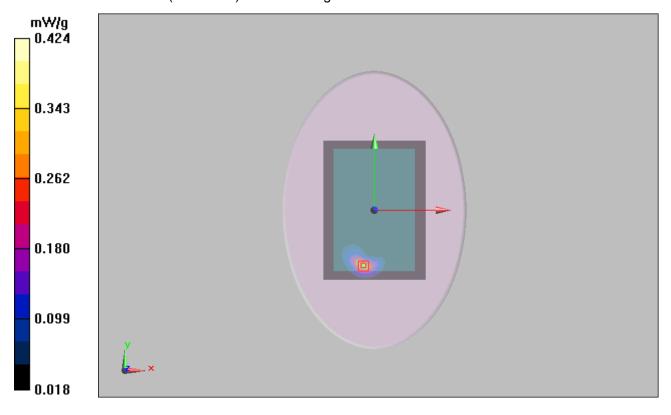


Figure 15 WCDMA Band II HSUPA Test Position 1 Channel 9400

Page 49 of 110

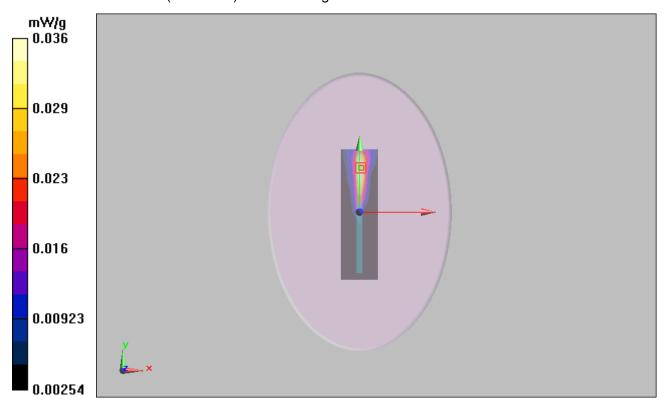

WCDMA Band V Test Position 1 Middle

Date/Time: 7/3/2011 8:56:42 PM Communication System: WCDMA Band V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; σ = 0.992 mho/m; ϵ_r = 55.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Test Position 1 Middle/Area Scan (111x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.375 mW/g

Test Position 1 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.15 V/m; Power Drift = -0.065 dB Peak SAR (extrapolated) = 0.679 W/kg SAR(1 g) = 0.382 mW/g; SAR(10 g) = 0.212 mW/g

Maximum value of SAR (measured) = 0.424 mW/g


WCDMA Band V Test Position 2 Middle

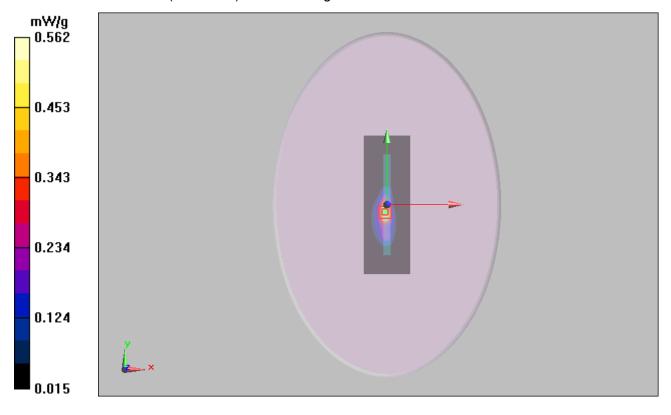
Date/Time: 7/3/2011 11:50:57 PM Communication System: WCDMA Band V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; σ = 0.992 mho/m; ϵ_r = 55.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Test Position 2 Middle/Area Scan (41x141x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.035 mW/g

Test Position 2 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.62 V/m; Power Drift = 0.007 dB Peak SAR (extrapolated) = 0.057 W/kg SAR(1 g) = 0.033 mW/g; SAR(10 g) = 0.019 mW/g

Maximum value of SAR (measured) = 0.036 mW/g

Page 51 of 110


WCDMA Band V Test Position 5 High

Date/Time: 7/4/2011 12:09:17 AM Communication System: WCDMA Band V; Frequency: 846.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 847 MHz; σ = 1 mho/m; ε_r = 55.8; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Test Position 5 High/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.582 mW/g

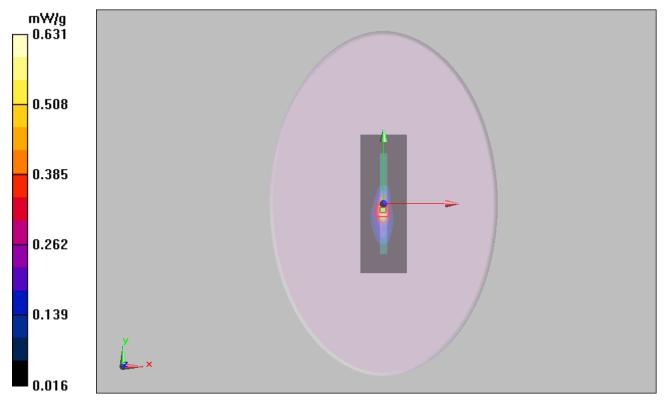
Test Position 5 High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 22 V/m; Power Drift = 0.092 dB Peak SAR (extrapolated) = 0.969 W/kg SAR(1 g) = 0.509 mW/g; SAR(10 g) = 0.261 mW/g

Maximum value of SAR (measured) = 0.562 mW/g

TA Technology (Shanghai) Co., Ltd. Test Report

Page 52 of 110

WCDMA Band V Test Position 5 Middle


Date/Time: 7/3/2011 11:32:45 PM Communication System: WCDMA Band V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; σ = 0.992 mho/m; ϵ_r = 55.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Test Position 5 Middle/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.671 mW/g

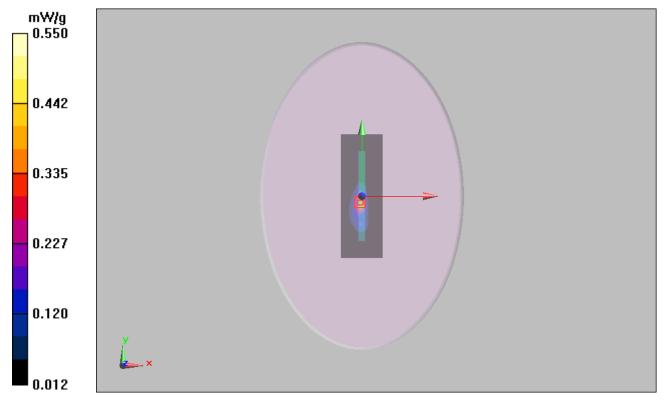
Test Position 5 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 25 V/m; Power Drift = -0.036 dB Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.572 mW/g; SAR(10 g) = 0.293 mW/g

Maximum value of SAR (measured) = 0.631 mW/g

Page 53 of 110

WCDMA Band V Test Position 5 Low


Date/Time: 7/4/2011 12:24:57 AM Communication System: WCDMA Band V; Frequency: 826.4 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 826.4 MHz; σ = 0.98 mho/m; ϵ_r = 55.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

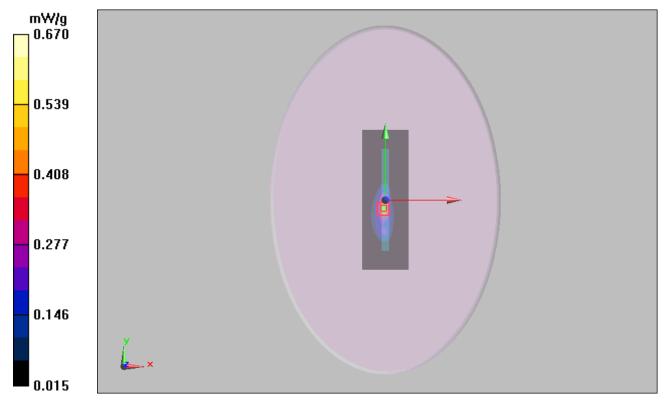
Test Position 5 Low/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.442 mW/g

Test Position 5 Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 21 V/m; Power Drift = 0.145 dB Peak SAR (extrapolated) = 0.916 W/kg

