

Hermon Laboratories Ltd. P.O.Box 23 Binyamina 30550, Israel Tel.+972 66288001 Fax.+972 66288277

e-mail: mail@hermonlabs.com

RADIO TEST REPORT

ACCORDING TO 47 CFR Part 15 SUBPART C §15.231, §15.205, §15.209 and SUBPART B; RSS-210 Issue 5:2001; ICES-003 Issue 3:1997 for

VISONIC Ltd.

EQUIPMENT UNDER TEST:

Pet immune wireless detector Model: K-980MCW @ 315 MHz

This report is in conformity with ISO/IEC 17025. The A2LA logo endorsement applies only to the test methods and the standards that are listed in the scope of Hermon Laboratories accreditation.

The test results relate only to the items tested. This test report must not be reproduced in any form except in full with the approval of Hermon Laboratories Ltd.

Document ID: visrad_fcc.15174.doc

Contents

CONT	ENTS	2
1 PI	PROJECT INFORMATION	3
2 SI	SUMMARY OF TESTS AND REQUIREMENTS	4
3 E	UT DESCRIPTION	6
3.1	GENERAL DESCRIPTION	6
3.2	EUT TEST CONFIGURATION	6
3.3	Transmitter description	7
4 TI	EST RESULTS	8
4.1	BANDWIDTH OF EMISSION ACCORDING TO § 15.231 (C) AND RSS-210 § 6.1.1(C)	8
4.2	FIELD STRENGTH OF FUNDAMENTAL, § 15.231 AND RSS-210 § 6.1.1(B)	9
4.3	FIELD STRENGTH OF SPURIOUS RADIATION, § 15.231 AND RSS-210 § 6.1.1(B)	10
4.4	Unintentional radiated emissions test according to §15.109 and ICES-003	11
APPEN	NDIX A - PLOTS	12
APPEN	NDIX B – TEST SETUP PHOTOGRAPHS	27
APPEN	NDIX C - TEST EQUIPMENT USED FOR TESTS	30
APPEN	NDIX E TEST EQUIPMENT CORRECTION FACTORS	31
APPEN	NDIX E - GENERAL INFORMATION	37
TEST	T FACILITY DESCRIPTION	37
Аввя	REVIATIONS AND ACRONYMS	37
Spec	CIFICATION REFERENCES	37
FCC	C EQUIPMENT CODES AND DESCRIPTIONS	38

1 Project information

Description of equipment under test

Test items : Pet immune wireless detector

Manufacturer : Visonic Ltd.
Brand name : K-980MCW
Equipment serial number : Cat No 0-3637-1
Types (Models) : K-980MCW @ 315 MHz

Equipment FCC code¹ : DSC

Applicant information

Applicant's responsible person : Mr. Arick Elshtein, project manager

Company : Visonic Ltd. Address : 27 Habarzel Street

Postal code : 69710
City : Tel Aviv
Country : Israel

Telephone number : +972 3 6456714 Telefax number : +972 3 6456891

Test performance

Project Number: : 15174

Location : Hermon Laboratories

Receipt date : July 1, 2002 Test performed : July 11, 2002

Purpose of test : Apparatus compliance verification in accordance with emission requirements

Test specification(s) : 47CFR Part 15, subpart C, §15.231, §15.205, §15.209, and

subpart B §15.109; RSS-210 Issue 5: 2001 and ICES-003 Issue 3: 1997

Document ID: visrad_fcc.15174.doc

¹ FCC Equipment codes – see Appendix D

Hermon Laboratories Ltd. P.O.Box 23 Binyamina 30550, Israel Tel.+972 66288001 Fax.+972 66288277

e-mail: mail@hermonlabs.com

2 Summary of tests and requirements

Parameter	Subclause	С	NC	NT	NA	Tested by	Date tested	Remarks
Transmitter characteristics, §15.231								
Periodic operation	15.231(a)	Х				Refer to Installation instructions		
Bandwidth of emission	15.231(c)	Х				Mrs. E. Pitt, test engineer	July 8, 2002	
Field strength of fundamental	15.231(b)(2)	Х				Mr. M. Feldman, test engineer	July 1, 2002	
Field strength of spurious radiation	15.231(b)(3)	Х				Mrs. E. Pitt, test engineer	July 11, 2002	
Unintentional radiation, §15.107, §15.109								
Conducted emissions	15.107				X			
Radiated emissions	15.109	Х				Mrs. E. Pitt, test engineer	July 11, 2002	
General conditions under §15.231, Periodic operation in the	e band 40.66 - 40	.70 MHz	and abo	ve 70 M	Hz			
The intentional radiator does not operate in the restricted bands of operation.	15.205	X						
The intentional radiator has permanently attached antenna or antenna that uses a unique coupling to the intentional radiator.	15.203	Х				Refer to Installation instructions		
No antenna other than that furnished by the responsible party can be used with the device.	15.203				Х			
The intentional radiator has no standard antenna jack or electrical connector.	15.203				Х	This requirement does not apply to intentional radiators that must be professionally installed		
The intentional radiator must be professionally installed.	15.203				Х			
The Intentional radiator operates at 315 MHz.	15.231 (a)	Х						
Intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc.	15.231 (a)	Х				Refer to Installation	n instructions	
Radio control of toys is not permitted.	15.231 (a)	Х				Refer to Installatio	n instructions	

