Date: September, 1999
Total: 24 pages
FCC ID: GSAK980W

### **ELECTROMAGNETIC EMISSIONS TEST REPORT**

ACCORDING TO FCC PART 15, SUBPART C, §15.231

# FOR VISONIC Ltd.

EQUIPMENT UNDER TEST
WIRELESS PIR MOTION DETECTOR,
models K-980W and LEGACY

Prepared by: \_\_\_\_\_

Mrs. M. Cherniavsky, certif. engineer Hermon Labs

Hermon Lab

Approved by: \_\_\_\_\_

Mr. A. Usoskin, QA manager

**Hermon Labs** 

Approved by:

Dr. E. Usoskin, C.E.O.

**Hermon Labs** 

Approved by:

Mr. Arick Elshtein, technical support manager

Visonic Ltd.

Hermon Laboratories Ltd. P.O.Box 23 Binyamina 30550, Israel Tel.+972-6628-8001 Fax.+972-6628-8277 Email:hermon@Netvision.net.il





#### Description of equipment under test

Test items Remote control transmitter, FCC ID:GSAK980W

Manufacturer Visonic Ltd.
Trade Mark Visonic Ltd.
Type (Model) K980W, LEGACY
Serial number 81083104

#### **Applicant information**

Applicant's representative &

responsible person Mr. Arick Elshtein,

technical support manager

Company Visonic Ltd.
Address 30 Habarzel St.

P.O. Box 22020
Postal code 61220
City Tel Aviv
Country Israel

Telephone number +972 3645 6714

Telefax number +972 3645 6789

#### **Test performance**

Project Number 13508

Location of the test Hermon Laboratories, Binyamina, Israel

Test started June 27, 1999 Test completed June 27, 1999

Purpose of test The EUT certification in accordance with

CFR 47, part 2, §2.1033

Test specification(s) FCC part 15 subpart C §15.231, §15.209

subpart B, §15.109

The A2LA logo endorsement applies only to the test methods and the standards that are listed in the scope of Hermon Laboratories accreditation by A2LA.

Through this report a point is used as decimal separator while thousands are separated by comma.

This report is in conformity with EN 45001 and ISO GUIDE 25.

The test results relate only to the items tested.

This test report must not be reproduced in any form except in full, with the approval of Hermon Labs Ltd.



## **Table of Contents**

| 1 | GE    | NERAL INFORMATION                                                      | 4  |
|---|-------|------------------------------------------------------------------------|----|
|   | 1.1   | ABBREVIATIONS AND ACRONYMS                                             | 4  |
|   | 1.2   | SPECIFICATION REFERENCES                                               | 5  |
|   | 1.3   | EUT DESCRIPTION                                                        | 5  |
| 2 | TES   | T FACILITY DESCRIPTION                                                 | 6  |
|   | 2.1   | GENERAL                                                                | 6  |
|   | 2.2   | EQUIPMENT CALIBRATION.                                                 |    |
|   | 2.2.  | Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements | 6  |
|   | 2.3   | LABORATORY PERSONNEL                                                   | 7  |
|   | 2.4   | STATEMENT OF QUALIFICATION                                             | 7  |
| 3 | RAI   | DIATED EMISSION MEASUREMENTS                                           | 8  |
|   | 3.1   | FIELD STRENGTH OF EMISSIONS ACCORDING TO § 15.231 (B)                  | 8  |
|   | 3.1.  | Specified limits at 3 m distance                                       | 8  |
|   | 3.1.2 | · · · · · · · · · · · · · · · · · ·                                    |    |
|   | 3.2   | BANDWIDTH OF EMISSION ACCORDING TO § 15.231 (C)                        | 10 |
|   | 3.2.  | l Specified limits                                                     | 10 |
|   | 3.2.2 | 2 Test procedure and results                                           | 10 |
|   | 3.3   | PERIODIC OPERATION REQUIREMENT §15.231(A)(2)                           | 10 |
|   | 3.4   | Unintentional radiated emissions test according to §15.109             | 10 |
|   | 3.4.  | l Definition of the test                                               | 10 |
|   | 3.4.2 |                                                                        |    |
| 4 | SUN   | MARY AND SIGNATURES                                                    | 10 |
| A | PPENI | DIX A - TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS                  | 10 |
| A | PPENI | DIX B-TEST EQUIPMENT CORRECTION FACTORS                                | 10 |



