•

:

Report No.: LCS1507060332E

SAR TEST REPORT

For

Qingdao Hisense Intelligent Commercial System Co., Ltd.

Tablet POS

Model No.:HM516

Prepared for Address

Qingdao Hisense Intelligent Commercial System Co., Ltd. Bldg 3, 151 Zhuzhou Lu, Laoshan, Qingdao, China

Prepared by Address

Tel Fax Web Mail

Date of receipt of test sample Number of tested samples Serial number Date of Test Date of Report Shenzhen LCS Compliance Testing Laboratory Ltd. 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China (86)755-82591330 (86)755-82591332 www.LCS-cert.com webmaster@LCS-cert.com

April 25, 2015
1
Prototype
April 25, 2015 - June 25, 2015
June 25, 2015

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 97

Report No.: LCS1507060332E

Date Of Issue	LCS1507060332E	12- 120-	
OI 100000000000000000000000000000000000			
Testing Laboratory Name:	Shenzhen LCS Compliance	e Testing Laboratory Ltd.	20
Address	1/F., Xingyuan Industrial Pa Bao'an District, Shenzhen, C	k, Tongda Road, Bao'an Avenu Guangdong, China	e,
Testing Location/ Procedure:	Full application of Harmonis Partial application of Harmo Other standard testing metho	nised standards	
Applicant's Name:	Qingdao Hisense Intelligen	t Commercial System Co., Ltd	
Address	Bldg 3, 151 Zhuzhou Lu, La	oshan, Qingdao, China	
Test Specification:	Les Les	192 200	
SAR Max. Values is	0.612W/Kg (1g) for Body	New No	2
TestStandard	ANSI/IEEE C95.1:2005/AN	SI/IEEE C95.3 :2002	
	IEEE1528 :2003/47CFR § 2	1093	
Test Report Form No	LCSEMC-1.0		
TRF Originator	Shenzhen LCS Compliance	Festing Laboratory Ltd.	
of the material. Shenzhen LCS Connot assume liability for damages	ompliance Testing Laboratory	Ltd. takes noresponsibility for ar	sour nd w
of the material. Shenzhen LCS Conot assume liability for damages due to its placement and context.	ompliance Testing Laboratory resulting from the reader's int	Ltd. takes noresponsibility for ar	sour nd w
of the material. Shenzhen LCS Control assume liability for damages due to its placement and context.	ompliance Testing Laboratory resulting from the reader's int	Ltd. takes noresponsibility for ar	sour nd w
of the material. Shenzhen LCS Conot assume liability for damages due to its placement and context.	ompliance Testing Laboratory resulting from the reader's int	Ltd. takes noresponsibility for ar	sour nd w
of the material. Shenzhen LCS Conot assume liability for damages due to its placement and context. Test Item Description Trade Mark	Tablet POS	Ltd. takes noresponsibility for ar	sour nd w
of the material. Shenzhen LCS Conot assume liability for damages due to its placement and context. Test Item Description Trade Mark Model/Type Reference	Tablet POS Hisense HM516	Ltd. takes noresponsibility for ar erpretation of the reproduced m	sour nd w
of the material. Shenzhen LCS Conot assume liability for damages due to its placement and context. Test Item Description Trade Mark Model/Type Reference Ratings	Tablet POS Hisense HM516 DC 3.7V by battery(8000m/ Recharged Voltage: DC 5V/	Ltd. takes noresponsibility for ar erpretation of the reproduced m	sour nd w
Shenzhen LCS Compliance Testi of the material. Shenzhen LCS Co not assume liability for damages due to its placement and context. Test Item Description Trade Mark Model/Type Reference Ratings Result	Tablet POS Hisense HM516 DC 3.7V by battery(8000m/ Recharged Voltage: DC 5V/ Positive	Ltd. takes noresponsibility for an erpretation of the reproduced m	sour ad w ateri
of the material. Shenzhen LCS Conot assume liability for damages due to its placement and context. Test Item Description Trade Mark Model/Type Reference Ratings	Tablet POS Hisense HM516 DC 3.7V by battery(8000m/ Recharged Voltage: DC 5V/	Ltd. takes noresponsibility for ar erpretation of the reproduced m	sour ad w ateri

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 97

SHENZHEN LCS COMPLI	ANCE TESTING LABORATORY LTD.	FCC ID:GQK-HM516

Report No.:LCS1507060332E

SAR -- TEST REPORT

Test Report No. : L	CS1507060332E	June 25, 2015 Date of issue
G9 (G2	63 7.63	123
Type / Model	: HM516	3 33
EUT	: Tablet POS	
Address	: Bldg 3, 151 Zhuzhou Lu, L	nt Commercial System Co., Ltd. aoshan, Qingdao, China
Telephone Fax		
Manufacturer	: Qingdao Hisense Intellige	nt Commercial System Co., Ltd.
Address Telephone Fax		
Factory	: Qingdao Hisense Intellige	nt Commercial System Co., Ltd.
Address Telephone Fax	: Bldg 3, 151 Zhuzhou Lu, L : /	

Test Result

Positive

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 3 of 97

Report No.: LCS1507060332E

TABLE OF CONTENTS

1. TES	T STANDARDS AND TEST DESCRIPTION		5
1.1.	TEST STANDARDS	(23) (25)	5
1.2.			
1.3.			
	SUMMARY SAR RESULTS		
1.5.			
1.6.	EUT CONFIGURATION		
2. TES	T ENVIRONMENT		
2.1.	TEST FACILITY		
2.1.	ENVIRONMENTAL CONDITIONS		
2.2.	SAR LIMITS		
2.3.	EQUIPMENTS USED DURING THE TEST		
	MEASUREMENTS SYSTEM CONFIGURATION		
3.1.			
3.2.			
3.3.			
	Device Holder		
3.5.			
3.6.			
3.7.	POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHAN		
3.8.	TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY		
3.9.	DIELECTRIC PERFORMANCE		
	BASIC SAR SYSTEM VALIDATION REQUIREMENTS		
	System setup		
	. MEASUREMENT PROCEDURE		
4. 001			
4.1.			
4.2.			
4.3.	CONDUCTED POWER MEASUREMENT		
5. SAR	TEST RESULT		27
5.1.	TEST CONDITION:		
5.2.	OPERATION MODE		
5.3.	SAR SUMMARY TEST RESULT		
5.4.	TESTREDUCTION PROCEDURE		
5.5.	MEASUREMENT UNCERTAINTY (700MHz-3GHz)		
5.6.	SYSTEM CHECK RESULTS		
5.7.	SAR TEST GRAPH RESULTS		
6. CAL	LIBRATION CERTIFICATES		
6.1.	PROBE CALIBRATION CERITICATE	A (2)	43
6.2.	SID835Dipole Calibration Ceriticate		
6.3.			
6.4.	SID2450 DIPOLE CALIBRATION CERITICATE		
1.00	SYSTEM PHOTOGRAPHS		
	UP PHOTOGRAPHS		
9. EUT	TPHOTOGRAPHS		96

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 97

1.TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

The tests were performed according to following standards:

ANSI/IEEE C95.1: 2005:IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fileds,3 kHz to 300 GHz.

<u>ANSI/IEEE C95.3: 2002:</u>IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to SuchFields,100 kHz—300 GHz.

<u>IEEE1528:2003:</u>Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate. <u>KDB447498 D01v05r02:</u>General RF Exposure Guidance.

KDB248227 D01 802.11Wifi SAR vo2:SAR measure for 802.11 a/b/g.

KDB865664 D01v01r03:SAR measurement 100MHz to 6GHz.

KDB865664 D02v01r01:SAR Report.

KDB690783 D01v01r03:SAR lisitings on Grants.

KDB616217 D04v01r01: SAR for laptop and tablets v01r01

KDB648474 D04:SAR Handsets Multi Xmiter and Ant v01

KDB941225 D01v02:SAR Test for 3G devices.

KDB941225 D01v02r02:HSPA and 1xAdvanced.