Document ID: visrad_fcc.15174.doc

Hermon Laboratories Ltd. P.O.Box 23 Binyamina 30550, Israel Tel.+972 66288001 Fax. +972 66288277

e-mail: mail@hermonlabs.com

Parameter	Subclause	С	NC	NT	NA	Tested by	Date tested	Remarks
Continuous transmissions, such as voice or video, and data transmissions are not permitted.	15.231 (a)	Х				Refer to Installation instructions		
A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.	15.231 (a) (1)				Х			
A transmitter activated automatically shall cease transmission within 5 seconds after activation.	15.231 (a) (2)	Х				Refer to Installation instructions		
Periodic transmissions at regular predetermined intervals are not permitted.	15.231 (a) (3)	Х				Refer to Installation instructions		
The intentional radiator polling or supervision transmissions to determine system integrity of transmitters used in security or safety applications are allowed if the periodic rate of transmission does not exceed one transmission of not more than one second duration per hour for each transmitter.	15.231 (a) (3)	Х				Refer to Installation instructions		
The intentional radiators, employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.	15.231 (a) (4)	Х				Refer to Installation	instructions	

NC: The parameter is not compliant with the requirements.

NT: The parameter is not tested.

NA: The test of this parameter is not applicable.

Test report prepared by: Mrs. V. Mednikov, certification engineer

Test report approved by: Mr. A. Usoskin, QA manager

Document ID: visrad_fcc.15174.doc

3 EUT description

3.1 General description

The K-980MCW is a pet-immune, fully supervised ultra low-current wireless PIR detector, which incorporates a "Power Code" transmitter. Both transmitter and detector circuits are powered by an on-board long life 3.6 V Lithium battery.

3.2 EUT test configuration

Test configuration is provided in Figure 3.2.1.

Figure 3.2.1 EUT test configuration

Document ID: visrad_fcc.15174.doc

Transmitter description 3.3

Оре	erating frequency:			315 N	1Hz		
Ext	reme test conditions ² :						
	temperature		-10°C; +50°C				
	power supply voltage		3.6 VDC				
Max	kimum rated output powe	er					
	At transmitter permanent ex	ternal 50	O Ω rf output connector (dBm)				
	Effective radiated power (for	equipm	nent with integral antenna) (dBm)	-28			
Tra	nsmitter duty cycle (wors	st case	e)				
	Tx on (seconds)			0.061			
	Tx off (seconds)			0.039			
Мо	dulation						
	Amplitude						
	Frequency						
V	Other (specify): ASK (ON/OFF	KEYIN	G)				
Can	the transmitter be operated without	out mod	ulation		yes	~	no
Tra	nsmitter power source						
	Battery	ı	Nominal rated voltage (VDC)	3.6			
	Nickel Cadmium						
/	Lithium CR 123 A						
	Other: 3.6 V Lithium	thionyl	chloride (LiSOCL ₂) battery, size 1/	/2AA, Ta	diran TL-21	50	
	DC	ı	Nominal rated voltage (VDC)				
	AC mains	I	Nominal rated voltage (VAC)				
Is th	ere common power source for tr	ransmitt	er and receiver		yes		no
Ante	enna type						
'	Integral						
	External						
Тур	e of antenna jack³ - NA						
	standard		connector type		Male		Female
	unique		connector type		Male		Female
					1	1	1

Document ID: visrad_fcc.15174.doc

 $^{^{2}}$ Frequency tolerance test for devices operating in the frequency band 40.66 - 40.70 MHz shall be performed in normal and extreme test conditions.

3 Standard antenna jack use is prohibited excluding devices which must be professionally installed

4 Test results

4.1 Bandwidth of emission according to § 15.231 (c) and RSS-210 § 6.1.1(c)

METHOD OF MEASUREMENT: ANSI 63.4 §13.1.7 DATE: July 8, 2002

RELATIVE HUMIDITY: 43 %
AMBIENT TEMPERATURE: 24 °C
MODULATION: ON
DETECTOR USED: Peak

Carrier frequency MHz	Occupied bandwidth, kHz	Reference to plot in Annex A
315	377	A1
Measurement uncertainty, ppm	0.	2

TEST EQUIPMENT USED:

HL 0465	HL 0521	HL 0589	HL 0604	HL 1004		
---------	---------	---------	---------	---------	--	--

LIMIT (§ 15.231 (c))

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

For 315 MHz frequency the specified limit is 787.5 kHz

TEST PROCEDURE

The spectrum trace data around transmitter fundamental frequency was obtained with the spectrum analyzer in "Max Hold" mode. The bandwidth value was determined between two points 20 dBc.

Document ID: visrad_fcc.15174.doc

4.2 Field strength of fundamental, § 15.231 and RSS-210 § 6.1.1(b)

METHOD OF MEASUREMENT: ANSI 63.4 §13.1.5

DATE: July 1, 2002

RELATIVE HUMIDITY: 44 %
AMBIENT TEMPERATURE: 24 °C
SITE DESCRIPTION: OATS
MODULATION: ON
DETECTOR USED: Peak

	§ 15.231 (b)	§ 15.231 (e)
The EUT complies with the requirements of	Х	

Frequency, MHz	Measured field strength, dB(uV/m)	Average factor, dB	Calculated result, dB(uV/m)	Specification limit, dB(uV/m)	Reference to plot in Annex A
314.97	70.75	-4.25	66.5	75.62	A2
Measurement un	certainty, dB			-5.73 dB/ -5.57 dB	

4.2.1 Average factor calculation, §15.35

Tx ON	Duty cycle	Average factor	Reference to plot in
			Annex A
61.3	0.613	-4.25	A3 to A5

TEST EQUIPMENT USED:

HL 0034	HL 1430					
---------	---------	--	--	--	--	--

LIMIT § 15.231 (b)

Fundamental frequency (MHz)	Field strength of fundamental (b) (mV/m) @ 3 m
260 – 470	3,750 to 12,500

The specified limit for 315 MHz frequency is 75.62 dB(μ V/m)

TEST PROCEDURE

The EUT was tested, being placed on a wooden 80 cm height turntable in each of three orthogonal planes in turn. To find maximum radiation the turntable was rotated 360° , measuring antenna height was changed from 1 to 4 m, and the antenna polarization was changed from vertical to horizontal.