#### 1 General information

#### 1.1 Abbreviations and acronyms

The following abbreviations and acronyms are applicable to this test report:

AM amplitude modulation AVRG average (detector)

BW bandwidth dB decibel

 $\begin{array}{ll} \text{dBm} & \text{decibel referred to one milliwatt} \\ \text{dB}(\mu\text{V}) & \text{decibel referred to one microvolt} \end{array}$ 

 $dB(\mu V/m)$  decibel referred to one microvolt per meter

DC direct current

EMC electromagnetic compatibility

EUT equipment under test

GHz gigahertz H height

HL Hermon Laboratories

Hz hertz

IF intermediate frequency

kHz kilohertz
L length
m meter
mm millimeter
MHz megahertz
msec millisecond
NA not applicable

NARTE National Association of Radio and Telecommunications Engineers, Inc.

PIR passive infra-red
QP quasi-peak (detector)
RBW resolution bandwidth
RF radio frequency
RE radiated emission

V volt W watt



#### 1.2 Specification references

CFR 47 part 15: Radio Frequency Devices.

October 1998

ANSI C63.2:06/1987 American National Standard for Instrumentation-

Electromagnetic Noise and Field Strength, 10 kHz to 40

GHz-Specifications.

ANSI C63.4:1992 American National Standard for Methods of

Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the

Range of 9 kHz to 40 GHz.

#### 1.3 EUT description

The EUT is a microprocessor controlled, wireless PIR motion detector that incorporates an on-board miniature transmitter operating at 315 MHz frequency, AM, on/off keying. Two detector models LEGACY and K980W are identical except of the optical lens.

Following detection, the EUT activates the transmitter for 2 seconds, then disarms itself to save battery power. The detector rearms itself (reverts to the ready state) automatically 2 minutes after the last movement has been detected. A TEST/NORMAL selector is used to override the 2-minute rearm timer during walk testing.

The EUT is supplied with built-in internal antenna and is powered by 9 V internal lithium or alkaline battery.



## 2 Test facility description

#### 2.1 General

Tests were performed at Hermon Laboratories, which is a fully independent, , private EMC, Safety and Telecommunication testing facility. Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47), listed by Industry Canada for radiated measurements (file numbers IC 2186-1 for OATS and IC 2186-2 for anechoic chamber), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-809 for anechoic chamber, C-845 for conducted emissions site), assessed by NMi Certin B.V. (Netherlands) for a number of EMC, Telecommunications and Safety standards, and Accredited by AMTAC (UK) for safety of Medical Devices. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO GUIDE 25/EN 45001 for EMC, Telecommunications and Product Safety Information Technology Equipment (Certificate No. 839.01).

Address: PO Box 23, Binyamina 30550, Israel

Telephone: +972 6628 8001 Fax: +9726628 8277

Person for contact: Mr. Alex Usoskin, testing and QA manager.

#### 2.2 Equipment calibration

The test equipment has been calibrated according to its recommended procedures and is within the manufacturer's published limit of error. The standards and instruments used in the calibration system conform to the present requirements of MIL-STD-45662A.

The laboratory standards are calibrated by the third party (traceable to NIST, USA) on a regular basis according to equipment manufacturer requirements.

#### 2.2.1 Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

| Conducted emissions with LISN                                             | 9 kHz to 30 MHz: ± 2.1 dB                                                       |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Radiated emissions in the open field test site at 10 m measuring distance | Biconilog antenna: ±3.2 dB Log periodic antenna: ±3 dB Biconical antenna: ±4 dB |
| Radiated emissions in the anechoic chamber at 3 m measuring distance      | Biconilog antenna: ±3.2 dB  Double ridged guide antenna: ±2.36 dB               |

Date: September, 1999 FCC ID: GSAK980W

211

#### 2.3 Laboratory personnel

The three people of Hermon Laboratories that have participated in measurements and documentation preparation are: Dr. Edward Usoskin - C.E.O., Mrs. Eleonora Pitt, test engineer and Mrs. Marina Cherniavsky - certification engineer.

