

Hermon Laboratories Ltd. P.O. Box 23 Binyamina 30550, Israel Tel.+972 66288001 Fax.+972 66288277 e-mail: *mail@hermonlabs.com*

RADIO TEST REPORT

ACCORDING TO 47 CFR Part 15 SUBPART C §15.231, §15.205, §15.209 and SUBPART B; RSS-210 Issue 5:2001; ICES-003 Issue 3:1997 for

VISONIC Ltd.
EQUIPMENT UNDER TEST:
Wireless keypad
MCM 140 @ 315 MHz

This report is in conformity with ISO/IEC 17025. The A2LA logo endorsement applies only to the test methods and the standards that are listed in the scope of Hermon Laboratories accreditation.

The test results relate only to the items tested. This test report must not be reproduced in any form except in full with the approval of Hermon Laboratories Ltd.

Document ID: visrad_fcc.14997.doc

Contents

CONTENTS	2
1 PROJECT INFORMATION	3
2 SUMMARY OF TESTS AND REQUIREMENTS	4
3 EUT DESCRIPTION	6
3.1 General description	6
3.2 EUT TEST CONFIGURATION	6
3.3 Transmitter description	7
4 TEST RESULTS	8
4.1 BANDWIDTH OF EMISSION ACCORDING TO § 15.231 (C) AND RSS-210 § 6.1.1(C)	8
4.2 FIELD STRENGTH OF FUNDAMENTAL, § 15.231 AND RSS-210 § 6.1.1(B)	
4.3 FIELD STRENGTH OF SPURIOUS RADIATION, § 15.231 AND RSS-210 § 6.1.1(B)	10
4.4 Unintentional radiated emissions test according to §15.109 and ICES-003	
APPENDIX A - PLOTS	12
APPENDIX B – TEST SETUP PHOTOGRAPHS	20
APPENDIX C - TEST EQUIPMENT USED FOR TESTS	
APPENDIX D - GENERAL INFORMATION	
Test facility description	23
ABBREVIATIONS AND ACRONYMS	23
SPECIFICATION REFERENCES	23
FCC EQUIPMENT CODES AND DESCRIPTIONS	24

1 Project information

Description of equipment under test

Test items : Wireless keypad
Manufacturer : Visonic Ltd.
Brand name : MCM 140
Equipment serial number : Cat No 0-2460-1
Types (Models) : MCM 140 @ 315 MHz

Equipment FCC code¹ : DSC

Applicant information

Applicant's responsible person : Mr. Arick Elshtein Company : Visonic Ltd. Address : 27 Habarzel Street

Postal code : 69710 City : Tel Aviv Country : Israel

Telephone number : +972 3 6456714 Telefax number : +972 3 6456891

Test performance

Project Number: : 14997

Location : Hermon Laboratories
Receipt date : February 19, 2002
Test started : February 19, 2002
Test completed : March 12, 2002

Purpose of test : Apparatus compliance verification in accordance with emission requirements

Test specification(s) : 47CFR Part 15, subpart C, §15.231, §15.205, §15.209, and

subpart B §15.109; RSS-210 Issue 5: 2001 and ICES-003 Issue 3: 1997

Document ID: visrad_fcc.14997.doc

¹ FCC Equipment codes – see Appendix D

Hermon Laboratories Ltd. P.O.Box 23 Binyamina 30550, Israel Tel.+972 66288001 Fax.+972 66288277

e-mail: mail@hermonlabs.com

2 Summary of tests and requirements

Parameter	Subclause	С	NC	NT	NA	Tested by	Date tested	Remarks
Transmitter characteristics, §15.231								
Periodic operation	15.231(a)	Х				Refer to Installation	instructions	
Bandwidth of emission	15.231(c)	Х				Mr. M. Feldman, test engineer	March 6, 2002	
Field strength of fundamental	15.231(b)(2)	Х				Mr. M. Feldman, test engineer	March 6, 2002	
Field strength of spurious radiation	15.231(b)(3)	X				Mr. Y. Neuman, test engineer; Mr. M. Feldman, test engineer	March 12, 2002	
Unintentional radiation, §15.107, §15.109							_	
Conducted emissions	15.107				Х			
Radiated emissions	15.109			Х				Refer to spurious emission test
General conditions under §15.231, Periodic operation in the	e band 40.66 - 40	.70 MHz	and abo	ve 70 MI	Ηz			
The intentional radiator does not operate in the restricted bands of operation.	15.205	X						
The intentional radiator has permanently attached antenna or antenna that uses a unique coupling to the intentional radiator.	15.203	Х				Refer to Installation	instructions	
No antenna other than that furnished by the responsible party can be used with the device.	15.203				Х			
The intentional radiator has no standard antenna jack or electrical connector.	15.203				Х	This requirement does not apply to intentional radiators that must be professionally installed		
The intentional radiator must be professionally installed.	15.203				Х			
The Intentional radiator operates at 315 MHz.	15.231 (a)	Х						
Intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc.	15.231 (a)	Х				Refer to Installation	instructions	
Radio control of toys is not permitted.	15.231 (a)	Х				Refer to Installation	instructions	