Document ID: visrad_fcc.15174.doc

4.3 Field strength of spurious radiation, § 15.231 and RSS-210 § 6.1.1(b)

METHOD OF MEASUREMENT: ANSI 63.4 §13.1.4 TEST PERFROMED IN: Anechoic chamber

DATE: July 8, 2002 RELATIVE HUMIDITY: 43 % AMBIENT TEMPERATURE: 24 °C

TEST PERFORMED AT FIELD STRENGTH: 66.5 dB(μV/m)

MODULATION ON DETECTOR USED: Peak

RANGE OF MEASUREMENTS 9 kHz to 3500 MHz

Frequency,	RBW,	VBW,	Radiated emission (peak),	Limit (peak) @ 3 m,	Radiated emission, (avrg)	Limit (avrg) @ 3 m,	Ref. to plot in App. A
MHz	kHz	kHz	dB(μV/m)	dB(μV/m)	dB(μV/m)	dB(μV/m)	
944.9	120	300	58.67	75.62	54.42*	55.62	A7, A8
1259.9	1000	1000	46.96	75.62	42.71*	55.62	A9, A10
1574.98	1000	3000	47.00	75.62	42.75*	55.62	A9, A11
2204.8	1000	3000	47.97	75.62	43.72*	55.62	A12, A13
2519.8	1000	3000	48.88	75.62	44.63*	55.62	A12, A14
2834.82	1000	3000	53.42	75.62	48.17*	55.62	A12, A15
Measuremen	Measurement uncertainty, dB				-5.73 dB/ -	5.57 dB	

For test results refer to Plots A5 to A15.

* Radiated emission value was calculated: Peak value + Average factor

Notes to table:

RBW: resolution bandwidth VBW: video bandwidth

TEST EQUIPMENT USED:

HL 0041	HL 0446	HL 0465	HL 0521	HL 0589	HL 0604	HL 1004
HL 1947						

LIMIT § 15.231 (b)

Fundamental frequency (MHz)	Field strength of harmonics (b) (mV/m) @ 3 m	
260 – 470	375 to 1,250	

The specified limit for 315 MHz frequency is 55.62 dB(μV/m)

TEST PROCEDURE

The EUT was tested, being placed on a wooden 80 cm height turntable in each of three orthogonal planes in turn.

9 kHz – 30 MHz frequency range. The loop antenna was positioned with its plane vertical. The loop center was 1 meter above the ground plane. To find maximum radiation the turntable was rotated 360° and the measuring antenna was rotated about its vertical axis.

30 MHz - 9.5 GHz frequency range. To find maximum radiation the turntable was rotated 360° , measuring antenna height was changed from 1 to 4 m, and the antennas polarization was changed from vertical to horizontal.

Document ID: visrad_fcc.15174.doc

4.4 Unintentional radiated emissions test according to §15.109 and ICES-003

METHOD OF MEASUREMENT: ANSI 63.4 §11.6 / ANSI 63.4 §12.1.4

TEST PERFORMED IN: Anechoic chamber

DATE: July 8, 2002 RELATIVE HUMIDITY: 43 % AMBIENT TEMPERATURE: 24 °C

DISTANCE BETWEEN ANTENNA AND EUT: 3 m
THE EUT WAS TESTED AS: Table-top
FREQUENCY RANGE: 30 MHz – 2 GHz

DETECTOR TYPE: Peak

RESOLUTION BANDWIDTH: 120 kHz below 1 GHz, 1 MHz above 1 GHz

The EUT highest used frequency (not including operating frequency), MHz	Upper frequency of measurement range, MHz
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or
	40 GHz, whichever is lower

Frequency,	Antenna polarization	Antenna height,	Turntable position	Radiated emissions,	Specification limit,	Ref. to plot in App. A
MHz		m	· (°)	dB (μV/m)	dB (μV/m)	
30 - 2000	The limit for unintentional radiated emission, class B was used throughout spurious emission measurements in Tx mode. All emissions except carrier and 3 rd harmonic were found below the limit			A7, A9		
Measurement un	certainty, dB			-5.73 dB/ -5.57 dI	3	

Table abbreviations:

Antenna polarization: V = vertical, H = horizontal

Turntable position: 0° = EUT front panel faces the receiving antenna

TEST EQUIPMENT USED:

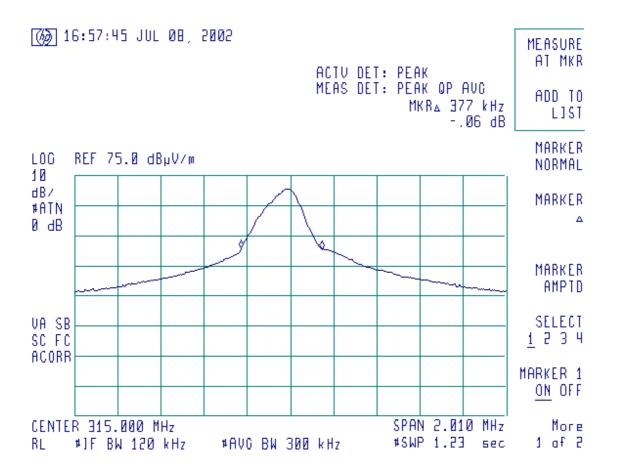
HL 0465 HL 0521	HL 0589	HL 0604	HL 1004		
-----------------	---------	---------	---------	--	--

