

Attachment to VISRAD_FCC.15006 **EQUIPMENT UNDER TEST: Dual Technology, Digital MW/PIR Intrusion Detector Model: Next DUO**

This report is in conformity with ISO/IEC 17025. The A2LA logo endorsement applies only to the test methods and the standards that are listed in the scope of Hermon Laboratories accreditation.

The test results relate only to the items tested. This test report must not be reproduced in any form except in full with the approval of Hermon Laboratories Ltd.

Document ID: Att to VISRAD_FCC.15006

e-mail: mail@hermonlabs.com

1 Emissions test

1.1 Radio frequency interference voltage measurements according to paragraphs 15.107, 15.207

1.1.1 General

This test was performed to measure common mode conducted emissions at the power port. Specification test limits are given in Table 1.1.1. The worst test results (the lowest margins) were recorded in Table 1.1.2 and shown in the associated plots.

TEST SPECIFICATION: 47CFR part 15, subpart B, Class B

Table 1.1.1

Mains terminal radio interference voltage specification test limits

Frequency, MHz	Class B equipment, dB(mV)	
	QP	AVRG
0.15 - 0.5	66-56*	56-46*
0.5 – 5.0	56	46
5.0 – 30	60	50

^{*}The limit decreases linearly with the logarithm of frequency.

1.1.2 Test procedure

- **1.1.2.1** The EUT was configured as shown in Figure 1.1.1, set up as shown in Figure 1.1.2 and the associated photograph, energized and the performance check was conducted.
- 1.1.2.2 The measurements were performed at mains terminals by means of the LISN, connected to a spectrum analyzer in the frequency range referred to in Table 1.1.1. Unused coaxial connector of the LISN was terminated with 50 Ω . Quasi-peak detector was used during the testing as referred to in Table 1.1.2.
- **1.1.2.3** The EUT was found to be in compliance with the standard requirements and passed the test.

Document ID: Att to VISRAD_FCC.15006

e-mail: mail@hermonlabs.com

Table 1.1.2 Radio frequency interference voltage test results

TEST SPECIFICATION: 47CFR part 15, subpart B, Class B

DATE: December 23, 2002

RELATIVE HUMIDITY: 42%

AMBIENT TEMPERATURE: 23°C

AIR PRESSURE: 1017 hPa

THE EUT WAS TESTED AS: TABLE-TOP

DETECTORS USED: QUASI-PEAK

FREQUENCY RANGE: 150 kHz – 30 MHz

RESOLUTION BANDWIDTH: 9 kHz

MODE OF OPERATION TRANSMITTING

Frequency,	Line ID	Measured emissions,	Specification AVRG limit,	Margin,	Pass/ Fail
MHz		dB (mV)	dB (mV)	dB	
0.162430	N	29.39	55.39	26.00	Pass
0.162645	Ph	28.80	55.38	26.58	Pass
0.171190	Ph	29.03	54.97	25.94	Pass
0.175535	N	28.59	54.75	26.16	Pass
0.182425	Ph	26.19	54.42	28.23	Pass

All emissions measured with quasi-peak detector were found more than 25 dB below the average limit, therefore further measurements with average detector were considered unnecessary.

Table calculations and abbreviations:

- Line ID = line identification (Ph phase, N neutral).
- Margin = dB below (negative if above) specification limit.
- AVRG = average

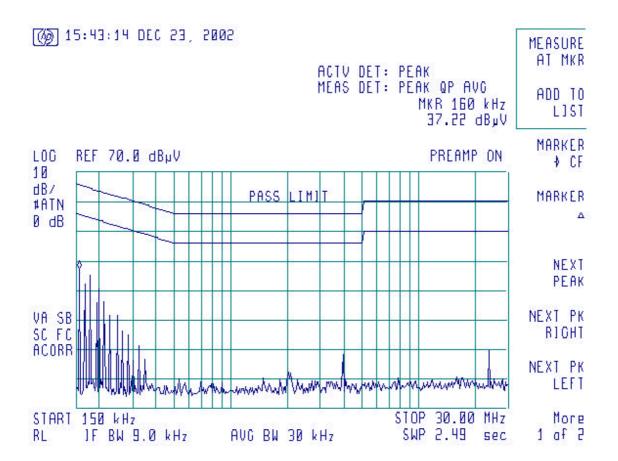
Reference numbers of test equipment used

HL 0163 HL 0580 HL 0590	HL 1430
-------------------------	---------

Full description is given in Appendix A.