Dr. E. Usoskin is an EMC specialist, E. Pitt is an EMC accredited test laboratory engineer and M. Cherniavsky is a telecommunication engineer certified by the National Association of Radio and Telecommunications Engineers (NARTE, USA.).

The Hermon Laboratories' personnel that participated in this project have more than 100 years combined experience time in EMC measurements and electronic products design.

#### 2.4 Statement of qualification

The test measurement data supplied in this test measurement report having been received by me, is hereby duly certified. The following is a statement of my qualifications:

I am an engineer, graduated from university in 1974 with an MScEE degree and certified by NARTE as an EMC accredited test laboratory engineer, the certificate no. is ATL-0006-E. I have obtained 26 years experience in EMC measurements and have been with Hermon Laboratories since 1991.

| Name: Mrs. Eleonora Pitt | Signature: _/ | Mt        |    |
|--------------------------|---------------|-----------|----|
| Position: test engineer  | Date:         | September | 6, |
| 1999                     |               | ·         |    |

I hereby certify that this test measurement report was prepared by me and is hereby duly certified. The following is a statement of my qualifications.

I am an engineer, graduated from university in 1971, with an MScEE degree, have obtained 26years experience in electronic products design and development, have been with Hermon Laboratories since 1991. Also, I am a telecommunication class II engineer certified by the National Association of Radio and Telecommunications Engineers, Inc. (USA.), the certificate no. is E2-03410.

| Name: Mrs. Marina Cherniavsky | Signature: Co | un -      |    |
|-------------------------------|---------------|-----------|----|
| Position: certif. engineer    | Date:         | September | 6, |
| 1999                          |               |           |    |

I hereby certify that this test measurement report was prepared under my direction and that to the best of my knowledge and belief, the facts set in the report and accompanying technical data are true and correct.

The following is a statement of my qualifications.

I have a Ph.D. degree in electronics, have obtained more than 42 years of experience in EMC measurements and electronic product design and have been with Hermon Laboratories since 1986.

Also, I am an EMC engineer certified by the National Association of Radio and Telecommunications Engineers, Inc. (USA). The certificate no. is EMC-000623-NE, Senior Member.

Name: Dr. Edward Usoskin

Position: C.E.O.

Signature:
Date:

September 6, 1999



#### 3 Radiated emission measurements

#### 3.1 Field strength of emissions according to § 15.231 (b)

#### 3.1.1 Specified limits at 3 m distance

| Fundamental frequency | Field strength of fundamental | Field strength of spurious emissions |
|-----------------------|-------------------------------|--------------------------------------|
| MHz                   | dB (μV/m)                     | dB (μV/m)                            |
| 315                   | 75.6                          | 55.6                                 |

#### 3.1.2 Test procedure and results

The test was performed in the anechoic chamber at 3 meters test distance, i.e. the distance between measuring antenna and EUT boundary. The EUT was placed on the wooden turntable, as shown in Figure 3.1 and operated in continuous transmitting mode. All the transmitter modes of operation were tested. The frequency range from 30 MHz up to 10<sup>th</sup> harmonic was investigated.

Biconilog and double ridged guide antennas were used. To find maximum radiation the turntable was rotated 360°, measuring antenna height was changed from 1 to 4 m, and the antennas polarization was changed from vertical to horizontal.

The peak detector with RBW = 120 kHz at frequencies below 1 GHz and RBW = VBW = 1 MHz above 1 GHz was used in course of measurements.

The EUT has met the average emission requirements. The peak emission limitation of §15.35 were also met.