Document ID: visrad_fcc.14997.doc

Hermon Laboratories Ltd. P.O.Box 23 Binyamina 30550, Israel Tel.+972 66288001 Fax. +972 66288277

e-mail: mail@hermonlabs.com

Parameter	Subclause	С	NC	NT	NA	Tested by	Date tested	Remarks
Continuous transmissions, such as voice or video, and data transmissions are not permitted.	15.231 (a)	Х				Refer to Installation	instructions	
A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.	15.231 (a) (1)				Х			
A transmitter activated automatically shall cease transmission within 5 seconds after activation.	15.231 (a) (2)	Х				Refer to Installation	instructions	
Periodic transmissions at regular predetermined intervals are not permitted.	15.231 (a) (3)	Х				Refer to Installation	instructions	
The intentional radiator polling or supervision transmissions to determine system integrity of transmitters used in security or safety applications are allowed if the periodic rate of transmission does not exceed one transmission of not more than one second duration per hour for each transmitter.	15.231 (a) (3)	Х				Refer to Installation	ninstructions	
The intentional radiators, employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.	15.231 (a) (4)	Х				Refer to Installation	ninstructions	

NC: The parameter is not compliant with the requirements.

NT: The parameter is not tested.

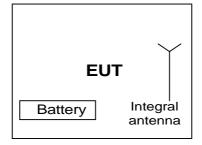
NA: The test of this parameter is not applicable.

Test report prepared by: Mrs. V. Mednikov, certification engineer

Test report approved by: Mr. A. Usoskin, QA manager

Document ID: visrad_fcc.14997.doc

3 EUT description


3.1 General description

The EUT is a wireless remote control unit for the PowerMax system.

3.2 EUT test configuration

Test configuration is provided in Figure 3.2.1.

Figure 3.2.1 EUT Test Configuration

Document ID: visrad_fcc.14997.doc

Transmitter description 3.3

Оре	erating frequency:		315 N	ИHz		
Ext	reme test conditions ² :					
	temperature	0°C; +50°C				
	power supply voltage	3 VDC				
Max	kimum rated output power					
	At transmitter permanent externa					
	Effective radiated power (for equi	ipment with integral antenna) (dBm)	< -2			
Tra	nsmitter duty cycle		•			
	Tx on (seconds)		0.025	,		
	Tx off (seconds)		0.075			
Mod	dulation		·			
	Amplitude					
	Frequency					
	Other (specify): ASK (ON OFF KEY	ING)				
Can	the transmitter be operated without m	odulation		yes	~	no
Tra	nsmitter power source					
	Battery	Nominal rated voltage (VDC)				
	Nickel Cadmium		•			
~	Lithium CR 123 A					
	Other					
/	DC	Nominal rated voltage (VDC)	3			
	AC mains	Nominal rated voltage (VAC)				
Is the	ere common power source for transr	mitter and receiver		yes		no
Ante	enna type					
/	Integral					
	External					
Тур	e of antenna jack ³ - NA					
	standard	connector type		Male		Female
	unique	connector type		Male		Female

Document ID: visrad_fcc.14997.doc

² Frequency tolerance test for devices operating in the frequency band 40.66 – 40.70 MHz shall be performed in normal and extreme test conditions.