SAR(1 g) = 0.469 mW/g; SAR(10 g) = 0.230 mW/g

Maximum value of SAR (measured) = 0.550 mW/g

WCDMA Band V HSDPA Test Position 5 Middle


Date/Time: 7/4/2011 12:56:51 AM Communication System: WCDMA Band V+HSDPA; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; σ = 0.992 mho/m; ϵ_r = 55.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Test Position 5 Middle/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.520 mW/g

Test Position 5 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.8 V/m; Power Drift = 0.092 dB Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.578 mW/g; SAR(10 g) = 0.288 mW/g

Maximum value of SAR (measured) = 0.670 mW/g

Report No. RZA1106-0987SAR01R1

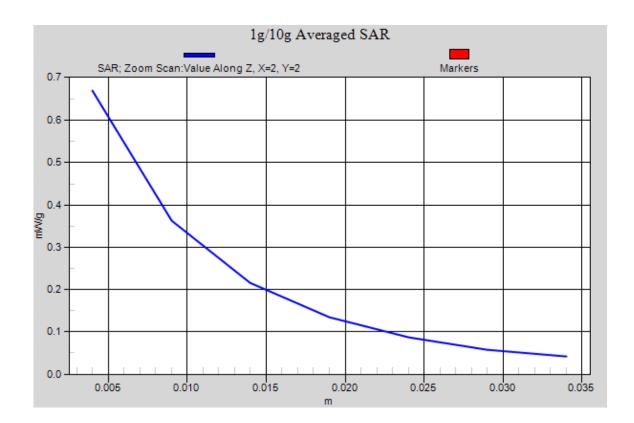
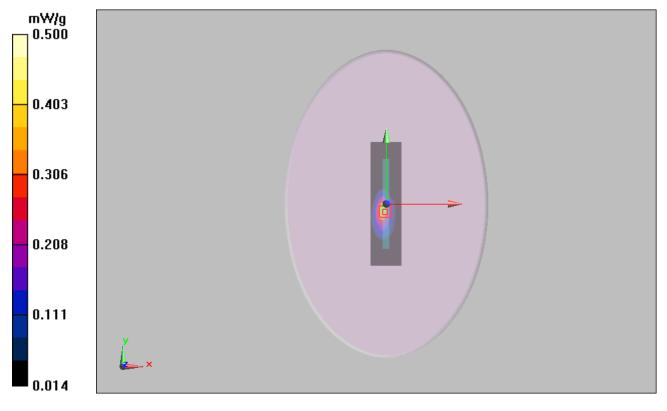


Figure 21 WCDMA Band V HSDPA Test Position 5 Channel 4183

WCDMA Band V HSUPA Test Position 5 Middle


Date/Time: 7/4/2011 12:40:46 AM Communication System: WCDMA Band V+HSUPA; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; σ = 0.992 mho/m; ϵ_r = 55.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Test Position 5 Middle/Area Scan (31x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.444 mW/g

Test Position 5 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 22.3 V/m; Power Drift = 0.055 dB Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.461 mW/g; SAR(10 g) = 0.226 mW/g

Maximum value of SAR (measured) = 0.500 mW/g

Page 57 of 110

802.11b Test Position 1 High


Date/Time: 7/4/2011 12:47:36 PM Communication System: 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; σ = 1.98 mho/m; ϵ_r = 51.7; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.46, 7.46, 7.46); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Test Position 1 High/Area Scan (111x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.469 mW/g

Test Position 1 High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.680 V/m; Power Drift = 0.008 dB Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.493 mW/g; SAR(10 g) = 0.208 mW/g

Maximum value of SAR (measured) = 0.604 mW/g

Report No. RZA1106-0987SAR01R1

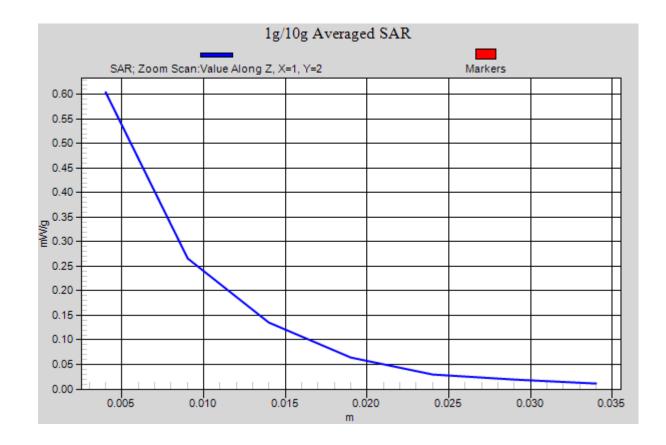
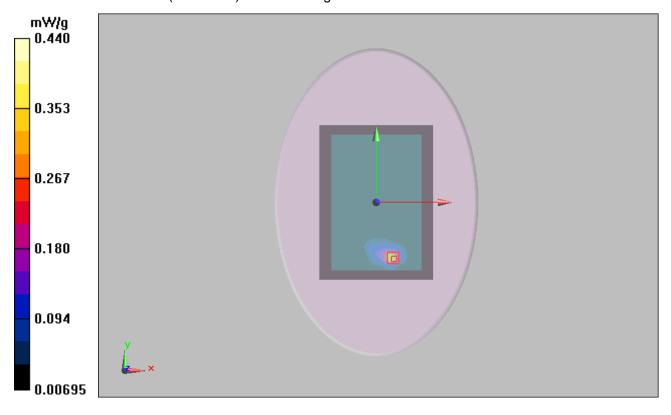


Figure 23 802.11b Test Position 1 Channel 11

Page 59 of 110

802.11b Test Position 1 Middle


Date/Time: 7/4/2011 11:46:28 AM Communication System: 802.11b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2436 MHz; σ = 1.95 mho/m; ε_r = 51.8; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.46, 7.46, 7.46); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

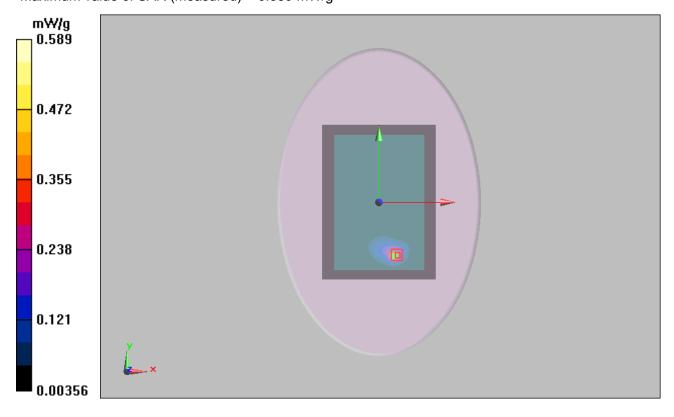
Test Position 1 Middle/Area Scan (111x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.430 mW/g

Test Position 1 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.52 V/m; Power Drift = -0.058 dB Peak SAR (extrapolated) = 0.903 W/kg SAR(1 g) = 0.392 mW/g; SAR(10 g) = 0.169 mW/g

TA Technology (Shanghai) Co., Ltd. Test Report

Maximum value of SAR (measured) = 0.440 mW/g

Report No. RZA1106-0987SAR01R1


802.11b Test Position 1 Low

Date/Time: 7/4/2011 1:23:26 PM Communication System: 802.11b; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; σ = 1.92 mho/m; ε_r = 51.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.46, 7.46, 7.46); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

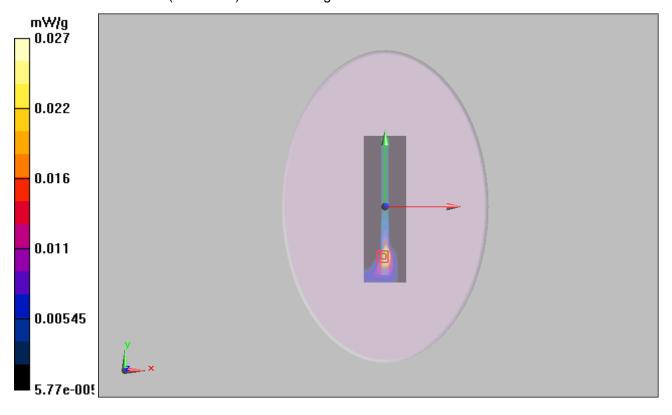
Test Position 1 Low/Area Scan (111x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.478 mW/g