KDB941225 D06:Hot Spot SAR v01

FCC Part 2:2012: frequency alloca-tions and radio treaty mat-ters; general rules and reg-ulations

1.2. Test Description

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power . And Test device is identical prototype.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 5 of 97

Report No.:LCS1507060332E

1.3. Product Description

Product Name:	Tablet POS	8000	(Jes)
Trade Mark:	Hisense	150	130
Model/Type reference:	HM516	100	1.30
Listed Model(s):	1	65	655
Hardware Version	VER.B	633	1.45
Software Version:	V0.8U.F511.HM516_WCDMA	30.0	3
Power supply:	DC 3.7V by battery(8000mAh) Recharged Voltage: DC 5V/2A		3
2G			
Operation Band:	GSM850, PCS1900	25	650
Supported type:	GSM/GPRS	.(23)	2.23
Power Class:	GSM850:Power Class 4 DCS1900:Power Class 1	163	133
Modulation Type:	GMSK for GSM/GPRS	190	160
GSM Release Version	R99	100	NOO
GPRS Multislot Class	12	1.50	25
EGPRS Multislot Class	N/A	163	19.25
WCDMA			
Operation Band:	FDD Band II & FDD Band V	1.1.1	3 2
Power Class:	Power Class 3	S V	25
Modulation Type:	QPSK for WCDMA/HSUPA/HSDPA	23	63
WCDMA Release Version:	R7	33	Berge
HSDPA Release Version:	Release 8	Para	J.S.S.
HSUPA Release Version:	Release 6	390	100
DC-HSUPA Release Version:	Not Supported	850	360
WIFI			
Supported type:	802.11b/802.11g/802.11n	5.03	1 1 10
Modulation:	802.11b: DSSS 802.11g/802.11n:OFDM	13	3
Operation frequency:	802.11b/802.11g/802.11n(HT20):2412M	Hz~2462MHz;	30
Channel number:	802.11b/802.11g/802.11n(HT20):11	22 T	130
Channel separation:	5MHz	(25)	Caso
Bluetooth			
Version:	Supported BT V3.0	1.23	2.23
Modulation:	GFSK(1Mbps) , π /4-DQPSK(2Mbps) , 8	-DPSK(3Mbps)	5.28
Operation frequency:	2402MHz~2480MHz	Nr.a.C.	Bra.
Channel number:	79	Berg	Par's
Channel separation:	1MHz	2,62	132

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 6 of 97

1.4. Summary SAR Results

Exposure Configuration	Technolohy Band	Highest Measured SAR 1g(W/Kg)
6.00	GSM850	0.103
D. I. Start	PCS1900	0.413
Body-worn	WCDMA Band V	0.112
(Separation Distance 0mm)	WCDMA Band II	0.436
	WLAN2450	0.585

Table 1:Max. SAR Measured(1g)

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6W/Kg as averaged over any 1g tissue accordintg to the ANSI C95.1-1999.

For body worn operation, this devices has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 0mm between this devices and the body of the user. User of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain iniform power output

1.5. EUT operation mode

The EUT has been tested under typical operating condition and The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

1.6. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- Solution supplied by the lab

O Power Cable	Length (m) : /	35%
3	Shield : /	1.92
100	Detachable : /	20
O Multimeter	Manufacturer : /	1
1. 52	Model No. : /	

Report No.:LCS1507060332E

2.TEST ENVIRONMENT

2.1. Test Facility

The test facility is recognized, certified, or accredited by the following organizations: Site Description

EMC Lab.

CNAS Registration Number. is L4595.
FCC Registration Number. is 899208.
Industry Canada Registration Number. is 9642A-1.
VCCI Registration Number. is C-4260 and R-3804.
ESMD Registration Number. is ARCB0108.
UL Registration Number. is 100571-492.
TUV SUD Registration Number. is SCN1081.
TUV RH Registration Number. is UA 50296516-001

2.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Ta ba ba	199 199 119
Humidity:	40-65 %
100 100	2 P 2 P 2 P 2 P 2 P 2 P 2 P 2 P 2 P 2 P
Atmospheric pressure:	950-1050mbar
1.54	

2.3. SAR Limits

	SAR (W/kg)		
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)	
Spatial Average(averaged over the whole body)	0.08	0.4	
Spatial Peak(averaged over any 1 g of tissue)	1.6	8.0	
Spatial Peak(hands/wrists/ feet/anklesaveraged over 10 g)	4.0	20.0	

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

Report No.:LCS1507060332E

2.4. Equipments Used during the Test

	Manufact -			Calibration	
Test Equipment	urer	Type/Model	Serial Number	Calibration Date	Calibration Due
PC	Lenovo	G5005	MY42081102	N/A	N/A
Signal Generator	Angilent	E4438C	MY42081396	09/25/2014	09/24/2015
Multimeter	Keithley	MiltiMeter 2000	4059164	10/01/2014	09/30/2015
S-parameter Network Analyzer	Agilent	8753ES	US38432944	09/25/2014	09/24/2015
Wireless Communication Test Set	R & S	CMU200	105988	06/18/2014	06/17/2015
Power Meter	R&S	NRVS	100444	06/18/2014	06/17/2015
Power Meter	R&S	NRVS	100469	06/18/2014	06/17/2015
Power Sensor	R&S	NRV-Z51	100458	06/18/2014	06/17/2015
Power Sensor	R&S	NRV-Z32	100657	06/18/2014	06/17/201
E-Field PROBE	SATIMO	SSE5	SN 17/14 EP220	10/01/2014	09/30/2015
E-Field PROBE	SATIMO	SSE5	SN 17/14 EP221	09/01/2014	08/31/2015
DIPOLE 835	SATIMO	SID 835	SN 07/14 DIP 0G835-303	10/01/2014	09/30/2015
DIPOLE 900	SATIMO	SID 900	SN 07/14 DIP 0G900-300	10/01/2014	09/30/2015
DIPOLE 1900	SATIMO	SID 1900	SN 30/14 DIP 1G900-333	09/01/2014	08/31/201
DIPOLE 2450	SATIMO	SID 2450	SN 07/14 DIP 2G450-306	10/01/2014	09/30/201
COMOSAR OPEN Coaxial Probe	SATIMO	OCPG 68	SN 40/14 OCPG68	10/01/2014	09/30/2018
Communication Antenna	SATIMO	ANTA57	SN 39/14 ANTA57	10/01/2014	09/30/201
Mobile Phone POSITIONING DEVICE	SATIMO	MSH98	SN 40/14 MSH98	N/A	N/A
DUMMY PROBE	SATIMO	DP60	SN 03/14 DP60	N/A	N/A
SAM PHANTOM	SATIMO	SAM117	SN 40/14 SAM117	N/A	N/A
Simulated Tissue 900 MHzBody and Head	SATIMO	SAM-9-H	SN 21/14 HLD438	Each Time	N/A
Simulated Tissue 1900 MHz For Head	SATIMO	SAM-18-H	SN 21/14 HLF439	Each Time	N/A
Simulated Tissue 2450 MHz Body and Head	SATIMO	SAM-24-H	SN 21/14 HLJ445	Each Time	N/A
PHANTOM TABLE	SATIMO	TABP98	SN 40/14 TABP98	N/A	N/A
6 AXIS ROBOT	KUKA	KR6-R900	501217	N/A	N/A
High Power Solid State Amplifier (80MHz~1000MHz)	Instrumen ts for Industry	CMC150	M631-0627	09/25/2014	09/24/201
Medium Power Solid State Amplifier (0.8~4.2GHz)	Instrumen ts for Industry	S41-25	M629-0539	09/25/2014	09/24/2015
Wave Tube Amplifier 48 GHz at 20Watt	Hughes Aircraft Company	1277H02F00 0	102	09/25/2014	09/24/201

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 9 of 97

3.SAR MEASUREMENTS SYSTEM CONFIGURATION

3.1. SARMeasurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

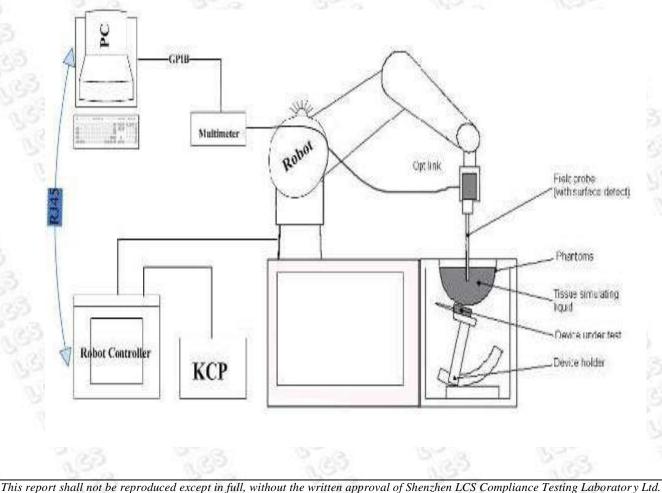
KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch, It sends an "Emergency signal" to the robot controller that to stop robot's moves

A computer operating Windows XP.