3 Standard antenna jack use is prohibited excluding devices which must be professionally installed

4 Test results

4.1 Bandwidth of emission according to § 15.231 (c) and RSS-210 § 6.1.1(c)

METHOD OF MEASUREMENT: ANSI 63.4 §13.1.7 DATE: March 6, 2002

RELATIVE HUMIDITY: 50 %
AMBIENT TEMPERATURE: 21 °C
MODULATION: ON
DETECTOR USED: peak

Carrier frequency MHz	Occupied bandwidth, kHz	Reference to plot in Annex A		
314.989	205	A1		
Measurement uncertainty, dB	-5.73 dB/ -5.57 dB			

TEST EQUIPMENT USED:

HL 0465	HL 0521	HL 0604				
---------	---------	---------	--	--	--	--

LIMIT (§ 15.231 (c))

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

For 315 MHz frequency the specified limit is 787.5 kHz

TEST PROCEDURE

The spectrum trace data around transmitter fundamental frequency was obtained with the spectrum analyzer in "Max Hold" mode. The bandwidth value was determined between two points 20 dB down from the modulated carrier.

Document ID: visrad_fcc.14997.doc

4.2 Field strength of fundamental, § 15.231 and RSS-210 § 6.1.1(b)

METHOD OF MEASUREMENT: ANSI 63.4 §13.1.5 DATE: March 6, 2002

RELATIVE HUMIDITY: 50 % AMBIENT TEMPERATURE: 21 °C

SITE DESCRIPTION: Anechoic chamber

MODULATION: ON DETECTOR USED: Peak

	§ 15.231 (b)	§ 15.231 (e)
The EUT complies with the requirements of	Х	

Peak detector

Carrier frequency, MHz	Field strength, dB(μV/m)	Peak limit, dB(μV/m)	Margin, dB	Reference to Plots in Appendix A		
314.9889	86.00	95.62	9.62	A2		
Measurement uncertain	nty, dB	+5.73.dB / -5.57 dB				

Peak detector + Average factor

Carrier frequency, MHz	Field strength, dB(μV/m)	Specified limit, dB(μV/m)	Margin, dB	Reference to Plots in Appendix A
314.9889	73.9	75.62	1.72	A2
Measurement uncertain	nty, dB		+5.73.dB / -5.57 dB	

4.2.1 Average factor calculation, §15.35

Tx ON	Duty cycle	Average factor	Reference to Plots in Appendix A
24.8 ms	24.8/100	-12.1 dB	A3, A4

TEST EQUIPMENT USED:

1EST EQUIFMENT USED.						
0465	0521	0604				

LIMIT § 15.231 (b)

Fundamental frequency (MHz)	Field strength of fundamental (b) (mV/m) @ 3 m
260 – 470	3,750 to 12,500

The specified limit for 315 MHz frequency is 75.62 dB(μ V/m)

TEST PROCEDURE

The EUT was tested, being placed on a wooden 80 cm height turntable in each of three orthogonal planes in turn. To find maximum radiation the turntable was rotated 360° , measuring antenna height was changed from 1 to 4 m, and the antenna polarization was changed from vertical to horizontal.

Document ID: visrad_fcc.14997.doc

4.3 Field strength of spurious radiation, § 15.231 and RSS-210 § 6.1.1(b)

METHOD OF MEASUREMENT: ANSI 63.4 §13.1.4 TEST PERFROMED IN: anechoic chamber DATE: March 12, 2002

RELATIVE HUMIDITY: 54 % AMBIENT TEMPERATURE: 24 °C

TEST PERFORMED AT FIELD STRENGTH: 72.0 dB(μV/m)

MODULATION ON DETECTOR USED: peak

The frequency spectrum was investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below:

X The equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

The equipment operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

Frequency,	Antenna polarization	RBW,	VBW,	Radiated emission,	Limit @ 3 m,	Margin,	Ref. to plot in App. A
MHz		kHz	kHz	dB (μV/m)	dB(μV/m)	dB	
630	V+H	120	300	25.3	55.62	30.32	A5, A6
945	V+H	120	300	32.7	55.62	29.92	A5, A7
1578	V+H	1000	1000	21.42	55.62	24.2	A8
2204	V+H	1000	1000	35.09	55.62	20.53	A9
1000 – 3200	V+H	1000	1000	No spurious	emissions exce were found	pt harmonics	A10
Measurement uncertainty, dB				-5.73 dB/	-5.57 dB		

Notes to table:

RBW: resolution bandwidth VBW: video bandwidth Average factor: -14 dB

TEST EQUIPMENT USED:

LIMIT § 15.231 (b)

Fundamental frequency (MHz)	Field strength of harmonics (b) (mV/m) @ 3 m
260 – 470	375 to 1,250

The specified limit for 315 MHz frequency is 55.62 dB(μV/m)

TEST PROCEDURE

The EUT was tested, being placed on a wooden 80 cm height turntable in each of three orthogonal planes in turn. To find maximum radiation the turntable was rotated 360°, measuring antenna height was changed from 1 to 4 m and the antennas polarization was changed from vertical to horizontal.