Test Position 1 Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.826 V/m; Power Drift = 0.076 dB Peak SAR (extrapolated) = 1.19 W/kg SAR(1 g) = 0.486 mW/g; SAR(10 g) = 0.207 mW/g

Maximum value of SAR (measured) = 0.589 mW/g

Page 61 of 110

802.11b Test Position 3 Middle


Date/Time: 7/4/2011 2:49:13 PM Communication System: 802.11b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2436 MHz; σ = 1.95 mho/m; ε_r = 51.8; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.46, 7.46, 7.46); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

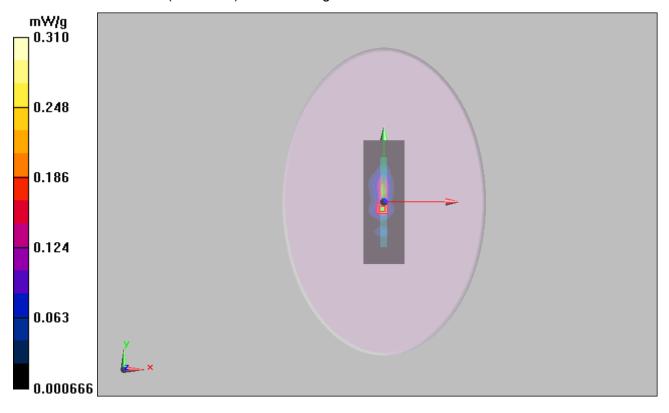
Test Position 3 Middle/Area Scan (41x141x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.034 mW/g

Test Position 3 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.689 V/m; Power Drift = 0.099 dB Peak SAR (extrapolated) = 0.064 W/kg SAR(1 g) = 0.026 mW/g; SAR(10 g) = 0.012 mW/g

TA Technology (Shanghai) Co., Ltd. Test Report

Maximum value of SAR (measured) = 0.027 mW/g

Page 62 of 110


802.11b Test Position 5 Middle

Date/Time: 7/4/2011 12:24:35 PM Communication System: 802.11b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2436 MHz; σ = 1.95 mho/m; ϵ_r = 51.8; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: EX3DV4 - SN3677; ConvF(7.46, 7.46, 7.46); Calibrated: 11/24/2010 Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Test Position 5 Middle/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.290 mW/g

Test Position 5 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.43 V/m; Power Drift = -0.011 dB Peak SAR (extrapolated) = 0.507 W/kg SAR(1 g) = 0.272 mW/g; SAR(10 g) = 0.131 mW/g

Maximum value of SAR (measured) = 0.310 mW/g

ANNEX D: Probe Calibration Certificate

Engineering AG Ceughausstrasse 43, 8004 Zurio	ry Of	Hac MRA	Servizio svizzero di taratura
Accredited by the Swiss Accredit The Swiss Accreditation Servic Multilateral Agreement for the	ce is one of the signatori	es to the EA	No.: SCS 108
Client TA-SH (Auden	Ŋ	Certificate N	a: EX3-3677_Nov10
CALIBRATION	CERTIFICAT	E	
Object	EX3DV4 - SN:3	677	
Calibration procedure(s)	NAMES OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTIONO	QA CAL-14.v3, QA CAL-23.v3 an edure for dosimetric E-field probe	
Calibration date:	November 24, 2	010	
The measurements and the uno	ertainties with confidence	tional standards, which realize the physical un probability are given on the following pages an ory facility: environment temperature $(22 \pm 3)^\circ$	d are part of the certificate.
The measurements and the uno All calibrations have been condu Calibration Equipment used (M8	ertainties with confidence ucted in the closed laborat TE critical for calibration)	probability are given on the following pages an ory facility: environment temperature $(22\pm3)^{\circ}($	d are part of the certificate. C and humidity < 70%.
The measurements and the uno All calibrations have been condu Calibration Equipment used (M8 Primary Standards	ertainties with confidence ucted in the closed laboration TE critical for calibration)	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*(Cal Date (Certificate No.)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration
The measurements and the uno All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E44198	ertainties with confidence ucted in the closed laboration TE critical for calibration)	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*(Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11
The measurements and the uno All calibrations have been condu Calibration Equipment used (M8 Primary Standards	ertainties with confidence ucted in the closed laboration TE critical for calibration)	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*(Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11
The measurements and the uno All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4412A	ertainties with confidence ucted in the closed laboration TE critical for calibration) ID # GB41293874 MY41495277	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*(Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11
The measurements and the uno All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A	ertainties with confidence included in the closed laboration TE critical for calibration) ID # GB41293874 MY41495277 MY41498067	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*(Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Apr-11
The measurements and the uno All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power sensor E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator	ertainties with confidence ucted in the closed laboration TE critical for calibration ID # GB41293874 MY41495277 MY41490067 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b)	Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01136) 30-Mar-10 (No. 217-01136) 30-Mar-10 (No. 217-01136) 30-Mar-10 (No. 217-01136)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11
The measurements and the uno All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2	ertainties with confidence ucted in the closed laboration) ID # GB41293874 MY41495277 MY41498067 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: S129 (30b) SN: 3013	Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01136)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Mar-11 Dec-10
The measurements and the uno All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2	ertainties with confidence ucted in the closed laboration TE critical for calibration ID # GB41293874 MY41495277 MY41490067 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b)	Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01136) 30-Mar-10 (No. 217-01136) 30-Mar-10 (No. 217-01136) 30-Mar-10 (No. 217-01136)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Mar-11
The measurements and the uno All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power sensor E44128 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ertainties with confidence ucted in the closed laboration) ID # GB41293874 MY41495277 MY41498067 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: S129 (30b) SN: 3013	Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01136)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Mar-11 Dec-10
The measurements and the uno All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ertainties with confidence include in the closed laboration ID # GB41293874 MY41495277 MY41498067 SN: S5084 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 660	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*(Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 30-Dec-09 (No. 253-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Apr-11
The measurements and the uno All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ertainties with confidence included in the closed laboration ID # GB41293874 MY41495277 MY41498067 SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: S129 (30b) SN: 3013 SN: 660 ID #	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*(Cal Date (Certificate No.) 1.Apr-10 (No. 217-01136) 1.Apr-10 (No. 217-01136) 1.Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01160) 30-Mar-10 (No. 217-01160) 30-Dec-09 (No. 253-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check
The measurements and the uno All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ertainties with confidence ucted in the closed laboration TE critical for calibration) ID # GB41293874 MY41495277 MY4149087 SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: S5129 (30	Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01136) 30-Mar-10 (No. 217-01136) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 31-Dec-09 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check In house check: Oct-11
The measurements and the uno All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 90 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards RF generator HP 8648C	ertainties with confidence ucted in the closed laboration TE critical for calibration) ID # GB41293874 MY41495277 MY41495087 SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 660 ID # U53642U01700 US37390585	Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 2000) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
The measurements and the uno All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power sensor E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ertainties with confidence ucted in the closed laboration TE critical for calibration) ID # GB41293874 MY41495277 MY4149087 SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: S5129 (30	Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01136) 30-Mar-10 (No. 217-01136) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 31-Dec-09 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check In house check: Oct-11 In house check: Oct-11

Report No. RZA1106-0987SAR01R1

Page 64 of 110

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

GNISS

BRA

Schweizerischer Kalibrierdienst s Service suisse d'étalonnage С Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

oloodal j.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization ϕ	o rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3677_Nov10

Page 2 of 11

Page 65 of 110

EX3DV4 SN:3677

November 24, 2010

Probe EX3DV4

SN:3677

Manufactured: Last calibrated: Recalibrated: September 9, 2008 September 23, 2009 November 24, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3677_Nov10

Page 3 of 11

Report No. RZA1106-0987SAR01R1

EX3DV4 SN:3677

November 24, 2010

DASY/EASY - Parameters of Probe: EX3DV4 SN:3677

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.41	0.47	0.39	± 10.1%
DCP (mV) ⁸	96.8	98.9	98.8	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	с	VR mV	Unc ^E (k=2)
10000	cw	0.00	х	0.00	0.00	1.00	143.2	± 2.4 %
			Y	0.00	0.00	1.00	140.9	_
			z	0.00	0.00	1.00	135.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

* The uncertainties of NormX, Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^b Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value