LIMIT (§ 15.109)

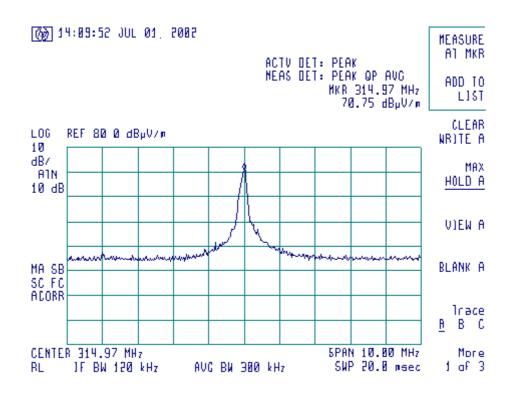
Frequency,	Class A equipment @ 10 m	Class B equipment @ 3 m
MHz	dB(μV/m)	dB(μV/m)
30 - 88	39.0	40
88 - 216	43.5	43.5
216 - 960	46.4	46
960 - 5000	49.5	54

TEST PROCEDURE

The EUT was placed on a wooden 80 cm height turntable. To find maximum radiation the turntable was rotated 360°, measuring antenna height was changed from 1 to 4 m, and the antennas polarization was changed from vertical to horizontal.


Document ID: visrad_fcc.15174.doc

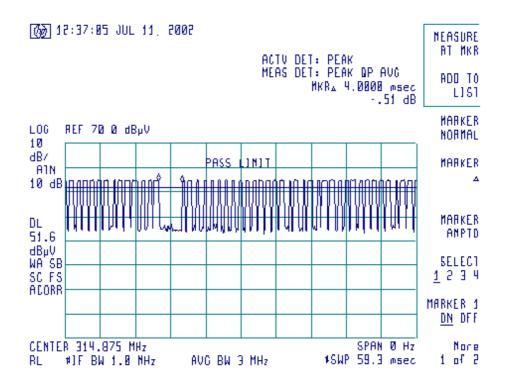
Appendix A - Plots


Plot A1

Occupied bandwidth measurements

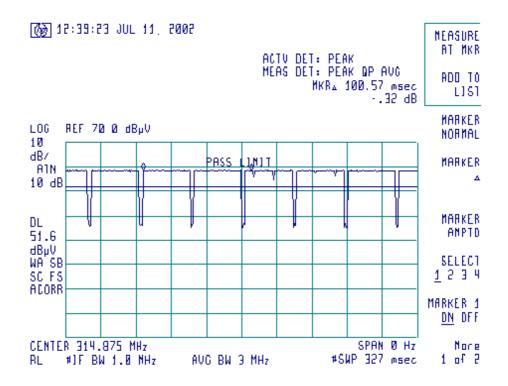
Document ID: visrad_fcc.15174.doc

Plot A2
Field strength of fundamental measurements


LIMIT=75.6 dBuV/m @3m

Document ID: visrad_fcc.15174.doc

Plot A3


Time between two successive transmissions

The time between the end of one transmission and the beginning of the other one is 4 ms.

Document ID: visrad_fcc.15174.doc

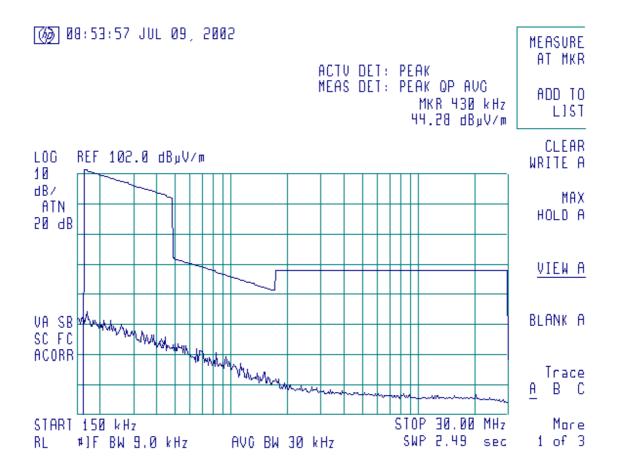
Plot A4
100 ms interval

[&]quot;Power code" means transmission of a sequence of "0" (1/3 ON; 2/3 OFF) or "1" (2/3 ON; 1/3 OFF). The worst case is when all "1" are transmitted.

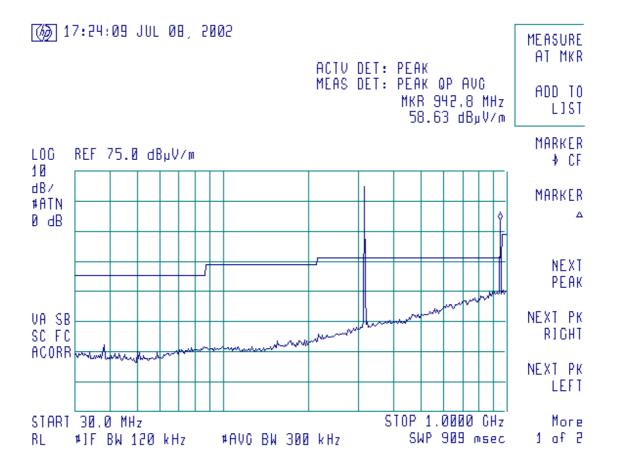
Tx ON in 100 ms interval = $(100 - 2x4) \times 2/3 = 61.3 \text{ ms}$.