Document ID: visrad_fcc.14997.doc

4.4 Unintentional radiated emissions test according to §15.109 and ICES-003

METHOD OF MEASUREMENT: ANSI 63.4 §11.6 / ANSI 63.4 §12.1.4

TEST PERFORMED IN: ANECHOIC CHAMBER

DATE: March 12, 2002

RELATIVE HUMIDITY: 54 % AMBIENT TEMPERATURE: 24 °C DISTANCE BETWEEN ANTENNA AND EUT: 3 m

THE EUT WAS TESTED AS: TABLE-TOP FREQUENCY RANGE: 30 MHz – 2 GHz

DETECTOR TYPE: peak

RESOLUTION BANDWIDTH: 120 kHz below 1 GHz, 1 MHz above 1 GHz

The EUT highest used frequency (not including operating frequency), MHz	Upper frequency of measurement range, MHz
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

Frequency,	Antenna polarization	Antenna height,	Turntable position	Radiated emissions,	Specification limit,	Ref. to plot in App. A
MHz		m	· (°)	dB (μV/m)	dB (μV/m)	
30 - 2000	The limit for unintentional radiated emission, class B was used throughout spurious emission measurements in Tx mode. All emissions except carrier were found below the limit				A2, A8	
Measurement un	certainty, dB			-5.73 dB/ -5.57 dI	3	

Table abbreviations:

Antenna polarization: V = vertical, H = horizontal

Turntable position: 0° = EUT front panel faces the receiving antenna

TEST EQUIPMENT USED:

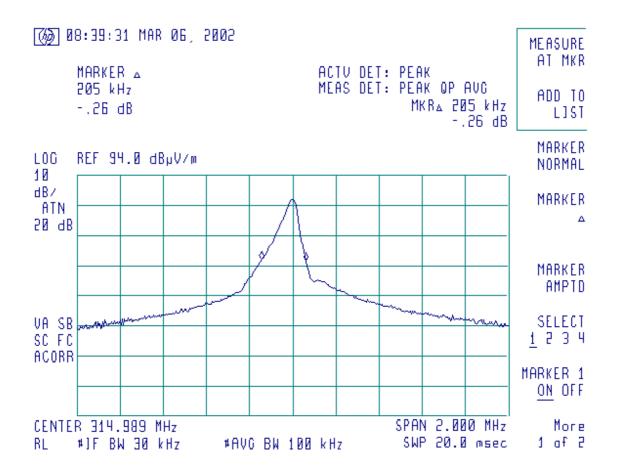
0465	0521	0589	0604			
------	------	------	------	--	--	--

LIMIT (§ 15.109)

Frequency,	Class A equipment @ 10 m	Class B equipment @ 3 m
MHz	dB(μV/m)	dB(μV/m)
30 - 88	39.0	40
88 - 216	43.5	43.5
216 - 960	46.4	46
960 - 5000	49.5	54

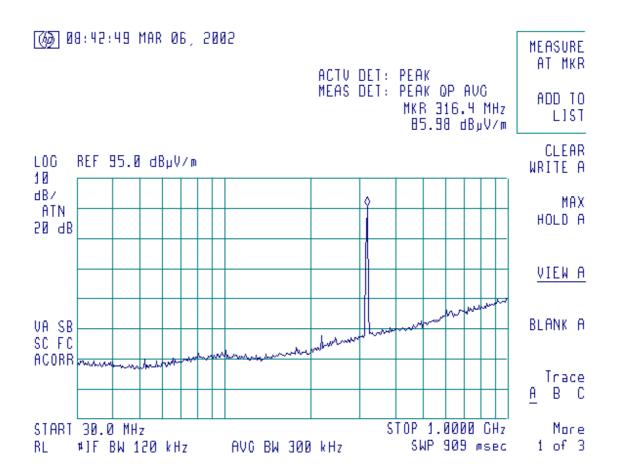
TEST PROCEDURE

The EUT was placed on a wooden 80 cm height turntable. To find maximum radiation the turntable was rotated 360°, measuring antenna height was changed from 1 to 4 m, and the antennas polarization was changed from vertical to horizontal.