Certificate No: EX3-3677_Nov10

Page 4 of 11

EX3DV4 SN:3677

November 24, 2010

DASY/EASY - Parameters of Probe: EX3DV4 SN:3677

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvFX C	onvF Y	ConvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	43.5 ± 5%	0.87 ± 5%	10.04	10.04		0.09	1.00 ± 13.3%
835	±50/±100	41.5 ± 5%	0.90 ± 5%	9.50	9.50	9.50	0.72	0.64 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	1.37 ± 5%	8.22	8.22	8.22	0.72	0.59 ± 11.0%
1900	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	7.94	7.94	7.94	0.81	0.57 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	7.32	7.32	7.32	0.47	0.75 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3677_Nov10

Page 5 of 11

EX3DV4 SN:3677

November 24, 2010

DASY/EASY - Parameters of Probe: EX3DV4 SN:3677

Calibration Parameter Determined in Body Tissue Simulating Media

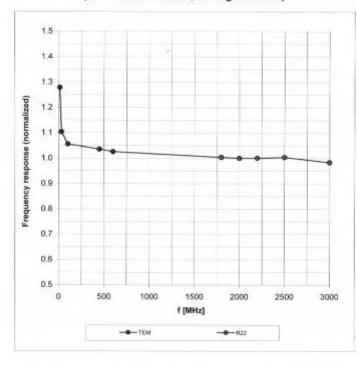
	Manufacture research of	Provide little little	Constantinity	6	C	0		Death Has Gentl
[MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	$56.7 \pm 5\%$	0.94 ± 5%	10.62	10.62	10.62	0.02	1.00 ± 13.3%
750	± 50 / ± 100	$55.5\pm5\%$	0.96 ± 5%	10.14	10.14	10.14	0.59	0.72 ± 11.0%
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	10.33	10.33	10.33	0.20	2.06 ± 11.0%
1450	± 50 / ± 100	54.0 ± 5%	1.30 ± 5%	8.47	8.47	8.47	0.99	0.53 ± 11.0%
1750	±50/±100	53.4 ± 5%	1.49±5%	8.02	8.02	8.02	0.63	0.67 ± 11.0%
1900	±50/±100	$53.3\pm5\%$	1.52 ± 5%	7.77	7.77	7.77	0.69	0.67 ± 11.0%
2100	± 50 / ± 100	$53.2\pm5\%$	1.62 ± 5%	8.04	8.04	8.04	0.16	1.44 ± 11.0%
2450	± 50 / ± 100	$52.7\pm5\%$	1.95 ± 5%	7.46	7.46	7.46	0.99	0.49 ± 11.0%
3500	± 50 / ± 100	51.3 ± 5%	3.31 ± 5%	6.61	6.61	6.61	0.28	1.40 ± 13.1%

[©] The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the CorwF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3677_Nov10

Page 6 of 11

Report No. RZA1106-0987SAR01R1

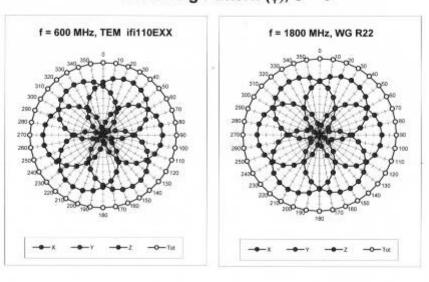

Page 69 of 110

EX3DV4 SN:3677

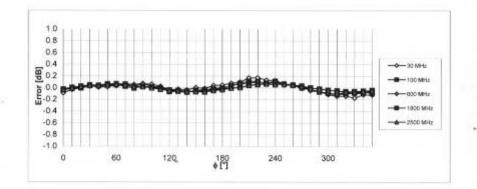
November 24, 2010

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3677_Nov10


Page 7 of 11

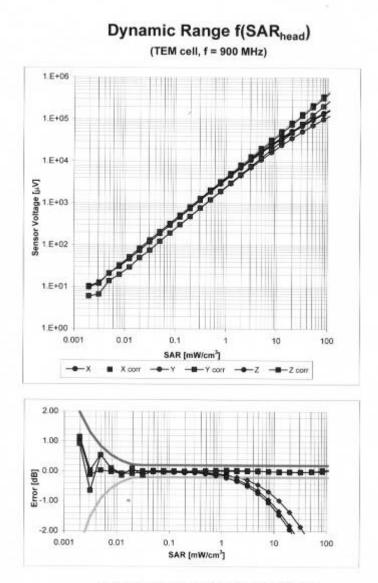
EX3DV4 SN:3677

November 24, 2010

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3677_Nov10


Page 8 of 11

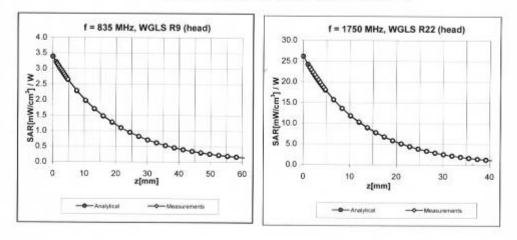
Report No. RZA1106-0987SAR01R1

Page 71 of 110

EX3DV4 SN:3677

November 24, 2010

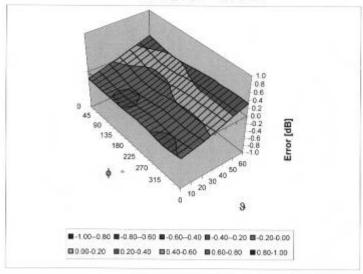
Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: EX3-3677_Nov10

Page 9 of 11

Report No. RZA1106-0987SAR01R1

EX3DV4 SN:3677


November 24, 2010

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ø, 9), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3677_Nov10