OPENSAR software


Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes .

System validation dipoles to validate the proper functioning of the system.

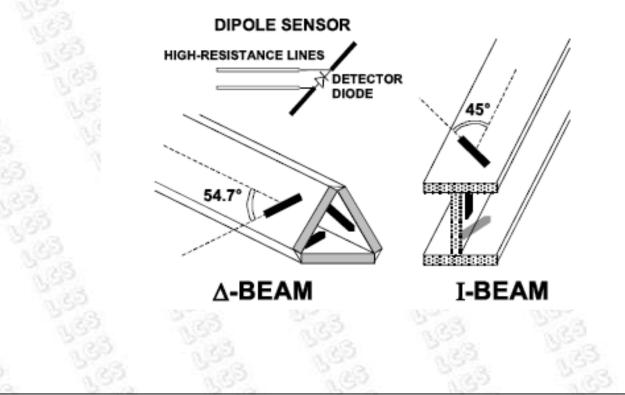
Page 10 of 97

3.2. OPENSAR E-field Probe System

The SAR measurements were conducted with the dosimetric probe EP220 (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)


CalibrationISO/IEC 17025 calibration service available.

Frequency	700 MHz to 3 GHz; Linearity:0.25dB(700 MHz to 3GHz)
Directivity	0.25 dB in HSL (rotation around probe axis) 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	0.01W/kg to > 100 W/kg; Linearity: 0.25 dB
Dimensions	Overall length: 330 mm (Tip: 16mm) Tip diameter: 5 mm (Body: 8 mm) Distance from probe tip to sensor centers: 2.5 mm
Application	General dosimetry up to 3 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 11 of 97

3.3. Phantoms

The SAM Phantom SAM117 is constructed of a fiberglass shell ntegrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC EN62209-1, EN62209-2:2010. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of allpredefined phantom positions and measurement grids by manually teaching three points in the robo

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

3.4. Device Holder

In combination with the Generic Twin PhantomSAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device holder supplied by SATIMO

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 12 of 97

3.5. Scanning Procedure

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. Thesophisticated interpolation routines implemented in OPENSAR software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought-up, grid was at to 15 mm by 15 mm and can be edited by a user.

Zoom Scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default zoom scan measures 7 x 7 x 7 points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more then one maximum, the number of Zoom Scans has to be enlarged accordingly (The default number inserted is 1).

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

3.6. Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Normi, ai0, ai1, ai
Rec.	- Conversion factor	ConvFi
	- Diode compression	point Dcpi
Device parameters:		f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 13 of 97

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

Report No.:LCS1507060332E

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i(i = x, y, z)Ui = input signal of channel i(i = x, y, z)cf = crest factor of exciting field(DASY parameter)dcpi = diode compression point(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

H – fieldprobes :

E – fie

$$\begin{array}{ll} \text{deprobes}: & E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}} \\ \text{probes}: & H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f}{f} \end{array}$$

(i = x, y, z)(i = x, y, z)

With	Vi	= compensated signal of channel i
	Normi	= sensor sensitivity of channel i
		[mV/(V/m)2] for E-field Probes
	ConvF	= sensitivity enhancement in solution

- aij = sensor sensitivity factors for H-field probes
 - = carrier frequency [GHz]
 - Ei = electric field strength of channel i in V/m
 - Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\sigma 1/00}$$

with SAR

σ

f

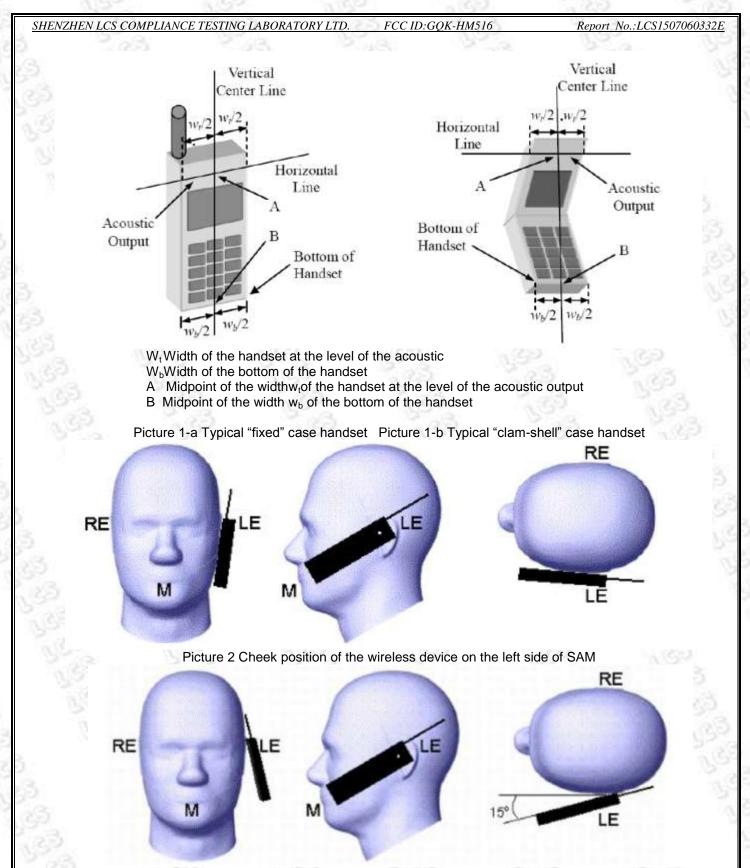
R = local specific absorption rate in mW/g Etot = total field strength in V/m

- = conductivity in [mho/m] or [Siemens/m]
- = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

3.7. Position of the wireless device in relation to the phantom

General considerations


This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.

The power flow density is calculated assuming the excitation field as a free space field

$$P_{(\text{pwe})} = \frac{E_{\text{tot}}^2}{3770}$$
 or $P_{(\text{pwe})} = H_{\text{tot}}^2.37.7$

Where P_{pwe}=Equivalent power density of a plane wave in mW/cm2 E_{tot}=total electric field strength in V/m H_{tot}=total magnetic field strength in A/m

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 14 of 97

Picture 3 Tilt position of the wireless device on the left side of SAM

For body SAR test we applied to FCC KDB941225 D03v01, KDB447498 D01v05r02, KDB248227 D01v01r02, KDB616217 D04v01r01, KDB 447498 D01

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 15 of 97

3.8. Tissue Dielectric Parameters for Head and Body

The liquid used for the frequency range of 100MHz-6G consisted of water, sugar, salt and Cellulose. The liquid has been previously proven to be suited for worst-case. The following Tableshows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within \pm 5% of the target values.

The following materials are used for producing the tissue-equivalent materials.