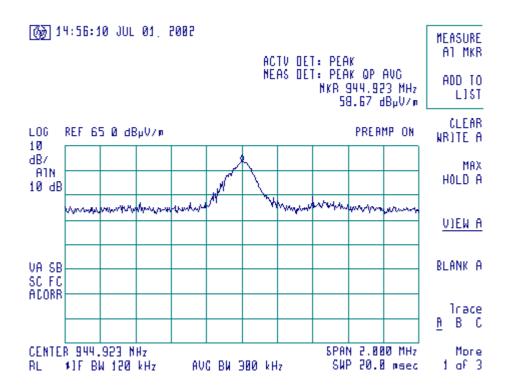
Document ID: visrad_fcc.15174.doc

Plot A5


Spurious emission measurements
9 kHz – 150 kHz frequency range

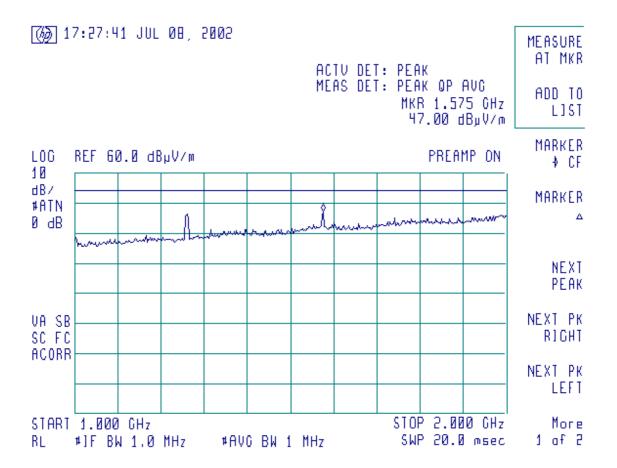
Plot A6

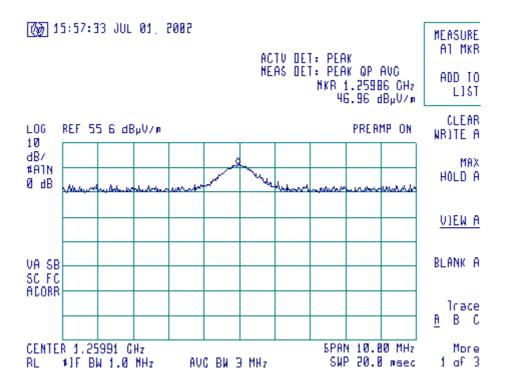

Spurious emission measurements
150 kHz – 30 MHz frequency range



Plot A7

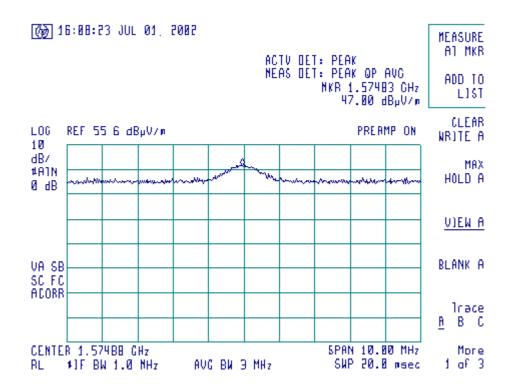
Spurious emission measurements
30 MHz – 1000 MHz frequency range