Page 10 of 11

Report No. RZA1106-0987SAR01R1

EX3DV4 SN:3677

November 24, 2010

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3677_Nov10

Page 11 of 11

ANNEX E: D835V2 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

GNISS CR ZZ RISRATO

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

s

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Auden

Certificate No: D835V2-4d092_Jan10

Calibration procedure for dipole validation kits Calibration date: January 14, 2010 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following peges and are part of the certificate. All calibration Equipment used (M&TE critical for calibration) Primery Standards 10 # Power server P8.481A US37292783 Option P8.481A US37292783 Shi 5047 27.05327 Shi 5047 27.05327 Shi 5047 07.4827 Shi 5057 28-Jun-09 (No. 217-01086) Oci-10 Nar-10 Shi 5055 28-Jun-09 (No. 217-01086) Oci-10 Shi 5055 Shi 5057 28-Jun-09 (No. 217-01026) Mar-10 Shi 5055 Shi 5057 28-Jun-09 (No. 217-01026) Mar-10 Shi 5057 Shi 501 07-Mar-09 (No. 217-01026) Mar-10 Shi 5057 Shi 501 07-Mar-09 (No. 217-01026) Mar-10 Shi 5057 Shi 2005 28-Jun-09 (No. 217-01026) Mar-10 Shi 2005 Shi 2017 07-Mar-09 (No. 217-01026) Mar-10 Shi 207-27.05327 Shi 2017	Object	D835V2 - SN: 4d	092	
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%.	Calibration procedure(s)		dure for dipole validation kits	
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%.	Cellbration date:	January 14, 2010		
Power meter EPM-442A GB37480704 08-Oct-09 (No. 217-01086) Oct-10 Power sensor HP 8481A US37292783 08-Oct-09 (No. 217-01086) Oct-10 Reference 20 dB Attenuator SN: 5086 (20g) 31-Mar-09 (No. 217-01025) Mar-10 Type-N mismatch combination SN: 5047.2 / 06327 31-Mar-09 (No. 217-01029) Mar-10 Reference Probe ES3DV3 SN: 3205 26-Jun-09 (No. 217-01029) Mar-10 DAE4 SN: 601 D7-Mar-09 (No. 217-01029) Mar-10 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-09) In house check: Oct-10 Calibrated by: Jeton Kastrati Laboratory Technician Gignature	The measurements and the unce	rlainties with confidence p	robability are given on the following pages ar	nd are part of the certificate.
Power meter EPM-442A GB37480704 08-Oct-09 (No. 217-01086) Oct-10 Power sensor HP 8481A US37292783 08-Oct-09 (No. 217-01086) Oct-10 Reference 20 dB Attenuator SN: 5086 (20g) 31-Mar-09 (No. 217-01025) Mar-10 Type-N mismatch combination SN: 5047.2 / 06327 31-Mar-09 (No. 217-01029) Mar-10 Reference Probe ES3DV3 SN: 3205 26-Jun-09 (No. 217-01029) Mar-10 DAE4 SN: 601 D7-Mar-09 (No. 217-01029) Mar-10 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-09) In house check: Oct-10 Calibrated by: Jeton Kastrati Laboratory Technician Gignature	Calibration Equipment used (M&1	TE critical for calibration)		
Reference 20 dB Attenuator SN: 5085 (20g) 31-Mar-09 (No. 217-01025) Mar-10 Type-N mismatch combination SN: 5047.2 / 06327 31-Mar-09 (No. 217-01029) Mar-10 Reference Probe ES3DV3 SN: 5047.2 / 06327 31-Mar-09 (No. 217-01029) Mar-10 DAE4 SN: 3205 26-Jun-09 (No. E53-3205_Jun09) Jun-10 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 54206 18-Oct-01 (in house check Oct-09) In house check: Oct-10 Calibrated by: Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Jun-JU		12022	Cal Date (Certificate No.)	Scheduled Calibration
Type-N mismatch combination SN: 5047.2 / 06327 31-Mar-09 (No. 217-01029) Mar-10 Reference Probe ES3DV3 SN: 3205 28-Jun-09 (No. E53-3205_Jun09) Jun-10 DAE4 SN: 601 D7-Mar-09 (No. DAE4-801_Mar09) Mar-10 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 \$4206 18-Oct-01 (in house check Oct-09) In house check: Oct-10 Calibrated by: Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Jun-J0	Primary Standards	ID #	and the second se	
Reference Probe ES3DV3 SN: 3205 26-Jun-09 (No. ES3-3205 Jun09) Jun-10 DAE4 SN: 601 D7-Mar-09 (No. DAE4-601_Mar09) Mar-10 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390565 \$4206 18-Oct-01 (in house check Oct-09) In house check: Oct-10 Calibrated by: Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Jun-10	Primary Standards Power meter EPM-442A	ID # GB37480704	08-Ocl-09 (No. 217-01086)	Oct-10 Oct-10
DAE4 SN: 601 D7-Mar-09 (No. DAE4-801_Mar09) Mar-10 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 10005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 \$4206 18-Oct-01 (in house check Oct-09) In house check: Oct-10 Calibrated by: Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Jeton Kastrati	Primery Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704 US37292783	06-Ocl-09 (No. 217-01086) 06-Ocl-09 (No. 217-01086)	Oct-10 Oct-10 Mar-10
Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 \$4206 18-Oct-01 (in house check Oct-09) In house check: Oct-10 Name Function Signature Signature Calibrated by: Jeton Kastrati Laboratory Technician J	Primery Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	Ocl-10 Ocl-10 Mar-10 Mar-10
Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 \$4206 18-Oct-01 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 \$4206 18-Oct-01 (in house check Oct-09) In house check: Oct-10 Calibrated by: Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Image: Calibrated by: Calibrated	Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. E53-3205_Jun09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10
RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 54206 18-Oct-01 (in house check Oct-09) In house check: Oct-11 Calibrated by: Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Image: Calibrated by:	Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. E53-3205_Jun09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10
Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-09) In house check: Oct-10 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Image: Calibrated by:	Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	08-Oci-09 (No. 217-01086) 08-Oci-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. E53-3205_Jun09) D7-Mar-09 (No. DAE4-601_Mar09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10
Calibrated by: Jeton Kastrati Laboratory Technician	Primery Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	08-Oci-09 (No. 217-01086) 08-Oci-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 28-Jun-09 (No. 217-01029) 07-Mar-09 (No. DAE4-801_Jun09) D7-Mar-09 (No. DAE4-801_Mar09) Check Date (in house)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check
Calibrated by: Jeton Kastrati Laboratory Technician	Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 28-Jun-09 (No. E53-3205_Jun09) 07-Mar-09 (No. DAE4-801_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11
Calibrated by: Jeton Kastrati Laboratory Technician	Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB37480704 US37292783 SN: 5066 (20g) SN: 5047.2706327 SN: 3205 SN: 601 ID # MY41092317 100005	08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. E53-3205_Jun09) 07-Mar-09 (No. DAE4-801_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11
	Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5066 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 \$4206	08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. E53-3205_Jun09) 07-Mar-09 (No. DAE4-801_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10
Approved by: Kalja Pokovic Technical Manager	Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5066 (20g) SN: 5047 2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 \$4206 Name	08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. E53-3205 Jun09) 07-Mar-09 (No. DAE4-801_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function	Oct-10 Oct-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10
	Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5066 (20g) SN: 5047 2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 \$4206 Name	08-Oct-09 (No. 217-01086) 08-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. E53-3205 Jun09) 07-Mar-09 (No. DAE4-801_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function	Oct-10 Oct-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10

Report No. RZA1106-0987SAR01R1

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

s

С

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d092_Jan10

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

0/02/20 00 00 00 00	Temperature	Permittivity	Conductivity 0.90 mho/m	
Nominal Head TSL parameters	22.2 °C	41.5		
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.4 ± 6 %	0.89 mho/m ± 6 %	
Head TSL temperature during test	(21.5 ± 0.2) °C			

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 mW / g
SAR normalized	normalized to 1W	9.56 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.63 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.56 mW / g
SAR normalized	normalized to 1W	6.24 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.27 mW /g ± 16.5 % (k=2)

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m	
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.6 ± 6 %	0.98 mho/m ± 6 %	
Body TSL temperature during test	(22.0 ± 0.2) °C	<u></u>		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.49 mW / g
SAR normalized	normalized to 1W	10.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.86 mW / g ± 17.0 % (k=2)
	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
	and the second sec	Concerning and the second seco
SAR measured	250 mW input power	1.63 mW / g
SAR measured SAR normalized	250 mW input power normalized to 1W	1.63 mW / g 6.52 mW / g

Certificate No: D835V2-4d092_Jan10

Page 4 of 9

Report No. RZA1106-0987SAR01R1

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.2 Ω - 2.8 jΩ
Return Loss	- 30.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.6 Ω - 4.5 jΩ
Return Loss	- 25.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)		1.392 ns	
	 	2000 K. (2000)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 15, 2009

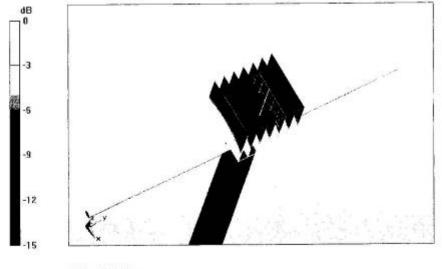
Report No. RZA1106-0987SAR01R1

DASY5 Validation Report for Head TSL

Date/Time: 11.01.2010 12:00:00

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d092


Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL900 Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

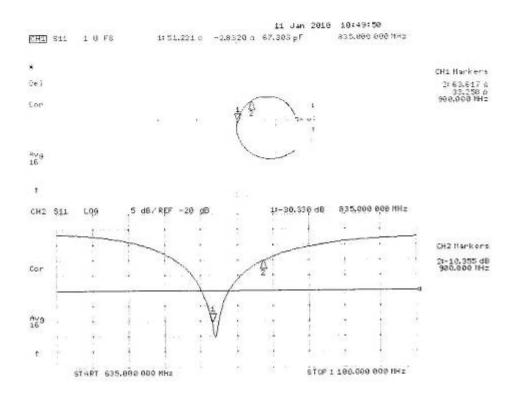
DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 26.06.2009
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.5 V/m; Power Drift = -0.00176 dB Peak SAR (extrapolated) = 3.58 W/kg

Peak SAR (extrapolated) = 3.58 W/kg SAR(1 g) = 2.39 mW/g; SAR(10 g) = 1.56 mW/g Maximum value of SAR (measured) = 2.77 mW/g