The test results are recorded into Table 3.1. Average factor is equal to

20 log {( $T_{on} x duty cycle$ )/100} = 20 log {(50 x 0.5)/100} = -12 dB, where

- 1)  $T_{on}$  = 50 msec, pulse train duration within 100 msec is 50 msec, as shown in Plots 3.1.1 to 3.1.2
- 2) duty cycle is 0.5, as shown in Plots 3.1.3 to 3.1.4.

#### Reference numbers of test equipment used

| HL 0041 | HL 0275 | HL 0465 | HL 0521 | HL 0593 | HL 0594 | HL 0604 |
|---------|---------|---------|---------|---------|---------|---------|
| HL 0815 | HL 0816 |         |         |         |         |         |

Full description is given in Appendix A.



#### Table 3.1

# Radiated emission measurements - test results (Field strength of fundamental frequency and spurious)

TEST SPECIFICATION: FCC part 15 subpart C § 15.231

DATE: June 27, 1999

RELATIVE HUMIDITY: 51% AMBIENT TEMPERATURE: 24°C

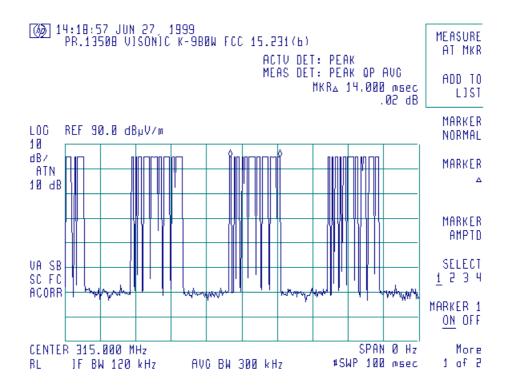
#### MEASUREMENTS PERFORMED AT 3 METRES DISTANCE

| Frequency | Measured result, | RWB   | Calculated radiated  | Peak limit | Peak limit<br>margin | Average<br>limit | Average<br>limit margin | Pass/<br>Fail |
|-----------|------------------|-------|----------------------|------------|----------------------|------------------|-------------------------|---------------|
|           | peak             |       | emission,<br>average |            |                      |                  |                         |               |
| MHz       | dB (μV/m)        | MHz   | dB (μV/m)            | dB (μV/m)  | dB                   | dB (μV/m)        | dB                      |               |
| 315.000   | 84.95            | 0.120 | 72.95                | 95.6       | 10.65                | 75.6             | 2.65                    | Pass          |
| 630.030   | 39.5             | 0.120 | 27.5                 | 75.6       | 36.1                 | 55.6             | 28.1                    | Pass          |
| 945.000   | 48.9             | 0.120 | 36.9                 | 75.6       | 26.7                 | 55.6             | 18.7                    | Pass          |
| 1260.00   | 46.5             | 1     | 34.5                 | 75.6       | 29.1                 | 55.6             | 21.1                    | Pass          |
| 1575.00   | 46.5             | 1     | 34.5                 | 75.6       | 29.1                 | 55.6             | 21.1                    | Pass          |
| 1890.00   | 56.7             | 1     | 44.7                 | 75.6       | 18.9                 | 55.6             | 10.9                    | Pass          |

#### Notes to table:

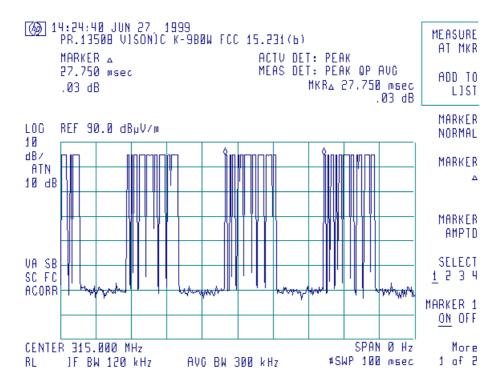
Peak detector was used.

Calculated radiated emission  $dB(\mu V/m) = peak$  measured result  $dB(\mu V/m) + average$  factor (dB).