Plot A8
Field strength of 3rd harmonic

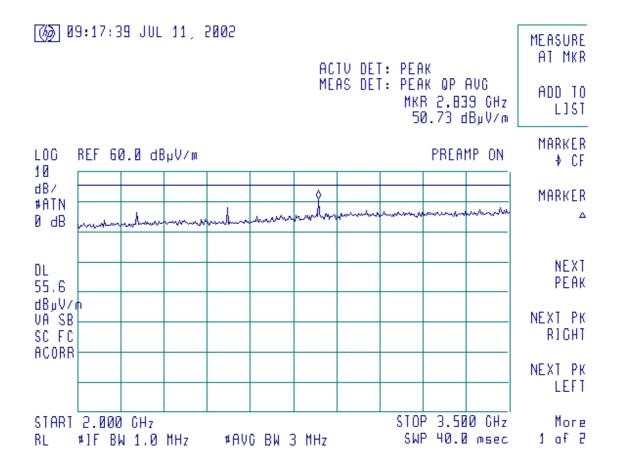


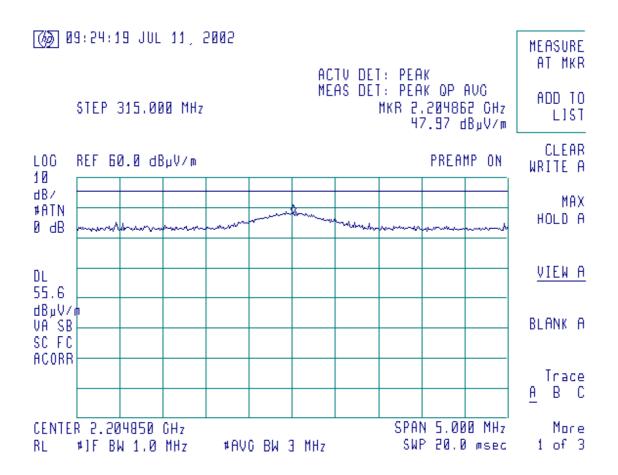
Plot A9

Spurious emission measurements
1 – 2 GHz frequency range

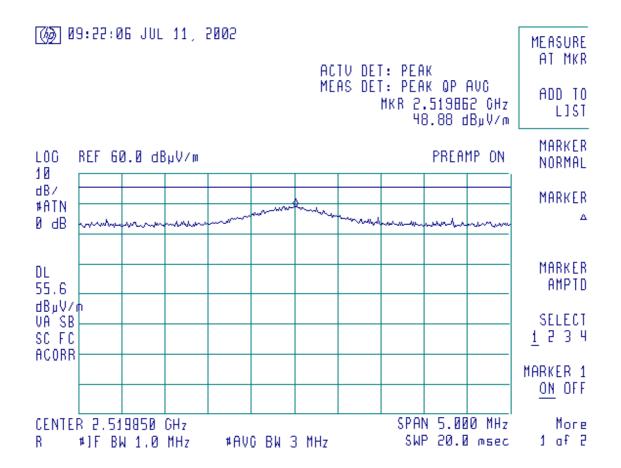


Plot A10
Field strength of 4th harmonic

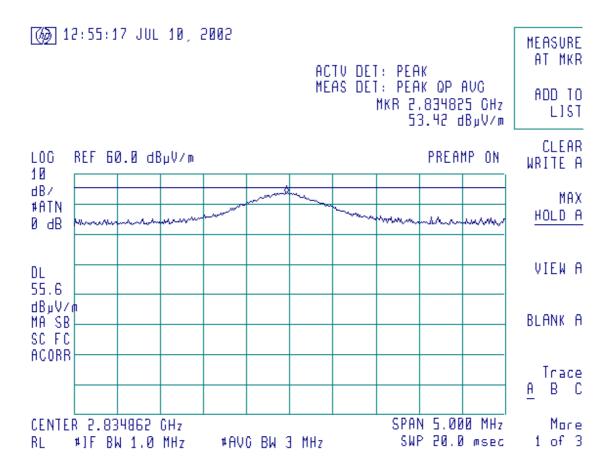

Plot A11
Field strength of 5th harmonic


Plot A12

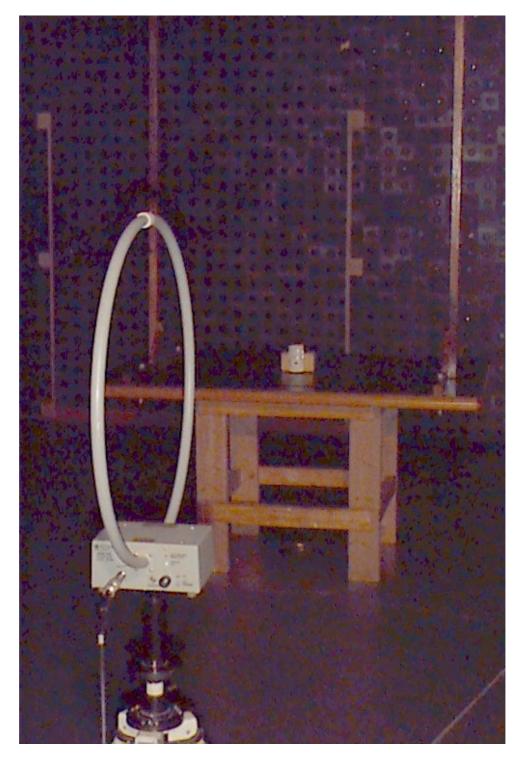
Spurious emission measurements 2 – 3.5 GHz frequency range



Plot A13
Field strength of 7th harmonic



Plot A14
Field strength of 8th harmonic


Plot A15
Field strength of 9th harmonic

Appendix B – Test setup photographs

RADIATED EMISSION MEASUREMENT SETUP

Document ID: visrad_fcc.15174.doc

RADIATED EMISSION MEASUREMENT SETUP

Document ID: visrad_fcc.15174.doc Date of Issue: July 02

RADIATED EMISSION MEASUREMENT SETUP

Document ID: visrad_fcc.15174.doc Date of Issue: July 02

Appendix C - Test equipment used for tests

HL Serial	Description	Manufacturer information		n	Due Calibration
No.		Name	Model No.	Serial No.	Month/ year
0034	Log periodic antenna, 200 - 1000 MHz	Electro-Metrics	LPA 25/30	1988	1/03
0041	Double ridged guide antenna, 1-18 GHz	Electro-Metrics	RGA 50/60	2811	8/02
0446	Active Loop Antenna 10 kHz-30 MHz	Electro-Mechanics	6502	2857	10/02
0465	Anechoic Chamber 9 (L) x 6.5 (W) x 5.5 (H) m	Hermon Labs	AC-1	023	3/03
0521	Spectrum Analyzer with RF filter section (EMI Receiver 9 kHz - 6.5 GHz)	Hewlett Packard	8546A	0319	7/03
0589	Cable Coaxial, GORE A2POL118.2, 3m	Hermon Labs	GORE-3	589	11/02
0604	Antenna Biconilog Log-Periodic/T Bow- Tie, 26 - 2000 MHz	EMCO	3141	9611-1011	01/03
1004	Cable coaxial, ANDREW PSWJ4, 6 m	Hermon Labs	ANDREW-6	163	12/02
1430	EMI Receiver System, 9 kHz - 2.9 GHz	Agilent Technologies	8542E	3807A00262	9/02
1947	Cable 18 GHz, 6.5 m, blue	Rhophase Microwave Ltd	NPS-1803A- 6500-NPS	T4974	10/02

Document ID: visrad_fcc.15174.doc

Appendix E Test equipment correction factors

Antenna factor, Active Loop Antenna Model 6502 S/N 2857

Frequency, MHz	Antenna Factor, dB
0.009	-32.8
0.010	-33.8
0.020	-38.3
0.050	-41.1
0.075	-41.3
0.100	-41.6
0.150	-41.7
0.250	-41.6
0.500	-41.8
0.750	-41.9
1.000	-41.4
2.000	-41.5
3.000	-41.4
4.000	-41.4
5.000	-41.5
10.000	-41.9
15.000	-41.9
20.000	-42.2
25.000	-42.8
30.000	-44.0