Ingredients	Frequency (MHz)								
(% by weight)	835	900	1800	2000	2450				
Water	41.45	40.92	16.33	54.89	46.70				
Sugar	56.0	56.5	1	/	1				
Salt	4.45	1.48	0.41	0.18	1				
Preventol	0.19	0.1	1		/				
Cellulose	0.1	0.4	1	1	155				
Clycol Monobutyl	/	1	65.3	44.93	53.3				
Dielectric ParametersTarget Value	f=835MHz ε =41.5 σ =0.90	f=900MHz ε =41.5 σ =0.97	f=1800MHz ε =40.0 σ =1.40	f=1950 MHz ε =40.0 σ =1.40	f=2450 MHz ε =39.2 σ =1.80				

Table 3. Composition of the Body Tissue Equivalent Matter

Ingredients	Frequency (MHz)								
(% by weight)	835	1800	1900	2450	2600				
Water	52.4	69.91	69.91	73.2	64.493				
Sugar	45.0	0.0	0.0	0.0	0.0				
Salt	1.4	0.13	0.13	0.04	0.024				
HEC	1.0	0.0	0.0	0.0	0.0				
Bactericide	0.1	0.0	0.0	0.0	0.0				
Triton X-100	0.0	0.0	0.0	0.0	0.0				
DGBE	0.0	29.96	29.96	26.7	32.252				
Dielectric ParametersTarget Value	f=835MHz ε =55.2 σ =0.97	f=1800MHz ε =53.30 σ =1.52	f=1900MHz ε =53.30 σ =1.52	f=2450 MHz ε =52.7 σ =1.95	f=2450 MHz ε =52.5 σ =2.16				

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 16 of 97

SHENZHEN LCS COMPLIANCE TESTING	LABORATO	RY LTD.	FCC ID:0	GQK-HMS	516
	33	15-11	8	B	63

Report No.: LCS1507060332E

Frequency (MHz)	Liquid Type	Liquid Type (σ)	tissue simulating ± 5% Range	Permittivity (ε)	\pm 5% Range
150	Head	0.76	0.72~0.80	52.3	49.69~54.92
300	Head	0.87	0.83~0.91	45.3	43.04~47.57
450	Head	0.87	0.83~0.91	43.5	41.33~45.68
835	Head	0.90	0.86~0.95	41.5	39.43~43.58
900	Head	0.97	0.92~1.02	41.5	39.43~43.58
915	Head	0.98	0.93~1.03	41.5	39.43~43.58
1450	Head	1.20	1.14~1.26	40.5	38.48~42.53
1610	Head	1.29	1.23~1.35	40.3	38.29~42.32
1800-2000	Head	1.40	1.33~1.47	40.0	38.00~42.00
2450	Head	1.80	1.71~1.89	39.2	37.24~41.16
3000	Head	2.40	2.28~2.52	38.5	36.58~40.43
5800	Head	5.27	5.01~5.53	35.3	33.54~37.07
150	Body	0.80	0.76~0.84	61.9	58.81~65.00
300	Body	0.92	0.87~0.97	58.2	55.29~61.11
450	Body	0.94	0.89~0.99	56.7	53.87~59.54
835	Body	0.97	0.92~1.02	55.2	52.44~57.96
900	Body	1.05	1.00~1.10	55.0	52.25~57.75
915	Body	1.06	1.01~1.11	55.0	52.25~57.75
1450	Body	1.30	1.24~1.37	54.0	51.30~56.70
1610	Body	1.40	1.33~1.47	53.8	51.11~56.49
1800-2000	Body	1.52	1.44~1.60	53.3	50.64~55.97
2450	Body	1.95	1.85~2.05	52.7	50.07~55.34
3000	Body	2.73	2.59~2.87	52.0	49.40~54.60
5800	Body	6.00	5.70~6.30	48.2	45.79~50.61

3.9. Dielectric Performance

Dielectric Performance of Head and Body Tissue Simulating Liquid Measurement is made at temperature 22.0°C and relative humidity 52%.

Liquid temperature during the test: 22.0°C

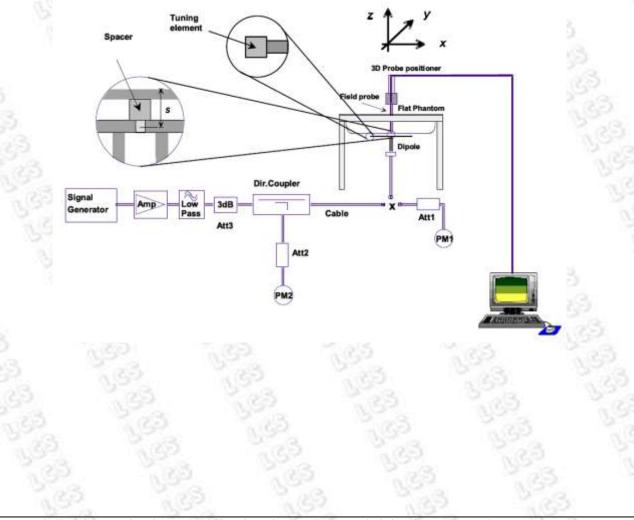
Measurement Date: 835 MHz June 08, 2015;1900 MHz June 09, 2015;2450 MHz June 10, 2015;

Frequency	Body T	īissue
Frequency (MHz)	O'(S/m)	٤r
835	1.01	56.15
1900	1.56	52.36
2450	1.92	52.24

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 17 of 97

3.10. Basic SAR system validation requirements

The SAR system must be validated against its performance specifications before it is deployed.when SAR probe and system component or sorftware are changed,upgraded or recalibrated,these must be validated with the SAR system(s) that operates with such component. Reference dipoles are used with the required tissure-equivalent media for system validation


The detailed system validation result are maintained by each test laboratory, which are normally not required for equip-ment approval. Only a tabulated summary of the system validation status, according to the validation date(s) measure-ment frequencies, SAR probe and tissue dielectric parameters is required in the SAR report.

LCS lab has performed the system validation at 10/28/2014, and all the measured results within \pm 10% of the system calibrated SAR targets.

3.11. System setup

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of system in order to guarantee reproducieble results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of component, but indicates situations where the system uncertainty is exceeded due to drift or failure.

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 18 of 97

Report No.:LCS1507060332E

1962		5000	System Valio	lation of Head	0.5	22	130
	N	leasurement is ma	de at temperature	22.0 $^\circ C$ and relative	ve humidity 52%.		
8	S N	Measurement is ma	ade at temperature	22.0℃ and relativ	e humidity 54%.	32	1
Measuremer	nt Date: 835 MH	Hz June 08, 2015	5;1900 MHz June	09, 2015;2450	MHz June 10, 2	015;	
Verification	Frequency	Target (W/I		Measured value(W/kg)		Deviation	
Results	(MHz)	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average	10 g Average
	835	9.90	6.39	10.05	6.42	1.52	0.47
Body	1900	43.33	21.59	42.21	20.83	2.58	3.52
	2450	54.65	24.58	55.16	24.96	0.933	1.55

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 19 of 97

3.12. Measurement procedure

The following procedure shall be performed for each of the test conditions

- 1. Measure the local SAR at a test point within 4 mm or less in the normal direction from the inner surface of the phantom.
- 2. Measure the two-dimensional SAR distribution within the phantom (area scan procedure). The boundary of the measurement area shall not be closer than 20 mm from the phantom side walls. The distance between the measurement points should enable the detection of the location of localmaximum with an accuracy of better than half the linear dimension of the tissue cube after interpolation. A maximum grip spacing of 20 mm for frequencies below 3 GHz and (60/f [GHz]) mm for frequencies of 3GHz and greater is recommended. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz andoln(2)/2 mm for frequencies of 3 GHz and greater, whereois theplane wave skin depth and ln(x) is the natural logarithm. The maximum variation of thesensor-phantom surface shall be ±1 mm for frequencies below 3 GHz and ±0.5 mm forfrequencies of 3 GHz and greater. At all measurement points the angle of the probe with respect to the line normal to the surface should be less than 5°. If this cannot be achieved for ameasurement distance to the phantom inner surface shorter than the probe diameter, additionalmeasurement distance to the phantom inner surface shorter than the probe diameter, additionalmeasurement distance to the phantom inner surface shorter than the probe diameter, additionalmeasurement distance to the phantom inner surface shorter than the probe diameter, additionalmeasurement distance to the phantom inner surface shorter than the probe diameter, additionalmeasurement distance to the phantom inner surface shorter than the probe diameter, additionalmeasurement distance to the phantom inner surface shorter than the probe diameter, additionalmeasurement distance to the phantom inner surface shorter than the probe diameter, additionalmeasurement distance to the phantom inner surface shorter than the probe diameter, additionalmeasurement distance to the phantom inner surface shorter than the probe diameter.
- 3. From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that are not within the zoom-scan volume; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR limit. This is consistent with the 2 dB threshold already stated;
- 4. Measure the three-dimensional SAR distribution at the local maxima locations identified in step
- 5. The horizontal grid step shall be (24 / f[GHz]) mm or less but not more than 8 mm. The minimum zoom size of 30 mm by 30 mm and 30 mm for frequencies below 3 GHz. For higher frequencies, the minimum zoom size of 22 mm by 22 mm and 22 mm. The grip step in the vertical direction shall be (8-f[GHz]) mm or less but not more than 5 mm, if uniform spacing is used. If variable spacing is used in the vertical direction, the maximum spacing between the two closest measured points to the phantom shell shall be (12 / f[GHz]) mm or less but not more than 4 mm, and the spacing between father points shall increase by an incremental factor not exceeding 1.5. When variable spacing is used, extrapolation routines shall be tested with the same spacing as used in measurements. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and $\delta \ln(2)/2$ mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and In(x) is the natural logarithm. Separate grids shall be centered on each of the local SAR maxima foundin step c). Uncertainties due to field distortion between the media boundary and the dielectricenclosure of the probe should also be minimized, which is achieved is the distance between thephantom surface and physical tip of the probe is larger than probe tip diameter. Other methodsmay utilize correction procedures for these boundary effects that enable high precisionmeasurements closer than half the probe diameter. For all measurement points, the angle of theprobe with respect to the flat phantom surface shall be less than 5. If this cannot be achieved an additional uncertainty evaluation is needed.
- 6. Use post processing(e.g. interpolation and extrapolation) procedures to determine the localSAR values at the spatial resolution needed for mass averaging.