Average factor = -12 dB

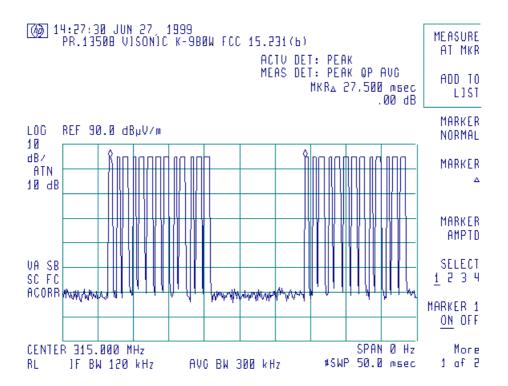
Average limit is in accordance with § 15.231(b), peak limit = average limit  $dB(\mu V/m) + 20 dB$ Average limit margin = average limit  $dB(\mu V/m) - calculated$  radiated emission  $dB(\mu V/m)$ .

Peak limit margin = peak limit  $dB(\mu V/m)$  – peak measured result  $dB(\mu V/m)$ .




Plot 3.1.1
Pulse duration measurement results






Plot 3.1.2
Pulse duration measurement results





Plot 3.1.3
Pulse duration measurement results





Plot 3.1.4

Duty cycle measurement results

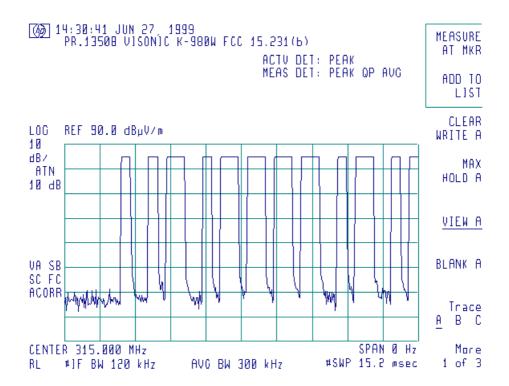
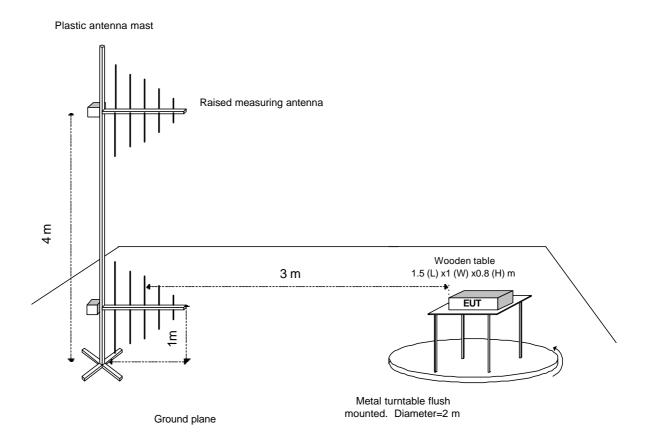






Figure 3.1 Radiated emission test setup





#### 3.2 Bandwidth of emission according to § 15.231 (c)

#### 3.2.1 Specified limits

The bandwidth of the emissions shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz.

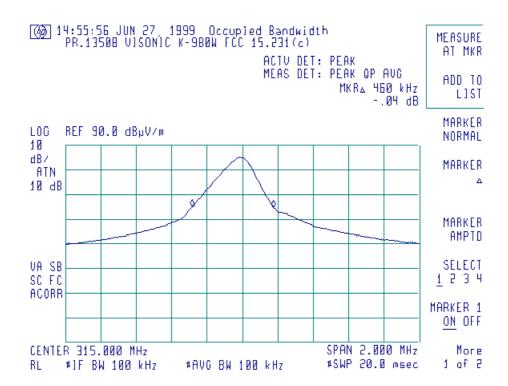
#### 3.2.2 Test procedure and results

The maximum allowed occupied bandwidth was calculated as 0.0025 of the center frequency:

 $0.0025 \times 315 \text{ MHz} = 787.5 \text{ kHz}$ 

The spectrum trace data around transmitter fundamental frequency was obtained with the spectrum analyzer in "Max Hold" mode. The bandwidth value was determined between two points 20 dB down from the modulated carrier. The occupied bandwidth of 460 kHz was measured which is narrower than required 787.5 kHz.