Antenna factor is to be added to receiver meter reading in $dB(\mu V)$ to convert to field intensity in $dB(\mu V)$ /meter

Document ID: visrad_fcc.15174.doc

Antenna Factor Biconilog Antenna EMCO Model 3141 Ser.No.1011

Frequency, MHz	Antenna Factor, dB(1/m)
26	7.8
28	7.8
30	7.8
40	7.2
60	7.1
70	8.5
80	9.4
90	9.8
100	9.7
110	9.3
120	8.8
130	8.7
140	9.2
150	9.8
160	10.2
170	10.4
180	10.4
190	10.3
200	10.6
220	11.6
240	12.4
260	12.8
280	13.7
300	14.7
320	15.2
340	15.4
360	16.1
380	16.4
400	16.6
420	16.7
440	17.0
460	17.7
480	18.1
500	18.5
520	19.1
540	19.5
560	19.8
580	20.6
600	21.3
620	21.5
640	21.2
660	21.4
680	21.9
700	22.2
720	22.2
740	22.1
760	22.3
780	22.6
800	22.7
820	22.9
840	23.1
860	23.4
880	23.8
900	24.1
920	24.1

Frequency, MHz	Antenna Factor,
	dB(1/m)
940	24.0
960	24.1
980	24.5
1000	24.9
1020	25.0
1040	25.2
1060	25.4
1080	25.6
1100	25.7
1120	26.0
1140	26.4
1160	27.0
1180	27.0
1200	26.7
1220	26.5
1240	26.5
1260	26.5
1280	26.6
1300	27.0
1320	27.8
1340	28.3
1360	28.2
1380	27.9
1400	27.9
1420	27.9
1440	27.8
1460	27.8
1480	28.0
1500	28.5
1520	28.9
1540	29.6
1560	29.8
1580	29.6
1600	29.5
1620	29.3
1640	29.2
1660	29.4
1680	29.6
1700	29.8
1720	30.3
1740	30.8
1760	31.1
1780	31.0
1800	30.9
1820	30.7
1840	30.6
1860	30.6
1880	30.6
1900	30.6
1920	30.7
1940	30.9
1960	31.2
1980	31.6
2000	32.0
2000	32.0

Antenna factor is to be added to receiver meter reading in $dB(\mu V)$ to convert to field intensity in $dB(\mu V/meter)$.

Document ID: visrad_fcc.15174.doc

Antenna factor Log periodic antenna Electro-Metrics, model LPA-25/30 Ser.No.1988

Frequency MHz	Antenna Factor dB(1/m)	Frequency MHz	Antenna Factor dB(1/m)
200	12.6	625	20.4
225	12.2	650	20.9
250	13.4	675	22.0
275	14.3	700	22.2
300	15.2	725	22.7
325	15.7	750	22.5
350	15.9	775	22.7
375	16.4	800	22.8
400	17.0	825	23.2
425	17.4	850	23.5
450	17.9	875	23.9
475	18.6	900	24.0
500	19.1	925	24.0
525	19.3	950	24.2
550	19.6	975	24.7
575	19.8	1000	25.1
600	20.0		

Antenna factor is to be added to receiver meter reading in $dB(\mu V)$ to convert to field intensity in $dB(\mu V/meter)$

Document ID: visrad_fcc.15174.doc

Antenna Factor Double Ridged Guide Antenna Model RGA-50/60 S/N 2811

Frequency, MHz	Antenna Factor, dB
1000	24.3
1500	25.4
2000	28.4
2500	29.2
3000	30.5
3500	31.6
4000	33.7
4500	32.2
5000	34.5
5500	34.5
6000	34.6
6500	35.3
7000	35.5
7500	35.9
8000	36.6
8500	37.3
9000	37.7
9500	37.7
10000	38.2
10500	38.5
11000	39.0
11500	40.1
12000	40.2
12500	39.3
13000	39.9
13500	40.6
14000	41.1
14500	40.5
15000	39.9
15500	37.8
16000	39.1
16500	41.1
17000	41.7
17500	45.1
18000	44.3

Antenna factor is to be added to receiver meter reading in $dB(\mu V)$ to convert to field intensity in $dB(\mu V)$ /meter

Document ID: visrad_fcc.15174.doc

Cable Coaxial, GORE A2P01POL118, 2.3 m, model:GORE-3, s/n 176 (HL 0589) + Cable Coaxial, ANDREW PSWJ4, 6m, model: ANDREW-6, s/n 163 (HL 1004) Calibration data

No.	Parameter	SET, MHz	Measured, dB	Deviation, dB	Tolerance (Specification), dB	Meas. Uncert., dB	Notes
1	Insertion	30	0.33	-			
2	Loss	50	0.40	-			
3		100	0.57	-			
4		300	0.97	-			
5		500	1.25	-			
6		800	1.59	-			
7		1000	1.81	-			
8		1200	1.97	-	≤ 6.5	±0.12	
9		1400	2.15	-			
10		1600	2.28	-			
11		1800	2.43	-			
12		2000	2.61	-			
13		2200	2.75	-			
14		2400	2.89	-			
15		2600	2.97	-			
16	Insertion	2800	3.21	-	≤ 6.5	±0.12	
17	Loss	3000	3.32	-			
18		3300	3.47	-			
19		3600	3.62	-			
20		3900	3.84	-			
21		4200	3.92	-		±0.17	
22		4500	4.07	-			
23		4800	4.36	=			
24		5100	4.62	-			
25		5400	4.78	-			
26		5700	5.16	-			_
27		6000	5.67	=			
28		6500	5.99	-			