 $0 \, dB = 2.77 \, mW/g$


Certificate No: D835V2-4d092_Jan10

Page 6 of 9

Report No. RZA1106-0987SAR01R1

Page 80 of 110

Impedance Measurement Plot for Head TSL

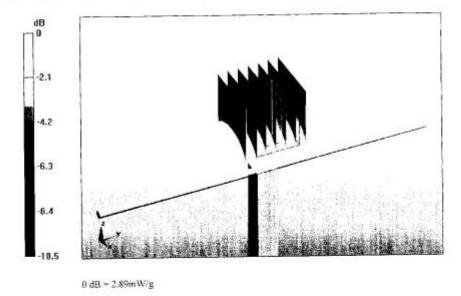
Page 7 of 9

DASY5 Validation Report for Body

Date/Time: 14.01.2010 15:40:17

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d092

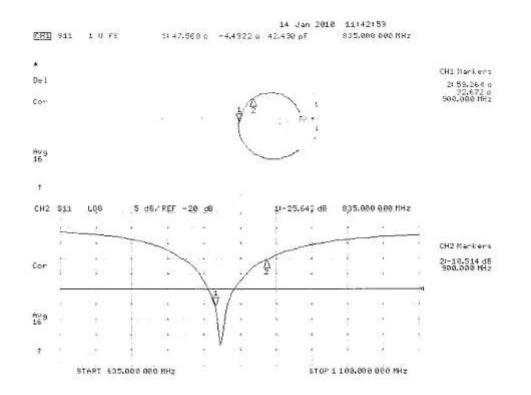

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL900 Medium parameters used: f = 835 MHz; σ = 0.98 mho/m; ϵ_r = 54.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard; DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.97, 5.97, 5.97); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5,2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.9 V/m; Power Drift = 0.013 dB Peak SAR (extrapolated) = 3.67 W/kg SAR(1 g) = 2.49 mW/g; SAR(10 g) = 1.63 mW/g Maximum value of SAR (measured) = 2.89 mW/g


Certificate No: D835V2-4d092_Jan10

Page 8 of 9

Report No. RZA1106-0987SAR01R1

Page 82 of 110

Impedance Measurement Plot for Body TSL

ANNEX F: D1900V2 Dipole Calibration Certificate

Calibration procedure(s)	ene of the signatorie nition of calibration RTIFICATE 1900V2 - SN: 5 0A GAL-05 v7 calibration proce une 15, 2010	s to the EA certificates Certificate	
Client AUGUI CALIBRATION CEI Object D Calibration procedure(s) Q Calibration date: J Calibration date: J This calibration certificate documents to The measurements and the uncertaint	RTIFICATE 1900V2 - SN: 5 A CAL-05:v7 allbration proce une 15, 2010	Certificate	units of measurements (SI).
Object D Calibration procedure(s) C Calibration date: J Calibration date: J This calibration certificate documents t The measurements and the uncertaint	1900V2 - SN: 5 A CAL-05:v7 allbration proce une 15, 2010	d018 dure for dipole validation kits onal standards, which realize the physical	
Calibration procedure(s)	A GAL-05 v7 alibration proce une 15, 2010	dure for dipole validation kits	
Calibration date: Ju This calibration certificate documents to The measurements and the uncertaint	alibration proce une 15, 2010 the traceability to nati	onal standards, which realize the physical	
This calibration certificate documents to The measurements and the uncertaint	the traceability to nati		
The measurements and the uncertaint			
Calibration Equipment used (M&TE cri Primary Standards	itical for calibration) D #		
	GB37460704	Cal Date (Certificate No.) 05-Oct-09 (No. 217-01086)	Scheduled Calibration Oct-10
	J\$37292783	06-Oct-09 (No. 217-01086)	Oct-10
	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
(1947) 1971 - MELET COLOR COLOR SELECTION - 1973	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
	SN: 3206	30-Apr-10 (No. ES3-3205 Apr10)	Apr-11
DAE4 S	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	D#	Check Date (in house)	Scheduled Check
a provide non-phillipping all the Constitutions and the Constitution of the Constituti	VY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06 1	00005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	J\$37390585 \$4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
1944	Name Xince Illev	Function Laboratory Technician	Signature
Approved by:	latja Pokovic	Technical Manager	Rell
0.03		a come a construction of a state of the stat	Issued: June 17, 2010

Certificate No: D1900V2-5d018_Jun10

Page 1 of 9

Report No. RZA1106-0987SAR01R1

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SHISS CP D Z

s

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d018_Jun10

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	2015/10
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	10 ¹⁰

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.6 ± 6 %	1.44 mho/m ± 6 %
Head TSL temperature during test	(22.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 mW / g
SAR normalized	normalized to 1W	40.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.2 mW /g ± 17.0 % (k=2)
	-	100 US400 0 - 510798143
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
	condition 250 mW input power	5.22 mW / g
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured SAR normalized		5.22 mW / g 20.9 mW / g

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.4 ± 6 %	1.54 mho/m ± 6 %
Body TSL temperature during test	(21.7 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 mW / g
SAR normalized	normalized to 1W	41.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.9 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	i i i i i i i i i i i i i i i i i i i
SAR measured	250 mW input power	5.52 mW / g
SAR normalized	normalized to 1W	22.1 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.0 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d018_Jun10

Page 4 of 9

Report No. RZA1106-0987SAR01R1

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω + 2.6 jΩ	
Return Loss	- 29.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.4 Ω + 3.2 jΩ	
Return Loss	- 27.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.194 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

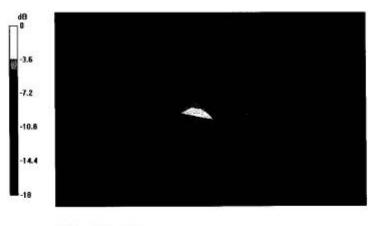
Manufactured by	SPEAG
Manufactured on	June 04, 2002

DASY5 Validation Report for Head TSL

Date/Time: 15.06.2010 10:40:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d018

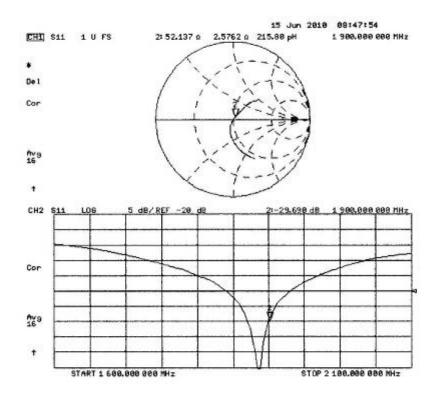

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U11 BB Medium parameters used: f = 1900 MHz; σ = 1.44 mho/m; ε_r = 39.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mmReference Value = 96.7 V/m; Power Drift = 0.022 dB Peak SAR (extrapolated) = 18.4 W/kg SAR(1 g) = 10 mW/g; SAR(10 g) = 5.22 mW/g Maximum value of SAR (measured) = 12.6 mW/g


Certificate No: D1900V2-5d018_Jun10

Page 6 of 9

Report No. RZA1106-0987SAR01R1

Page 89 of 110

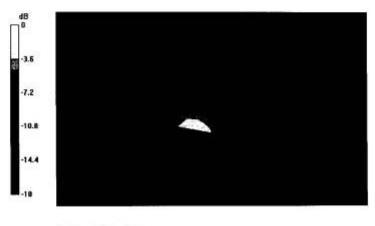
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 15.06.2010 14:14:27

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d018

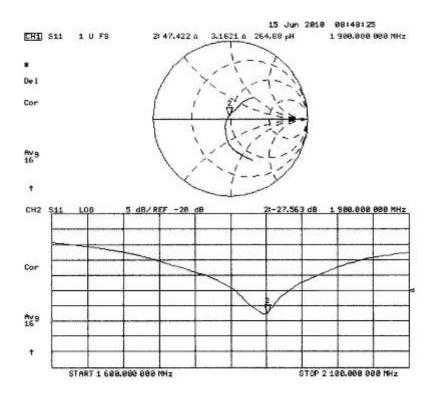

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL U11 BB Medium parameters used: f = 1900 MHz; $\sigma = 1.54$ mho/m; $\varepsilon_r = 53.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.1 V/m; Power Drift = 0.055 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.52 mW/g Maximum value of SAR (measured) = 12.8 mW/g