Document ID: Att to VISRAD_FCC.15006

e-mail: mail@hermonlabs.com


Plot 1.1.1

Mains terminal radio frequency interference voltage test results

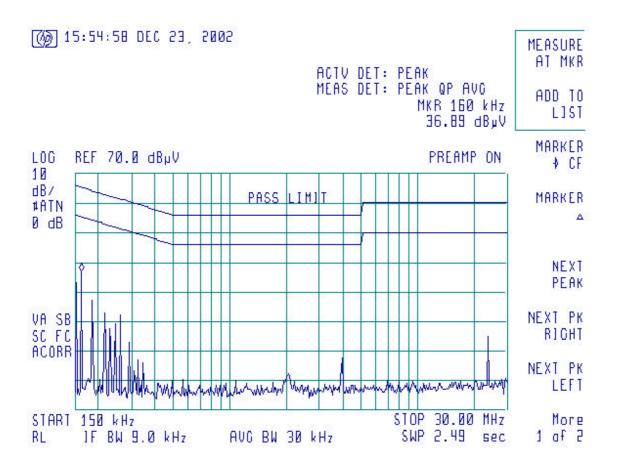
LINE: PHASE

LIMIT: QUASI-PEAK, AVERAGE

DETECTOR: PEAK

Document ID: Att to VISRAD_FCC.15006

e-mail: mail@hermonlabs.com


Plot 1.1.2

Mains terminal radio frequency interference voltage test results

LINE: NEUTRAL

LIMIT: QUASI-PEAK, AVERAGE

DETECTOR: PEAK

Document ID: Att to VISRAD_FCC.15006

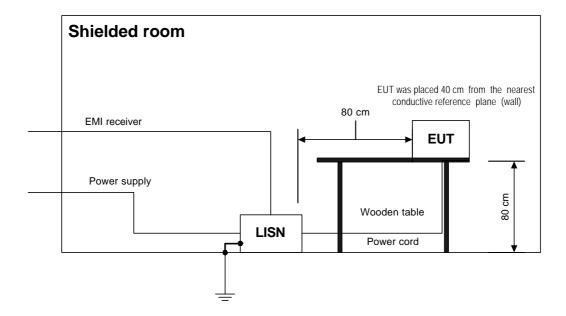
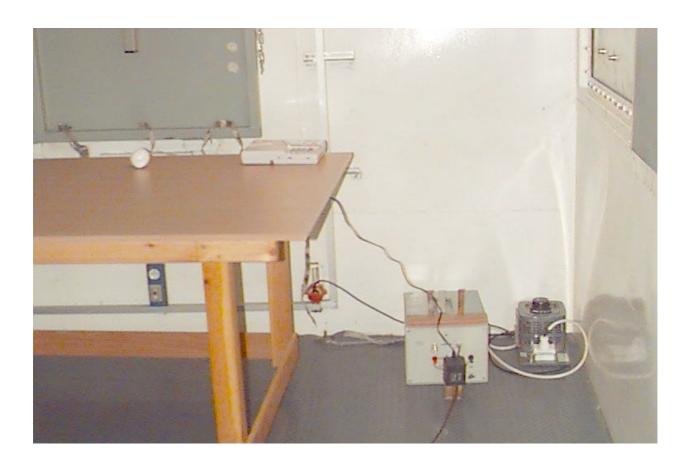


Figure 1.1.1 EUT test configuration

Document ID: Att to VISRAD_FCC.15006


Figure 1.1.2 Setup for radio frequency interference voltage test, table-top equipment

Document ID: Att to VISRAD_FCC.15006

Photograph 1.1.1 Setup view for radio frequency interference voltage test

Document ID: Att to VISRAD_FCC.15006

e-mail: mail@hermonlabs.com

APPENDIX A

Measurement uncertainty, test equipment and ancillaries used for tests

The test equipment has been calibrated according to its recommended procedures and is within the manufacturer's published limit of error. The standards and instruments used in the calibration system conform to the present requirements of ISO/IEC 17025 (or alternately ANSI/NCSL Z540-1).

The laboratory calibrates its standards by a third party (traceable to NIST, USA) on a regular basis according to equipment manufacturer requirements. The Hermon Labs EMC measurements uncertainty is given in the table below.

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Test description	Expanded uncertainty
Conducted emissions with LISN and HP 8542E receiver	9 kHz to 150 kHz: +2.43 dB/-2.22 dB 150 kHz to 30 MHz: + 2.22 dB/-2.05 dB

Test equipment and ancillaries used for tests

HL Serial No.	Description	Manufacturer information		ation	Due Calibr.
		Name	Model No.	Serial No.	Month/Year
0163	LISN FCC/VDE/MIL -STD	Electro-Metrics	ANS-25/2	1314	10/03
0580	DC block adaptor 10 kHz-2.2 GHz	Anritsu	MA8601 A	580	12/02
0590	Attenuator 10 dB, 50 Ohm, N-type, 2W	Elisra Electronic Systems	MW2100-N- Type	10	01/03
1430	EMI receiver, 9 kHz – 2.9 GHz	Hewlett Packard	8542E	3807A00262, 3705A00217	9/03

Document ID: Att to VISRAD_FCC.15006

APPENDIX B Test equipment correction factors

Correction factor Line impedance stabilization network Model ANS-25/2 **Electro-Metrics**

Frequency, kHz	Correction Factor
10	4.9
15	2.86
20	1.83
25	1.25
30	0.91
35	0.69
40	0.53
50	0.35
60	0.25
70	0.18
80	0.14
90	0.11
100	0.09
125	0.06
150	0.04

The correction factor in dB is to be added to meter readings of an interference analyzer or a spectrum analyzer.

Document ID: Att to VISRAD_FCC.15006