The test results are shown in Plot 3.2.1.


#### Reference numbers of test equipment used

| HL 0275 | HL 0465 | HL 0521 | HL 0593 | HL 0594 | HL 0604 | HL 0815 |
|---------|---------|---------|---------|---------|---------|---------|
| HL 0816 |         |         |         |         |         |         |

Full description is given in Appendix A.



Plot 3.2.1 Emission bandwidth measurement results Occupied bandwidth = 460 kHz





## 3.3 Periodic operation requirement §15.231(a)(2)

Following detection, the EUT activates the transmitter for 2 seconds, then disarms itself to save battery power. The detector rearms itself (reverts to the ready state) automatically 2 minutes after the last movement has been detected.

The software of the controller will stop transmission in any case after 2 seconds maximum.



#### 3.4 Unintentional radiated emissions test according to §15.109

#### 3.4.1 Definition of the test

This test was performed to measure radiated emissions from the incorporated digital device of the EUT and also to verify the EUT full compliance with §15.109.

#### 3.4.2 The test set-up configuration

The radiated emissions measurements of the EUT incorporated digital device were performed in the anechoic chamber at 3 meters measuring distance in the frequency range from 30 MHz to 2 GHz. The EUT was placed on the wooden table as shown in Figure 3.1. The biconilog antenna was used. To find maximum radiation the turntable was rotated 360°, the measuring antenna height changed from 1 to 4 m and the antennas polarization was changed from vertical to horizontal.

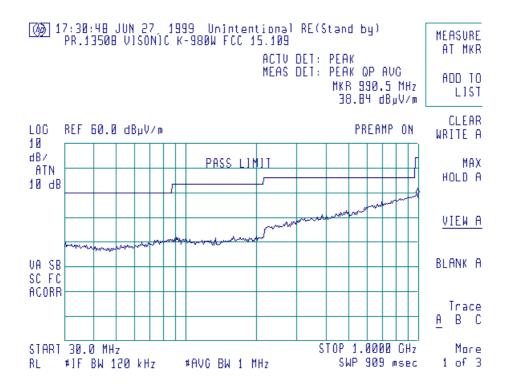
The measurements were performed with the EMI receiver settings:

from 30 MHz to 1 GHz RBW=120 kHz, peak detector;

from 1 GHz up to 2 GHz RBW = VBW = 1 MHz, peak detector.

The results of measurements are shown in Plots 3.4.1, 3.4.2. All the found emissions were at least 15 dB below specified limit.

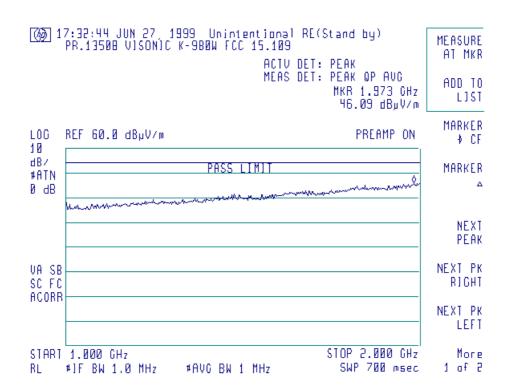
#### Reference numbers of test equipment used


| HL 0275 | HL 0465 | HL 0521 | HL 0593 | HL 0594 | HL 0604 | HL 0815 |
|---------|---------|---------|---------|---------|---------|---------|
| HL 0816 |         |         |         |         |         |         |

Full description is given in Appendix A.



Plot 3.4.1


Test specification: §15.109, §15.209 Radiated emissions of digital incorporated device





Plot 3.4.2

Test specification: §15.109, §15.209 Radiated emissions of digital incorporated device





## 4 Summary and signatures

The transmitter, FCC ID:GSAK980W, was found to be in compliance with the requirements of FCC part 15 subpart C §§ 15.231, 15.209 and subpart B §15.109.