Document ID: visrad_fcc.14997.doc

Appendix A - Plots

Plot A1


Occupied bandwidth measurements

Document ID: visrad_fcc.14997.doc

Plot A2
Field strength of fundamental measurements

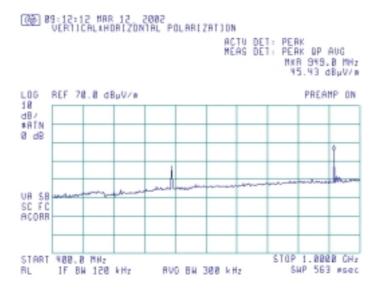
Plot A3


Time period between two successive transmissions

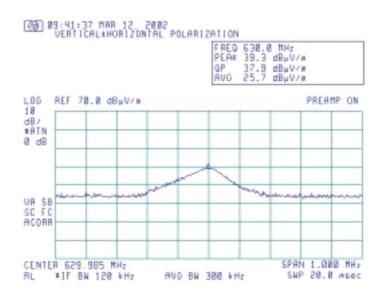
The time period between two successive transmissions is 109 ms.

Plot A4

One transmission duration

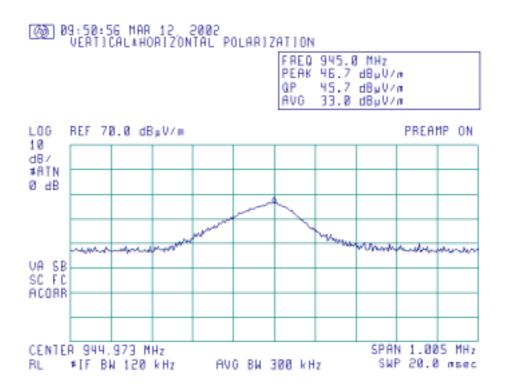

Preamble: 0.2 ms x 12 = 2.4 ms

Time ON = 2.4 ms = 46x0.4 ms + 20x0.2 ms = 2.4 ms + 22.4 ms = 24.8 ms


Document ID: visrad_fcc.14997.doc

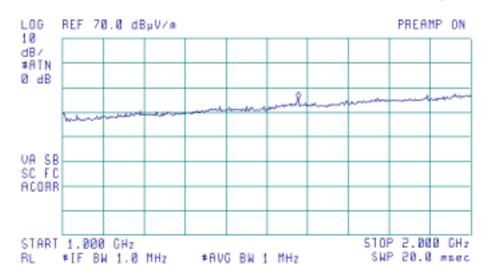
Plot A5

Spurious emission measurements
400 – 1000 MHz frequency ange



Plot A6
Field strength of 2nd harmonic measurements

Plot A7
Field strength of 3rd harmonic measurements



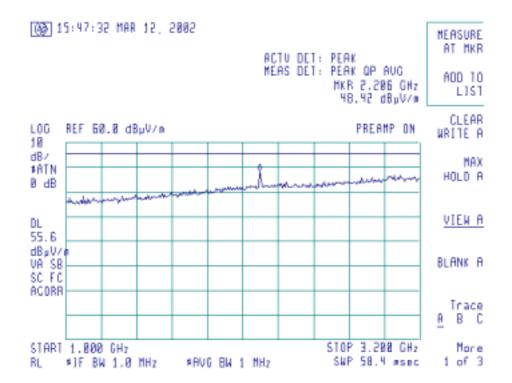
Plot A8

Spurious emission measurements 1 – 2 GHz frequency ange


ACTU DET: PEAK MEAS DET: PEAK OP AUG MKR 1.578 OHz 45.42 dBµV/m

Document ID: visrad_fcc.14997.doc

Plot A9


Field strength of 7th harmonic measurements

Plot A10

Spurious emission measurements
1 – 3.2 GHz frequency ange

Appendix B – Test setup photographs

RADIATED EMISSION MEASUREMENT SETUP

Document ID: visrad_fcc.14997.doc

RADIATED EMISSION MEASUREMENT SETUP

Document ID: visrad_fcc.14997.doc

Appendix C - Test equipment used for tests

HL Serial	Description	Manufacturer information			Due Calibration
No.		Name	Model No.	Serial No.	Month/ year
0041	Double ridged guide antenna, 1-18 GHz	Electro-Metrics	RGA 50/60	2811	8/02
0465	Anechoic Chamber 9 (L) x 6.5 (W) x 5.5 (H) m	Hermon Labs	AC-1	023	3/03
0521	Spectrum Analyzer with RF filter section (EMI Receiver 9 kHz - 6.5 GHz)	Hewlett Packard	8546A	0319	7/02
0589	Cable Coaxial, GORE A2POL118.2, 3m	Hermon Labs	GORE-3	589	11/02
0604	Antenna Biconilog Log-Periodic/T Bow- Tie, 26 - 2000 MHz	EMCO	3141	9611-1011	01/03
1947	Cable 18 GHz, 6.5 m, blue	Rhophase Microwave Ltd	NPS-1803A- 6500-NPS	T4974	10/02

Document ID: visrad_fcc.14997.doc

Appendix D - General information

Test facility description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private EMC, Safety and Telecommunication testing facility. Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47) and by Industry Canada for electromagnetic emissions (file numbers IC 2186-1 for OATS and IC 2186-2 for anechoic chamber), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, C-845 for conducted emissions site), assessed by TNO Certification EP&S (Netherlands) for a number of EMC, Telecommunications, Safety standards, and by AMTAC (UK) for safety of Medical Devices. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for Electromagnetic Compatibility, Product Safety, Telecommunications Testing and Environmental Simulation (for exact scope please refer to Certificate No. 839.01).