4.OUTPUT POWER VERIFICATION

4.1. Test condition:

- 1. All test measurements carried out are traceable to national standard. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are nomal), with a coverage factor of 2, In the range of 30MHz-40GHz is ±1.5dB.
- 2. Evironment conditions:

Temperature Relative Humidy Atmospheric Pressure 23℃ 53% 1019mbai

 Test Date: April 25,2015~June 25,2015 Tested By:Dick

4.2. Test Procedure:

EUT radio output power measurement

- 1. The transmitter output port was connected to base station emulator.
- 2. Establish communication link between emulator and EUT and Set EUT to operate at maximum output power all the time.
- 3. Select lowest, middle, and highest channels for each band and different possible test mode.
- 4. Measure the conducted peak burst power and conducted average bust power from EUT antenna port.

4.3. Conducted Power Measurement

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU200) to ensure the maximum power transmission and proper modulation. Max Conducted power measurement results and power drift from the 2G report by Shenzhen LCS Compliance Testing Laboratory Ltd. **Note**: CMU200 measures GSM peak and average output power for active timeslots.for SAR the timebased average power is relevant. The difference in between depends on the duty cycle of the TDMA signal:

Source-based Time Averaged Bust Power calculation:

Number of Time slot	1	2	3	4
Duty cycle	1:8	1:4	1:2.66	1:2
Duty cycle factor	-9.03dB	-6.02dB	-4.26dB	-3.01dB
Crest factor	8	4	2.66	2

Remark:Time slot duty cycle factor=10*log(1/Time slot Duty Cycle)

Source based time averaged power=Maximum bust averaged power (1 Uplink)-9.03dB Source based time averaged power=Maximum bust averaged power (2 Uplink)-6.02dB Source based time averaged power=Maximum bust averaged power (3 Uplink)-4.26dB Source based time averaged power=Maximum bust averaged power (4 Uplink)-3.01dB

The signalling modes differ as follows:

Mode	Code Scheme	Modulation	Mode	Code Scheme
GPRS	CS1 to CS4	GMSK	GPRS	CS1 to CS4

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 21 of 97

	acaromonia						
Measured Power (dBm)			Calculation	Averaged Power (dBm)			
824.2MHz	836.6MHz	848.8MHz	(dB)	824.2MHz	836.6MHz	848.8MHz	
31.73	32.11	32.05	-9.03	22.7	23.08	23.02	
30.74	30.89	30.81	-6.02	24.72	24.87	24.79	
28.57	28.62	28.65	-4.26	24.31	24.36	24.39	
28.11	28.26	28.19	-3.01	25.10	25.25	25.18	
Measured Power (dBm)			Calculation	Averaged Power (dBm)			
824.2MHz	836.6MHz	848.8MHz	(dB)	824.2MHz	836.6MHz	848.8MHz	
26.83	26.91	26.86	-9.03	17.8	17.88	17.83	
25.77	25.84	25.81	-6.02	19.75	19.82	19.79	
24.16	24.23	24.34	-4.26	19.9	19.97	20.08	
23.47	23.64	23.55	-3.01	20.46	20.63	20.54	
	Meas 824.2MHz 31.73 30.74 28.57 28.11 Meas 824.2MHz 26.83 25.77 24.16	Measured Power (824.2MHz 836.6MHz 31.73 32.11 30.74 30.89 28.57 28.62 28.11 28.26 Measured Power (824.2MHz 836.6MHz 28.57 28.62 28.11 28.26 Measured Power (824.2MHz 836.6MHz 26.83 26.91 25.77 25.84 24.16 24.23	Measured Power (dBm) 824.2MHz 836.6MHz 848.8MHz 31.73 32.11 32.05 30.74 30.89 30.81 28.57 28.62 28.65 28.11 28.26 28.19 Measured Power (dBm) 824.2MHz 836.6MHz 848.8MHz 26.83 26.91 26.86 25.77 25.84 25.81 24.16 24.23 24.34	Measured Power (dBm) Calculation (dB) 824.2MHz 836.6MHz 848.8MHz Calculation (dB) 31.73 32.11 32.05 -9.03 30.74 30.89 30.81 -6.02 28.57 28.62 28.65 -4.26 28.11 28.26 28.19 -3.01 Measured Power (dBm) Calculation (dB) Calculation (dB) 824.2MHz 836.6MHz 848.8MHz Calculation (dB) 28.11 28.26 28.19 -3.01 Measured Power (dBm) Calculation (dB) Calculation (dB) 26.83 26.91 26.86 -9.03 25.77 25.84 25.81 -6.02 24.16 24.23 24.34 -4.26	Measured Power (dBm) Calculation (dB) Average 824.2MHz 836.6MHz 848.8MHz (dB) 824.2MHz 824.2MHz 31.73 32.11 32.05 -9.03 22.7 30.74 30.89 30.81 -6.02 24.72 28.57 28.62 28.65 -4.26 24.31 28.11 28.26 28.19 -3.01 25.10 Measured Power (dBm) Calculation (dB) Average 824.2MHz 836.6MHz 848.8MHz 25.10 28.11 28.26 28.19 -3.01 25.10 28.11 28.26 28.19 -3.01 25.10 824.2MHz 836.6MHz 848.8MHz 6.02 19.75 26.83 26.91 26.86 -9.03 17.8 25.77 25.84 25.81 -6.02 19.75 24.16 24.23 24.34 -4.26 19.9	824.2MHz836.6MHz848.8MHz(dB)824.2MHz836.6MHz31.7332.1132.05-9.0322.723.0830.7430.8930.81-6.0224.7224.8728.5728.6228.65-4.2624.3124.3628.1128.2628.19-3.0125.1025.25Measured Power (dBm)Calculation (dB)824.2MHz836.6MHz848.8MHz $Aversged Power (dB)$ 824.2MHz836.6MHz848.8MHz $Calculation (dB)$ 824.2MHz836.6MHz848.8MHz $Calculation (dB)$ 17.817.8826.8326.9126.86-9.0317.817.8825.7725.8425.81-6.0219.7519.8224.1624.2324.34-4.2619.919.97	

Conducted power measurements of GSM850

Note:

1. The conducted power of GSM850 is measured with RMS dector.

2. Frame-averaged output power was calculated from the measured bust-averaged output power by converting the slot powers into liner units and calculating the energy over 8 timeslots.

3. According the KDB941225 D03 ,the bolded GPRS 4TX mode was selected for SAR testing according to the highest frame-averaged output power table.