Report No. RZA1106-0987SAR01R1

Page 91 of 110

Impedance Measurement Plot for Body TSL

Page 92 of 110

ANNEX G: D2450V2 Dipole Calibration Certificate

Calibration Laborato Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zur		Hac-MRA CRUSS	S Schweizerischer Kalibrierdie C Service sulsse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service
Accredited by the Swiss Accredi The Swiss Accreditation Servi Multilateral Agreement for the	ice is one of the signatorie	is to the EA	tion No.: SCS 108
Client ATL (Auden)		Certificate	No: D2450V2-712_Feb10
CALIBRATION	CERTIFICATE		
Object	D2450V2 - SN: 7	/12	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	February 19, 201	10	
The measurements and the und	certainties with confidence p	ional standards, which realize the physica robability are given on the following page or facility: environment temperature (22 ±	s and are part of the certificate.
The measurements and the und	certainties with confidence p ucted in the closed laborato		s and are part of the certificate.
The measurements and the unc All calibrations have been cond	certainties with confidence p ucted in the closed laborato	robability are given on the following page ry facility: environment temperature (22 ±	s and are part of the certificate.
The measurements and the unc All calibrations have been cond Calibration Equipment used (MI	certainties with confidence p ucted in the closed laborato &TE critical for calibration)	robability are given on the following page	s and are part of the certificate. 3)°C and humidity < 70%.
The measurements and the unc All calibrations have been cond Calibration Equipment used (Mt Primary Standards	certainties with confidence p ucted in the closed laborato &TE critical for calibration) ID #	robability are given on the following page ry facility: environment temperature (22 ± Cal Date (Certificate No.)	s and are part of the certificate. 3)°C and humidity < 70%, Scheduled Calibration
The measurements and the uno All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter EPM-442A	certainties with confidence p ucted in the closed laborato &TE critical for calibration) ID # GB37480704	robability are given on the following page ry facility: environment temperature (22 ± Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-10
The measurements and the uno All calibrations have been condi Calibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP \$481A Reference 20 dB Attenuator Type-N mismatch combination	ertainties with confidence p ucted in the closed laborato &TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 05-Oct-09 (No. 217-01026) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10
The measurements and the uno All calibrations have been condi Calibration Equipment used (MR Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ertainties with confidence p ucted in the closed laborato &TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 05-Oct-09 (No. 217-01025) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. E\$3-3205_Jun09)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10
The measurements and the uno All calibrations have been condi Calibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP \$481A Reference 20 dB Attenuator Type-N mismatch combination	ertainties with confidence p ucted in the closed laborato &TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 05-Oct-09 (No. 217-01026) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10
The measurements and the uno All calibrations have been condi Calibration Equipment used (MR Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ertainties with confidence p ucted in the closed laborato &TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 05-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. E53-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10
The measurements and the uno All calibrations have been cond Calibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	certainties with confidence p ucted in the closed laborato &TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5086 (20g) SN: 5086 (20g) SN: 5086 (20g) SN: 5086 (20g) SN: 5086 (20g) SN: 5086 (20g)	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 05-Oct-09 (No. 217-01025) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. E\$3-3205_Jun09)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10 Mar-10 Mar-10
The measurements and the uno All calibrations have been cond Calibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP 9481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	certainties with confidence p ucted in the closed laborato &TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 601	robability are given on the following page ry facility: environment temperature (22 ± Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. DAE4-601_Mar09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Oct-10 Mar-10 Mar-10 Mar-10 Mar-10 Scheduled Check
The measurements and the uno All calibrations have been condi Calibration Equipment used (Mit Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	certainties with confidence p ucted in the closed laborato &TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. DAE4-601_Mar09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Oct-10 Mar-10 Mar-10 Mar-10 Scheduled Check In house check: Oct-11
The measurements and the uno All calibrations have been condi Calibration Equipment used (Mit Primary Standards Power meter EPM-442A Power sensor HP 8461A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	certainties with confidence p ucted in the closed laborato &TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	robability are given on the following page ry facility: environment temperature (22 ± <u>Cal Date (Certificate No.)</u> 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. DAE4-601_Mar09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Oct-10 Mar-10 Jun-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11
The measurements and the uno All calibrations have been condi Calibration Equipment used (Mit Primary Standards Power meter EPM-442A Power sensor HP 8461A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	certainties with confidence p ucted in the closed laborato &TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 07-Mar-09 (No. DAE4-601_Mar09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Oct-10 Mar-10 Jun-10 Jun-10 Jun-10 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11

Certificate No: D2450V2-712_Feb10

Page 1 of 9

Report No. RZA1106-0987SAR01R1

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

S

С

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-712_Feb10

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.5 ± 6 %	1.76 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 mW / g
SAR normalized	normalized to 1W	53.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.5 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ /10 ol of Head TSI	condition	
	condition	
	condition 250 mW input power	6.24 mW / g
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured SAR normalized	0.1.0.105.7.0	6.24 mW / g 25.0 mW / g

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) "C	51.7 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature during test	(21.2 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.1 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.97 mW / g
SAR normalized	normalized to 1W	23.9 mW / g
		23.7 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.2 Ω + 1.9 jΩ	
Return Loss	- 27.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.1 Ω + 5.2 jΩ
Return Loss	- 25.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.144 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 05, 2002

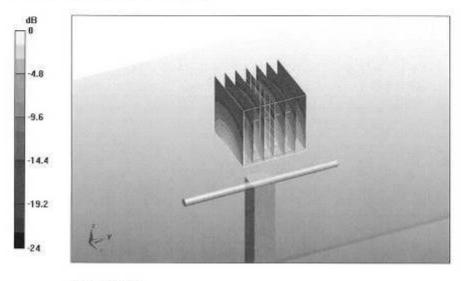
Report No. RZA1106-0987SAR01R1

DASY5 Validation Report for Head TSL

Date/Time: 17.02.2010 13:12:38

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:712


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U11 BB Medium parameters used: f = 2450 MHz; $\sigma = 1.77$ mho/m; $\epsilon_r = 38.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

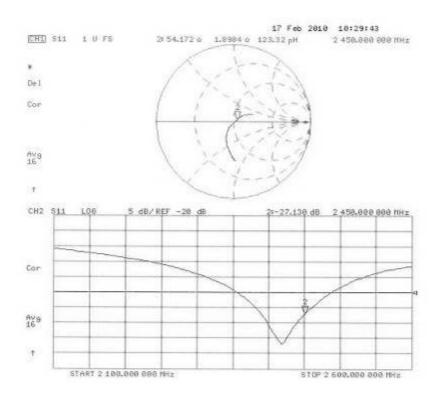
DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.1 V/m; Power Drift = 0.032 dB Peak SAR (extrapolated) = 27.2 W/kg SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.24 mW/g Maximum value of SAR (measured) = 17.1 mW/g

 $\theta dB = 17.1 \text{mW/g}$


Certificate No: D2450V2-712_Feb10

Page 6 of 9

Report No. RZA1106-0987SAR01R1

Page 98 of 110

Impedance Measurement Plot for Head TSL

Page 7 of 9

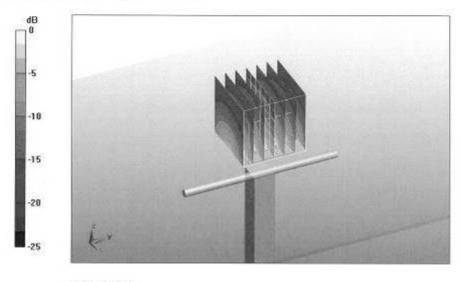
Report No. RZA1106-0987SAR01R1

DASY5 Validation Report for Body

Date/Time: 19.02.2010 13:05:49

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:712


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL U10 BB Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

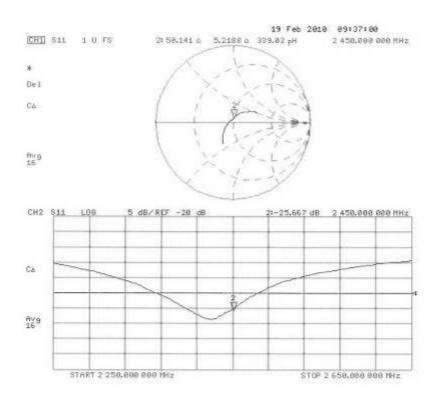
DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.5 V/m; Power Drift = 0.015 dB Peak SAR (extrapolated) = 29.5 W/kg SAR(1 g) = 13 mW/g; SAR(10 g) = 5.97 mW/g Maximum value of SAR (measured) = 17 mW/g