#### Test performed by:

Mrs. Eleonora Pitt, test engineer

# Kit

#### Approved by:

Dr. Edward Usoskin, C.E.O.

# Moore-

#### Responsible person from Visonic Ltd.

Mr. Arick Elshtein, technical support manager





## **APPENDIX A - Test equipment and ancillaries used for tests**

| HL<br>Serial<br>No. | Serial<br>No. | Description                                                                   | Manufacturer    | Model No. | Due<br>Calibr. |
|---------------------|---------------|-------------------------------------------------------------------------------|-----------------|-----------|----------------|
| 0041                | 2811          | Double Ridged Guide<br>Antenna, 1-18 GHz                                      | Electro-Metrics | RGA 50/60 | 8/00           |
| 0275                | 040           | Table non-metallic,<br>1.5 x 1.0 x 0.8 m                                      | Hermon Labs     | WT-1      | 3/00<br>check  |
| 0465                | 023           | Anechoic Chamber<br>9 (L) x 6.5 (W) x 5.5 (H) m                               | Hermon Labs     | AC-1      | 10/99          |
| 0521                | 0319          | Spectrum Analyzer with<br>RF filter section (EMI<br>Receiver 9 kHz – 6.5 GHz) | Hewlett Packard | 8546A     | 7/00           |
| 0593                | 101           | Antenna Mast, 1-4 m/<br>1-6 m, pneumatic                                      | Hermon Labs     | AM-F1     | 4/00<br>check  |
| 0594                | 102           | Turntable for Anechoic<br>Chamber, flush mounted,<br>d=1.2 m, pneumatic       | Hermon Labs     | WDC1      | 11/99<br>check |
| 0604                | 1011          | Antenna Log-Periodic/T<br>Bow-Tie, 26 – 2000 MHz                              | EMCO            | 3141      | 12/99          |
| 0815                | 151           | Cable, coax, RG-214,<br>7.3 m, N-type connectors,<br>inside anechoic chamber  | Hermon Labs     | C214-7    | 8/00           |
| 0816                | 152           | Cable, coax, RG-214,<br>8 m, N-type connectors,<br>outside anechoic chamber   | Hermon Labs     | C214-8    | 8/00           |