Conducted power measurements of PCS1900

GPRS	Measured Power (dBm)			Calculation	Averaged Power (dBm)			
(GMSK)	1850.2MHz	1880.0MHz	1909.8MHz	(dB)	1850.2MHz	1880.0MHz 19.68 21.99 21.99 22.32	1909.8MHz	
1 Txslot	28.59	28.71	28.66	-9.03	19.56	19.68	19.63	
2 Txslot	27.87	28.01	27.93	-6.02	21.85	21.99	21.91	
3 Txslot	26.16	26.25	26.24	-4.26	21.90	21.99	21.98	
4 Txslot	25.21	25.33	25.27	-3.01	22.20	22.32	22.26	
	Measured Power (dBm)			Calculation	Averaged Power (dBm)			
EGPRS (8PSK)	1850.2MHz	1880.0MHz	1909.8MHz	(dB)	1850.2MHz	1880.0MHz	1909.8MHz	
1 Txslot	24.91	25.00	24.95	-9.03	15.88	15.97	15.92	
2 Txslot	23.94	24.03	24.01	-6.02	17.92	18.01	17.99	
3 Txslot	23.12	23.16	23.21	-4.26	18.86	18.9	18.95	
4 Txslot	22.87	22.97	22.92	-3.01	19.86	19.96	19.91	

Note:

1. The conducted power of GSM1900 is measured with RMC dector.

2. Frame-averaged output power was calculated from the measured bust-averaged output power by converting the slot powers into liner units and calculating the energy over 8 timeslots.

3. According the KDB941225 D03 ,the bolded GPRS 4TX mode was selected for SAR testing according to the highest frame-averaged output power table.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 22 of 97

Conducted power measurements of UMTS Band V

		FDD Band V result (dBm) Test Channel				
Item	Band					
		4132CH	4182CH	4223CH		
WCDMA	12.2kbps RMC	23.39	23.43	23.37		
(c) \	Subtest 1	23.07	23.11	23.03		
LICEDA	Subtest 2	22.28	22.37	22.31		
HSDPA	Subtest 3	21.68	21.79	21.71		
	Subtest 4	21.26	21.31	21.21		
600	Subtest 1	22.41	22.53	22.37		
	Subtest 2	22.05	22.11	22.01		
HSUPA	Subtest 3	21.74	21.85	21.77		
	Subtest 4	21.61	21.73	21.66		
	Subtest 5	22.13	22.21	22.17		

Note:

1. The conducted power of UMTS Band V is measured with RMS detector.

2. According to KDB941225 D01v02, when maximum output of each RF channel with HSDPA active is ≤1/4 dB higher than without HSDPA using 12.2kbps RMC and maximum SAR for 12.2kbps RMC is ≤75% of SAR limit, SAR evaluation for HSDPA is not required.

3. According to KBD941225 D02v02r02, when the maximum average output power of each RF channel with (uplink) HSPA+/DC-HSDPS active is ≤1/4 dB higher than without HSPA+/DC-HSDPS using 12.2kbps RMC or the maximum reported SAR for 12.2kbps RMC without HSPA+/DC-HSDPS is ≤75% of SAR limit, SAR evalution for HSPA+/DC-HSDPS is not required.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 23 of 97

		FDE	FDD Band II result (dBm)				
Item	Mode		Test Channel				
		9262CH	9400CH	9538CH			
WCDMA	12.2kbps RMC	23.13	23.21	22.39			
Les De	Subtest 1	22.39	22.47	22.47			
HSDPA	Subtest 2	22.41	22.13	22.17			
HSUPA -	Subtest 3	21.82	21.93	21.87			
123	Subtest 4	21.36	21.44	21.39			
183	Subtest 1	22.97	23.08	23.01			
3 33	Subtest 2	22.32	22.41	22.27			
HSUPA	Subtest 3	21.83	21.89	21.77			
189 N. 189	Subtest 4	21.25	21.31	21.27			
Res Res	Subtest 5	22.76	22.87	22.81			

Conducted power measurements of UMTS Band II

Note:

- 1. The conducted power of UMTS Band II is measured with RMS detector.
- According to KDB941225 D01v02, when maximum output of each RF channel with HSDPA active is ≤1/4 dB higher than without HSDPA using 12.2kbps RMC and maximum SAR for 12.2kbps RMC is ≤75% of SAR limit, SAR evaluation for HSDPA is not required.
- 3. According to KBD941225 D02v02r02, when the maximum average output power of each RF channel with (uplink) HSPA+/DC-HSDPS active is ≤1/4 dB higher than without HSPA+/DC-HSDPS using 12.2kbps RMC or the maximum reported SAR for 12.2kbps RMC without HSPA+/DC-HSDPS is ≤75% of SAR limit, SAR evalution for HSPA+/DC-HSDPS is not required.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 24 of 97

				1000	
Mode	channel	Frequency (MHz)	Conducted output AVG power(dBm)	Test Rate Date	
P. S	1	2412	17.10	1Mbps	
802.11b	6	2437	17.21	1Mbps	
133	11	2462	16.94	1Mbps	
NSS.	51	2412	14.61	6Mbps	
802.11g	6	2437	15.11	6Mbps	
33	11	2462	15.58	6Mbps	
1 Co	1	2412	13.91	6.5Mbps	
802.11n 20MHz	6	2.437	14.15	6.5Mbps	
(3) V	11	2462	14.13	6.5Mbps	

Conducted power measurements of Wifi 2.4GHz

Note:

According to the KDB248227, for WiFi 2.4G, highest average RF output power channel for the lowest date rate of 802.11b mode was selected for SAR evaluation. SAR test at higher date rates and higher order modulations(including 802.11g/n) were not required since the maximum average output powerfor each of these configurations is not more than 1/4dB higher than the tested channnel for the lowest date rate of 802.11b mode.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 25 of 97

Conducted power measurement of BluetoothV3.0

		Frequency	Conducted output power	
Mode	channel	(MHz)	(dBm)	
Res	0	2402	-4.54	
BT V3.0 (GFSK)	39	2441	-4.34	
	78	2480	-4.25	
23	0	2402	-4.44	
BT V3.0 (π /4-DQPSK)	39	2441	-4.24	
CO2	78	2480	-4.18	
(SP)	0	2402	-4.48	
BT V3.0 (8-DPSK)	39	2441	-4.23	
3993	78	2480	-4.16	

Note:

According to KDB447498 D01 General RF Exposure Guidence v05r01 standalone SAR test exclusion considerations,SAR test is not required in 100MHz to 6GHz at test separation distances ≤50mm , if the output of EUT satisfay the fllowing eqation:

[(max power of channel,including tune-up tolerance,mW)/(min test separation distance,mm)].[$f^{1/2}_{(GHz)}$]. \leq 3.0 For 1-g SAR and \leq 7.5 for 10-g extremity SAR.

- a. $f_{(GHz)}$ is the RF channel transmit frequency in GHz.
- b. Power and distance are rounded to the nearest mW and mm before calculation
- c. The result is rounded to one decimal place for comparison
- d. 3.5 and 7.5 are referred to as the numeric thresholds

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 26 of 97

5.SAR TEST RESULT

5.1. Test condition:

1. SAR Measuremnt

The distance between the EUT and the antenna of the emulator is more than 50cm and the out put power radiated from the emulator antenna is at least 30dB less than the output power of EUT.

2. Measurement Uncertainty: See page 36and37 for detail

3. Environmental Conditions

Temperature Relative Humidity Atmospheric Pressure June 25,2015

23℃ 53% 1019mbar

 Test Date: April 25,2015~June 25,2015 Test By: Dick

5.2. Operation Mode

• According to KDB 447498 D01 v05r02 ,for each exposure position, if the highest 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional.

• Per KDB 865664 D01 v01r03, for each frequency band, if the measured SAR is ≥ 0.8 W/Kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band. (1) When the original highest measured SAR is ≥ 0.8 W/Kg, repeat that measurement once.

(2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first

repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45 W/Kg.

(3) Perform a third repeated measurement only if the original, first and second repeated measurement is ≥

1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is \geq 1.20.

• Body-worn exposure conditions are intended to voice call operations, therefore GSM voice call mode is selected to be test.

(1) the procedures explained in footnote 11 of the standard may be applied to reduce SAR test requirements for GPRS and EDGE modes when the source-based time-averaged output power for each data mode is lower than that in the normal GSM voice mode.

(2) when multiple slots can be used, the device should be tested to account for the maximum source-based timeaveraged output power.

(3) when the 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional.

• According to 616217 D04 the procedures are applicable only when the overall diagonal dimen of the keyboard and/or display section of a laptop or tablet is >20cm.