Document ID: visrad_fcc.15174.doc

Cable 18GHz, 6.5 m, blue, model: NPS-1803A-6500-NPS, s/n T4974 (HL 1947) Calibration data

Frequency,	Insertion Loss, dB
GHz	HL1947
0.03	0.30
0.05	0.38
0.10	0.53
0.20	0.74
0.30	0.91
0.40	1.05
0.50	1.18
0.60	1.29
0.70	1.40
0.80	1.50
0.90	1.59
1.00	1.68
1.10	1.77
1.20	1.86
1.30	1.94
1.40	2.01
1.50	2.08
1.60	2.16
1.70	2.22
1.80	2.29
1.90	2.36
2.00	2.42
2.10	2.48
2.20	2.54
2.30	2.60
2.40	2.66
2.50	2.71
2.60	2.77
2.70	2.83
2.80	2.89
2.90	2.95
3.10	3.06
3.30	3.17
3.50	3.28
3.70	3.39
3.90	3.51
4.10	3.62
4.30	3.76
4.50	3.87
4.70	4.01
4.90	4.10
5.10	4.21
5.30	4.31
5.50	4.43
5.70	4.56
5.90	4.71

Frequency,	Insertion Loss, dB		
GHz	HL1947		
6.10	4.87		
6.30	4.95		
6.50	4.94		
6.70	4.88		
6.90	4.87		
7.10	4.83		
7.30	4.85		
7.50	4.86		
7.70	4.91		
7.90	4.96		
8.10	5.03		
8.30	5.08		
8.50	5.13		
8.70	5.21		
8.90	5.22		
9.10	5.34		
9.30	5.35		
9.50	5.52		
9.70	5.51		
9.90	5.66		
10.10	5.70		
10.30	5.78		
10.50	5.79		
10.70	5.82		
10.90	5.86		
11.10	5.94		
11.30	6.06		
11.50	6.21		
11.70	6.44		
11.90	6.61		
12.10	6.76		
12.40	6.68		
13.00	6.66		
13.50	6.81		
14.00	6.90		
14.50	6.90		
15.00	6.97		
15.50	7.17		
16.00	7.28		
16.50	7.27		
17.00	7.38		
17.50	7.68		
18.00	7.92		

Appendix E - General information

Test facility description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private EMC, Safety and Telecommunication testing facility. Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47) and by Industry Canada for electromagnetic emissions (file numbers IC 2186-1 for OATS and IC 2186-2 for anechoic chamber), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, C-845 for conducted emissions site), assessed by TNO Certification EP&S (Netherlands) for a number of EMC, Telecommunications, Safety standards, and by AMTAC (UK) for safety of Medical Devices. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for Electromagnetic Compatibility, Product Safety, Telecommunications Testing and Environmental Simulation (for exact scope please refer to Certificate No. 839.01).

Address: PO Box 23, Binyamina 30550, Israel.

Telephone: +972 4628 8001 Fax: +972 4628 8277 e-mail mail@hermonlabs.com

Person for contact: Mr. Alex Usoskin, QA manager.

Abbreviations and acronyms

The following abbreviations and acronyms are applicable to this test report:

AC alternating current
AE auxiliary equipment

cm centimeter dB decibel

 $\begin{array}{ll} \text{dBm} & \text{decibel referred to one milliwatt} \\ \text{dB}(\mu V) & \text{decibel referred to one microvolt} \end{array}$

 $dB(\mu V/m)$ decibel referred to one microvolt per meter

EMC electromagnetic compatibility

EUT equipment under test

GHz gigahertz
H height
Hz hertz
kHz kilohertz
kV kilovolt
L length

LISN line impedance stabilization network

m meter
MHz megahertz
NA not applicable
QP quasi-peak
RF radio frequency
RE radiated emission
rms root mean square

s second V volt W width

Specification references

47CFR part 15: 2001 Radio Frequency Devices

ANSI C63.2:96 American National Standard for Instrumentation-Electromagnetic Noise and

Field Strength, 10 kHz to 40 GHz-Specifications.

ANSI C63.4:92 American National Standard for Methods of Measurement of Radio-Noise

Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of

9 kHz to 40 GHz.

Document ID: visrad_fcc.15174.doc

FCC Equipment codes and descriptions

	•	•
CYY		Communications Receiver used w/ P.15 transmitter
DCD		Part 15 Low Power transmitter Below 1705 kHz
DSC		Part 15 Security/Remote Control Transmitter
DSR		Part 15 Remote Control/Security Device Transceiver
DSS		Part 15 Spread Spectrum Transmitter
DXX		Part 15 Low Power Communication Device Transmitter
EAV		Part 15 Automatic Vehicle Identification System
ETB		Part 15 Cordless Telephone Base Transceiver
ETR		Part 15 Cordless Telephone Remote Transceiver
ETS		Part 15 Cordless telephone system
FAP		Part 15 Anti-Pilferage Device
FDS		Part 15 Field Disturbance Sensor
GAT		Part 15 Auditory Assistance Device (Transmitter)
HID		Part 15 TV Interface Device
JBC		Part 15 Class B Computing Device/ Personal Computer
JBP		Part 15 Class B Computing Device Peripheral
PUB		Part 15 Unlicensed PCS base station
PUE		Part 15 Unlicensed PCS portable Tx held to ear
PUF		Part 15 Unlicensed PCS portable Tx held to face
PUT		Part 15 Unlicensed PCS portable Tx worn on body

Document ID: visrad_fcc.15174.doc