Address: PO Box 23, Binyamina 30550, Israel.

Telephone: +972 4628 8001 Fax: +972 4628 8277 e-mail mail@hermonlabs.com

Person for contact: Mr. Alex Usoskin, QA manager.

Abbreviations and acronyms

The following abbreviations and acronyms are applicable to this test report:

AC alternating current
AE auxiliary equipment

cm centimeter dB decibel

 $\begin{array}{ll} \text{dBm} & \text{decibel referred to one milliwatt} \\ \text{dB}(\mu V) & \text{decibel referred to one microvolt} \end{array}$

 $dB(\mu V/m)$ decibel referred to one microvolt per meter

EMC electromagnetic compatibility

EUT equipment under test

GHz gigahertz
H height
Hz hertz
kHz kilohertz
kV kilovolt
L length

LISN line impedance stabilization network

m meter
MHz megahertz
NA not applicable
QP quasi-peak
RF radio frequency
RE radiated emission
rms root mean square

s second V volt W width

Specification references

47CFR part 15: 2001 Radio Frequency Devices

ANSI C63.2:96 American National Standard for Instrumentation-Electromagnetic Noise and

Field Strength, 10 kHz to 40 GHz-Specifications.

ANSI C63.4:92 American National Standard for Methods of Measurement of Radio-Noise

Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of

9 kHz to 40 GHz.

Document ID: visrad_fcc.14997.doc

FCC Equipment codes and descriptions

	•
CYY	Communications Receiver used w/ P.15 transmitter
DCD	Part 15 Low Power transmitter Below 1705 kHz
DSC	Part 15 Security/Remote Control Transmitter
DSR	Part 15 Remote Control/Security Device Transceiver
DSS	Part 15 Spread Spectrum Transmitter
DXX	Part 15 Low Power Communication Device Transmitter
EAV	Part 15 Automatic Vehicle Identification System
ETB	Part 15 Cordless Telephone Base Transceiver
ETR	Part 15 Cordless Telephone Remote Transceiver
ETS	Part 15 Cordless telephone system
FAP	Part 15 Anti-Pilferage Device
FDS	Part 15 Field Disturbance Sensor
GAT	Part 15 Auditory Assistance Device (Transmitter)
HID	Part 15 TV Interface Device
JBC	Part 15 Class B Computing Device/ Personal Computer
JBP	Part 15 Class B Computing Device Peripheral
PUB	Part 15 Unlicensed PCS base station
PUE	Part 15 Unlicensed PCS portable Tx held to ear
PUF	Part 15 Unlicensed PCS portable Tx held to face
PUT	Part 15 Unlicensed PCS portable Tx worn on body

Document ID: visrad_fcc.14997.doc