• According to 248227 D01, SAR is not required for 802.11g channels when the maximum average output power is less than 1/4dB higher than measured on the corresponding 802.11b channels.

• Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows:

Maximum Scaling SAR =tested SAR (Max.) ×[maximum turn-up power (mw)/ maximum measurement output power(mw)]

5.3. SAR summary Test result

SAR Values for GSM850 Band

ſ	Frequency MHz Cha nnel		quency Test		CAD	Power	Condu	Tune-	Scaled	Limit
5			Position (0mm)	Test Mode			cted Power (dBm)	up Power (dBm)	SAR 1g(W/k g)	1g(W /kg)
	836.0	190	Left	GPRS(4TX)	0.103	-3.74	28.26	29.00	0.106	1.60
	836.0	190	Rear	GPRS(4TX)	0.024	0.016	28.26	29.00	0.025	1.60

Note:

1.SAR test was performed in the middle channel only the measured leve was<50% of the SAR of limit,test in the low and high channel is optional.

2. The EUT is a Class B mobile phone which can be attached to both GPRS and GSM services, using one service at a time

3. The Multi-slot Classes of EUT is Class12 which has maximum 1 Downlink slots and 4 Uplink slots, the maximum active slots is 5, when perform the multiple slots scan, 1DL+4UL is the worse case base on the out put power measurements above.

SAR Values for PCS1900 Band

Freque	ncy				Power	Cond	Tune-	Scaled	Limit
MHz	Ch an nel	Test Position	Test Mode	SAR 1g(W/kg)	Drift (%)	ucted Power (dBm)	up Power (dBm)	SAR 1g(W/k g)	1g(W/kg)
1880.0	661	Left	GPRS(4TX)	0.159	0.077	25.33	27.00	0.169	1.60
1880.0	661	Rear	GPRS(4TX)	0.413	1.16	25.33	27.00	0.440	1.60

Note:

- 1. SAR test was performed in the middle channel only the measured leve was<50% of the SAR of limit,test in the low and high channel is optional.
- 2. The EUT is a Class B mobile phone which can be attached to both GPRS and GSM services, using one service at a time
 - The Multi-slot Classes of EUT is Class12 which has maximum 1 Downlink slots and 4 Uplink slots, the maximum active slots is 5, when perform the multiple slots scan, 1DL+4UL is the worse case base on the out put power measurements above.

Freq	uency	Test	Teet	SAR	Power	Conducte	Tune-	Scaled	Limit		
MHz	Chann el	Test Position	Test Test In Position Mode		1g(W/ Drift kg) (%)		a Power (dBm)	up Power (dBm)	SAR 1g(W/k g)	1g(W/k g)	
836.8	4183	Left	RMC	0.112	0.85	23.43	24.00	0.115	1.60		
836.8	4183	Rear	RMC	0.029	2.34	23.43	24.00	0.030	1.60		

SAR Values forWCDMA Band V

Note:

1.When the SAR measured for the middle channel is ≤ 50% of the limit, test in the low and high channel is optional. 2.The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2kbps RMC(reference measurement channel) configuration in test loop mode

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 28 of 97

SAR Values forWCDMABand II

Frequency				- SAR Powe		Conducte	Tune-	Scaled	Limit
MHz	Chann el	Test Position	Test Mode	1g(W/ kg)	Drift (%)	d Power (dBm)	up Power (dBm)	SAR 1g(W/k g)	1g(W/k g)
1880	9400	LEFT	RMC	0.198	-2.96	23.21	24.00	0.205	1.60
1880	9400	Rear	RMC	0.436	-0.66	23.21	24.00	0.451	1.60

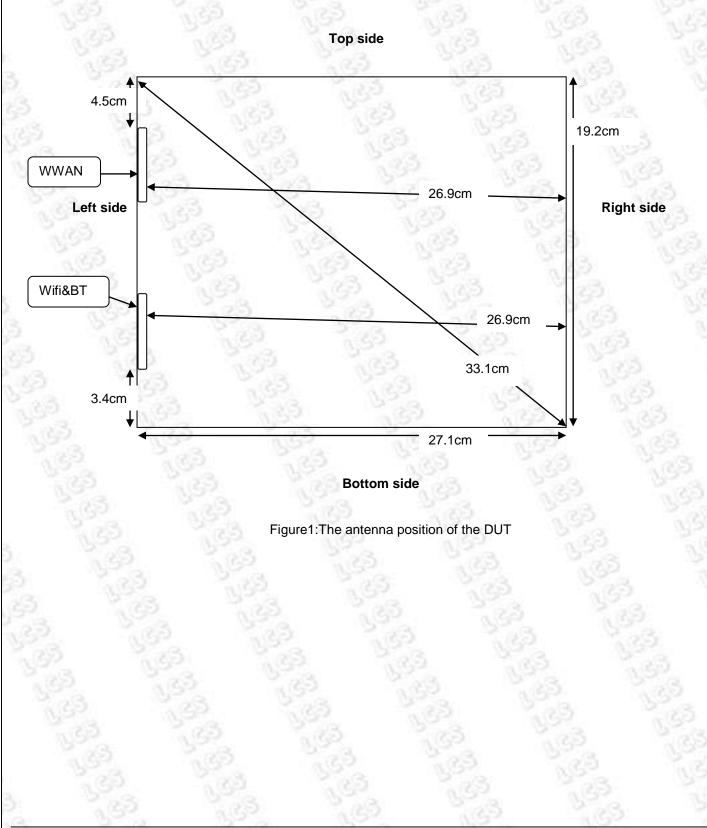
Note:

When the SAR measured for the middle channel is ≤ 50% of the limit, test in the low and high channel is optional.
 The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2kbps RMC(reference measurement channel) configuration in test loop mode

SAR	Values for	r WLAN2450	Post-		15-2	11.50				
Free	quency		Teet	CAD(4m)	Power	Conducted	Tune-	Scaled	Limit	
MHz	Channel	Mode/Band	Test Position	SAR(1g) (W/kg)	Drift(%)	Power (dBm)	up Power (dBm)	SAR 1g(W/kg)	1g(W/kg)	
2437	6	802.11b	Left	0.585	-0.88	17.21	18.00	0.612	1.60	
2437	6	802.11b	Rear	0.255	-0.39	17.21	18.00	0.267	1.60	

Note:

1.When the SAR measured for the middle channel is ≤ 50% of the limit, test in the low and high channel is optional. 2. The result was tested under the lowest data rate 1Mbps for 802.11b.


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 29 of 97

5.4. Testreduction procedure

Simultaneous multi-band transmission

The following tables list information which is relevant for the decision if a simultaneous transmit evaluation is necessary according to FCC KDB447498D01 General RF Exposure Guidence v05r02.

Figure 1: The diagonal dimension of the DUT

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 30 of 97

No	Applicable Simultaneous Transmission Combination
1.	GSM/WCDMA+BT
2.	GSM/WCDMA+WiFi
2) The Reported 3) Per KDB 4474	and Bluetooth share the same antenna, and cannot transmit simultaneously. SAR summation is calculated based on the same configuration and test position 98 D01v05r02, simultaneous transmission SAR is compliant if, AR summation < 1.6W/kg.
b) SPLSR =	(SAR1 + SAR2) 1.5 / (min. separation distance, mm), and the peak separation
distance is deterr	mined from the square root of \[(x1-x2) 2 + (y1-y2) 2 + (z1-z2) 2], where (x1, y1,
z1) and (x2, y2, z	22) are the coordinates of the extrapolated peak SAR locations in the zoom scar
c) If SPLSR	≦0.04, simultaneously transmission SAR measurement
is not neo	cessary
d) Simultane	eously transmission SAR measurement, and the reported
multi-band	SAR < 1.6W/kg
SIN 1919	s transmission analysis, Bluetooth SAR is estimated per
	1v05r02 based on the formula below.
	ver of channel, including tune-up tolerance, mW) / (min.
12.12	aration distance, mm)] .[√f(GHz)/x] W/kg for test
10.00	on distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x =
	10-g SAR.
	minimum separation distance is < 5mm, the distance is
	m to determine SAR test exclusion.
	for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test on distances is > 50 mm.
	estimated SAR is conservatively determined by 5mm on, for all applicable exposure positions.