# APPENDIX B-Test equipment correction factors Antenna factor at 3m calibration

Biconilog antenna EMCO, model 3141, Ser.No.1011

|                   | Biconilog antenna EWICO,   | 1110001 0141, 00111011 | 011                        |
|-------------------|----------------------------|------------------------|----------------------------|
| Frequency,<br>MHz | Antenna factor,<br>dB(1/m) | Frequency,<br>MHz      | Antenna factor,<br>dB(1/m) |
| 28                | 7.8                        | 960                    | 24.1                       |
| 30                | 7.8                        | 980                    | 24.5                       |
| 40                | 7.2                        | 1000                   | 24.9                       |
| 60                | 7.1                        | 1020                   | 25.0                       |
| 70                | 8.5                        | 1040                   | 25.2                       |
| 80                | 9.4                        | 1060                   | 25.4                       |
| 90                | 9.8                        | 1080                   | 25.6                       |
| 100               | 9.7                        | 1100                   | 25.7                       |
| 110               | 9.3                        | 1120                   | 26.0                       |
| 120               | 8.8                        | 1140                   | 26.4                       |
| 130               | 8.7                        | 1160                   | 27.0                       |
| 140               | 9.2                        | 1180                   | 27.0                       |
| 150               | 9.8                        | 1200                   | 26.7                       |
| 160               | 10.2                       | 1220                   | 26.5                       |
| 170               | 10.4                       | 1240                   | 26.5                       |
| 180               | 10.4                       | 1260                   | 26.5                       |
| 190               | 10.3                       | 1280                   | 26.6                       |
| 200               | 10.6                       | 1300                   | 27.0                       |
| 220               | 11.6                       | 1320                   | 27.8                       |
| 240               | 12.4                       | 1340                   | 28.3                       |
| 260               | 12.8                       | 1360                   | 28.2                       |
| 280               | 13.7                       | 1380                   | 27.9                       |
| 300               | 14.7                       | 1400                   | 27.9                       |
| 320               | 15.2                       | 1420                   | 27.9                       |
| 340               | 15.4                       | 1440                   | 27.8                       |
| 360               | 16.1                       | 1460                   | 27.8                       |
| 380               | 16.4                       | 1480                   | 28.0                       |
| 400               | 16.6                       | 1500                   | 28.5                       |
| 420               | 16.7                       | 1520                   | 28.9                       |
| 440               | 17.0                       | 1540                   | 29.6                       |
|                   | 17.7                       | 1560                   | 29.8                       |
| 460<br>480        | 18.1                       | 1580                   | 29.6                       |
|                   |                            |                        |                            |
| 500<br>520        | 18.5<br>19.1               | 1600<br>1620           | 29.5<br>29.3               |
|                   | 19.5                       | 1640                   |                            |
| 540<br>560        | 19.5                       | 1660                   | 29.2<br>29.4               |
|                   |                            |                        |                            |
| 580<br>600        | 20.6                       | 1680<br>1700           | 29.6<br>29.8               |
| 620               | 21.5                       | 1700                   | 30.3                       |
|                   | 21.5                       |                        |                            |
| 640               |                            | 1740                   | 30.8                       |
| 660               | 21.4                       | 1760                   | 31.1                       |
| 680               | 21.9                       | 1780                   | 31.0                       |
| 700               | 22.2                       | 1800                   | 30.9                       |
| 720               | 22.2                       | 1820                   | 30.7                       |
| 740               | 22.1                       | 1840                   | 30.6                       |
| 760               | 22.3                       | 1860                   | 30.6                       |
| 780               | 22.6                       | 1880                   | 30.6                       |
| 800               | 22.7                       | 1900                   | 30.6                       |
| 820               | 22.9                       | 1920                   | 30.7                       |
| 840               | 23.1                       | 1940                   | 30.9                       |
| 860               | 23.4                       | 1960                   | 31.2                       |
| 880               | 23.8                       | 1980                   | 31.6                       |
| 900               | 24.1                       | 2000                   | 32.0                       |
| 920               | 24.1                       |                        |                            |

Antenna factor is to be added to receiver meter reading in  $dB(\mu V)$  to convert to field intensity in  $dB(\mu V/meter)$ .



# Antenna factor Double ridged guide antenna Electro-Metrics, model RGA-50/60 Ser.No.2811

| Frequency, | Antenna factor, |
|------------|-----------------|
| MHz        | dB(1/m)         |
| 1000       | 24.3            |
| 1500       | 25.4            |
| 2000       | 28.4            |
| 2500       | 29.2            |
| 3000       | 30.5            |
| 3500       | 31.6            |
| 4000       | 33.7            |
| 4500       | 32.2            |
| 5000       | 34.5            |
| 5500       | 34.5            |
| 6000       | 34.6            |
| 6500       | 35.3            |
| 7000       | 35.5            |
| 7500       | 35.9            |
| 8000       | 36.6            |
| 8500       | 37.3            |
| 9000       | 37.7            |
| 9500       | 37.7            |
| 10,000     | 38.2            |
| 10,500     | 38.5            |
| 11,000     | 39.0            |
| 11,500     | 40.1            |
| 12,000     | 40.2            |
| 12,500     | 39.3            |
| 13,000     | 39.9            |
| 13,500     | 40.6            |
| 14,000     | 41.1            |
| 14,500     | 40.5            |
| 15,000     | 39.9            |
| 15,500     | 37.8            |
| 16,000     | 39.1            |
| 16,500     | 41.1            |
| 17,000     | 41.7            |
| 17,500     | 45.1            |
| 18,000     | 44.3            |

Antenna factor dB(1/m) is to be added to receiver meter reading in dB( $\mu$ V) to convert it into field intensity in dB( $\mu$ V/meter)