0 dB = 17mW/g


Certificate No: D2450V2-712_Feb10

Page 8 of 9

Report No. RZA1106-0987SAR01R1

Page 100 of 110

Impedance Measurement Plot for Body TSL

Page 9 of 9

Report No. RZA1106-0987SAR01R1

Page 101 of 110

ANNEX H: DAE4 Calibration Certificate

Engineering AG eughausstrasse 43, 8004 Zurich	y of h, Switzerland		S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service
Accredited by the Swiss Accredital The Swiss Accreditation Service Multilateral Agreement for the re	is one of the signatories	to the EA	tation No.: SCS 108
Client TA - SH (Aude	n)	Certifica	nte No: DAE4-871_Nov10
CALIBRATION C	ERTIFICATE		
Object	DAE4 - SD 000 D	04 BJ - SN: 871	
Calibration procedure(s)	QA CAL-06.v22 Calibration proces	ure for the data acquisition	electronics (DAE)
Calibration date:	November 18, 201	10	
The measurements and the uncer	rtainties with confidence pro	nal standards, which realize the physic bability are given on the following page	es and are part of the certificate.
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T	tainties with confidence pro ted in the closed laboratory 'E critical for calibration)	bability are given on the following pages facility: environment temperature (22	tes and are part of the certificate. ± 3)°C and humidity < 70%.
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards	rtainties with confidence pro	bability are given on the following pag	es and are part of the certificate.
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Keithley Multimeter Type 2001	tainties with confidence pro ted in the closed laboratory E critical for calibration)	bability are given on the following page facility: environment temperature (22 Cal Date (Certificate No.)	tes and are part of the certificate. ± 3)°C and humidity < 70%. Scheduled Calibration
The measurements and the uncer	tainties with confidence pro ted in the closed laboratory "E critical for calibration) ID # SN: 0810278 ID #	bability are given on the following pages facility: environment temperature (22 Cal Date (Certificate No.) 28-Sep-10 (No:10376)	tes and are part of the certificate. ± 3)°C and humidity < 70%. Scheduled Calibration Sep-11
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Keithley Multimeter Type 2001 Secondary Standards	tainties with confidence pro ted in the closed laboratory "E critical for calibration) ID # SN: 0810278 ID #	bability are given on the following pages facility: environment temperature (22 Cal Date (Certificate No.) 28-Sep-10 (No:10376) Check Date (in house)	tes and are part of the certificate. ± 3)°C and humidity < 70%. Scheduled Calibration Sep-11 Scheduled Check
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Keithley Multimeter Type 2001 Secondary Standards	tainties with confidence pro ted in the closed laboratory "E critical for calibration) ID # SN: 0810278 ID #	bability are given on the following pages facility: environment temperature (22 Cal Date (Certificate No.) 28-Sep-10 (No:10376) Check Date (in house)	tes and are part of the certificate. ± 3)*C and humidity < 70%. Scheduled Calibration Sep-11 Scheduled Check In house check: Jun-11 Signature
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	tainties with confidence pro ted in the closed laboratory (E critical for calibration) ID # SN: 0810278 ID # SE UMS 006 AB 1004	bability are given on the following page facility: environment temperature (22 <u>Cal Date (Certificate No.)</u> 28-Sep-10 (No:10376) <u>Check Date (in house)</u> 07-Jun-10 (in house check) Function	tes and are part of the certificate. ± 3)°C and humidity < 70%. Scheduled Calibration Sep-11 Scheduled Check In house check: Jun-11

Certificate No: DAE4-871_Nov10

Page 1 of 5

Report No. RZA1106-0987SAR01R1

Page 102 of 110

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

SHISS S C SPRAT

Schweizerlscher Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Report No. RZA1106-0987SAR01R1

Page 103 of 110

DC Voltage Measurement

A/D - Converter Resolution nominal

 High Range:
 1LSB =
 6.1μV
 full range =
 -100...+300 mV

 Low Range:
 1LSB =
 61nV
 full range =
 -1.....+3mV

 DASY measurement parameters: Auto Zero Time:
 3 sec; Measuring time:
 3 sec

Calibration Factors	X	Y	z
High Range	404.757 ± 0.1% (k=2)	404.740 ± 0.1% (k=2)	405.181 ± 0.1% (k=2)
Low Range	3.98219 ± 0.7% (k=2)	3.93489 ± 0.7% (k=2)	3.96831 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	90.0 ° ± 1 °
Connector Angle to be used in DASY system	90.0 °±1 °

Certificate No: DAE4-871_Nov10

Page 3 of 5

Report No. RZA1106-0987SAR01R1

Page 104 of 110

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200001.2	-1.56	-0.00
Channel X + Input	20000.71	0.71	0.00
Channel X - Input	-19997.87	1.63	-0.01
Channel Y + Input	199994.3	1.99	0.00
Channel Y + Input	19998.92	-1.08	-0.01
Channel Y - Input	-20000.26	-0.76	0.00
Channel Z + Input	200009.2	-1.04	-0.00
Channel Z + Input	19998.70	-1.10	-0.01
Channel Z - Input	-20000.16	-0.76	0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.1	0.16	0.01
Channel X + Input	199.58	-0.52	-0.26
Channel X - Input	-200.79	-0.89	0.45
Channel Y + Input	1999.9	-0.03	-0.00
Channel Y + Input	199.45	-0.55	-0.27
Channel Y - Input	-200.31	-0.41	0.21
Channel Z + Input	2000.1	0.33	0.02
Channel Z + Input	199.13	-0.77	-0.38
Channel Z - Input	-201.47	-1.37	0.69

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	14.25	12.86
	- 200	-12.68	-14.21
Channel Y	200	-10.04	-10.39
	- 200	9.20	9.17
Channel Z	200	-0.85	-1.40
	- 200	-0.34	-0.31

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		2.85	0.69
Channel Y	200	2.41		2.73
Channel Z	200	2.54	0.73	2

Certificate No: DAE4-871_Nov10

Report No. RZA1106-0987SAR01R1

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15920	15517
Channel Y	. 16171	16732
Channel Z	15803	16474

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

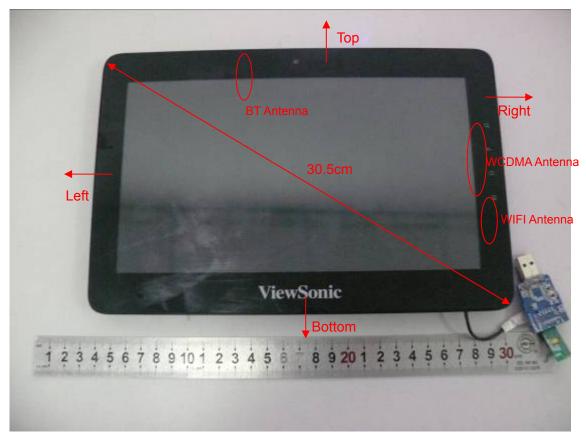
advisiantes attoris.	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	0.03	-2.35	0.86	0.43
Channel Y	-0.50	-1.49	- 0.49	0.38
Channel Z	-0.92	-2.21	0.14	0.44

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

Alexandra Alexandra	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200


8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

ANNEX I: The EUT Appearances and Test Configuration

a: External View

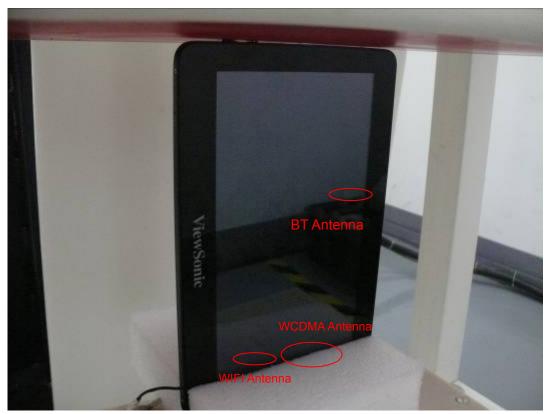
Report No. RZA1106-0987SAR01R1


Page 107 of 110

b: Internal View Picture 5: Constituents of the EUT

Report No. RZA1106-0987SAR01R1

Picture 6: Test position 1



Picture 7: Test position 2

Report No. RZA1106-0987SAR01R1

Picture 8: Test Position 3

Picture 9: Test Position 4

(This is not the most conservative antenna – to – user distance at edge mode. According to KDB 447498 4) ii) (2) –SAR is required only the edge with the most conservative exposure conditions, No SAR)

Report No. RZA1106-0987SAR01R1

Picture 10: Test position 5