Body-worn(0cm)
0.210

For Bluetooth the Estimated SAR for Head at 5mm for estimate and 15mm to Estimated Body SAR

Estimated SAR_{Body}=((5.01mW)/5mm)*(1.5748/7.5)=0.210W/Kg

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 31 of 97

Report No.:LCS1507060332E

GSM & WLAN Mode

	0011 4 1	LAN MOUL		and the second second				
2 10 20 N	Test Position		GSM850 Reported SAR1g (W/Kg)	GSM1900 Reported SAR1g (W/Kg)	WLAN Reported SAR1g (W/Kg)	Summation Reported SAR(1g) (W/kg)	SAR –to- peak-location Separation Ratio	Simultaneous Measurement Required?
1	Pody	Body- Left Side	0.103	0.159	0.585	0.744	N/A	No
	Body	Body- Rear Side	0.024	0.413	0.255	0.668	N/A	No

GSM & BT Mode

No. CO.	Tes	t Position	GSM850 Reported SAR1g (W/Kg)	GSM1900 Reported SAR1g (W/Kg)	Bluetooth Estimate d SAR (W/Kg)	Summation Reported SAR(1g) (W/kg)	SAR -to- peak- location Separation Ratio	Simultaneous Measurement Required?
100	Body	Body Left Side	0.103	0.159	0.210	0.369	N/A	No
1	Bouy	Body-Rear Side	0.024	0.413	0.210	0.623	N/A	No

WCDMA & WLAN Mode

Tes	t Position	WCDMA 850 Reported SAR1g (W/Kg)	WCDMA190 0 Reported SAR1g (W/Kg)	WLAN Reported SAR1g (W/Kg)	Summation Reported SAR(1g) (W/kg)	SAR –to- peak- location Separation Ratio	Simultaneous Measurement Required?
Padu	Body-Left Side	0.112	0.198	0.585	0.783	N/A	No
Body	Body-Rear Side	0.029	0.435	0.255	0.690	N/A	No

WCDMA & BT Mode

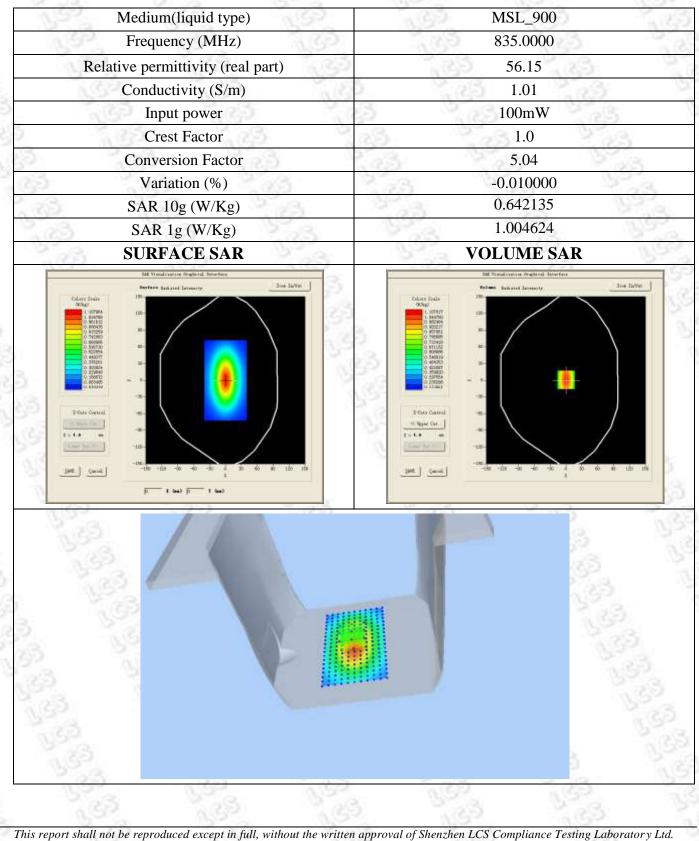
	Tes	t Position	WCDMA 850 Reported SAR1g (W/Kg)	WCDMA 1900 Reported SAR1g (W/Kg)	0 Estimate Summation rted d SAR(1g) 1g SAR (W/kg)	SAR(1g)	SAR -to- peak- location Separation Ratio	Simultaneous Measurement Required?	
2	Dedu	Body Left Side	0.112	0.198	0.210	0.408	N/A	No	
2	Body	Body-Rear Side	0.029	0.435	0.210	0.645	N/A	No	

Note: The above numeral summed SAR results is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore simultaneous transmission SAR with volume scans is not required according to KDB447498 D01v05r02.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 32 of 97

Report No.: LCS1507060332E

5.5. Measurement Uncertainty (700MHz-3GHz)


2	1950	Tol	Prob.	2	282	Ci	1g Ui	10g Ui	
Uncertainty Component	Sec.	(+- %)	Dist.	Div.	Ci (1g)	(10g)	(+-%)	(+-%)	Vi
Measurement System									
Probe calibration	7.2.1	5.8	N	220	1	1	5.80	5.80	∞
Axial Isotropy	7.2.1.1	3.5	R	√3	(1- Cp)^1/2	(1- Cp)^1/2	1.43	1.43	∞
Hemispherical Isotropy	7.2.1.1	5.9	R	√3	(Cp)^1/ 2	(Cp)^1/ 2	2.41	2.41	∞
Boundary effect	7.2.1.4	1.0	R	√3	1	1	0.58	0.58	∞
Linearity	7.2.1.2	4.7	R	√3	1	1	2.71	2.71	∞
System detection limits	7.2.1.2	1.0	R	√3	1	51	0.58	0.58	∞
Modulation response	7.2.1.3	3.00	N	ð I	1	31	3.00	3.00	∞
Readout Electronics	7.2.1.5	0.50	N	62	1	1	0.50	0.50	∞
Reponse Time	7.2.1.6	0.0	R	√3	1	1	0.00	0.00	∞
Integration Time	7.2.1.7	1.4	R	√3	1	1,5	0.81	0.81	∞
RF ambient Conditions - Noise	7.2.3.7	3.0	R	√3	1	1	1.73	1.73	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
RF ambient Conditions - Reflections	7.2.3.7	3.0	R	√3	ST.	1	1.73	1.73	œ
Probe positioner Mechanical Tolerance	7.2.2.1	1.4	R	√3	1	1	0.81	0.81	∞
Probe positioning with respect to Phantom Shell	7.2.2.3	1.40	R	√3	1	S1	0.81	0.81	∞
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	7.2.4	2.3	R	√3	1	1	1.33	1.33	∞
Test sample Related		1							
Test sample positioning	7.2.2.4.4	2.60	N	ST.	1	1	2.60	2.60	
Device Holder Uncertainty	7.2.2.4.2 7.2.2.4.3	3.00	Ν	1	1	1	3.00	3.00	
Output power Variation - SAR drift measurement	7.2.3.6	5.00	R	√3	1	1 🕚	2.89	2.89	8
SAR scaling	7.2.5	2.00	R	√3	1	1	1.15	1.15	∞
Phantom and Tissue Paramet	ters							11	
Phantom Uncertainty (Shape and thickness tolerances)	7.2.2.2	4.00	R	√3	1	1	2.31	2.31	8
Uncertainty in SAR correction for deviation (in permittivity and conductivity)	7.2.6	2.00	N	5	1	0.84	2.00	1.68	∞
Liquid conductivity (temperature uncertainty)	7.2.3.5	2.50	N	2	0.78	0.71	1.95	1.78	
Liquid conductivity - measurement uncertainty	7.2.3.3	4.00	N	19	0.23	0.26	0.92	1.04	
Liquid permittivity (temperature uncertainty)	7.2.3.5	2.50	N	al a	0.78	0.71	1.95	1.78	œ
Liquid permittivity - measurement uncertainty	7.2.3.4	5.00	N	13	0.23	0.26	1.15	1.30	8
Combined Standard Uncertainty	3	86	RSS		62		10.63	10.54	S
Expanded Uncertainty (95% Confidence interval)	23	1	k		333		21.26	21.08	8

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 33 of 97

Report No.: LCS1507060332E

5.6. System Check Results

Test mode:835MHz(Body) Product Description:Validation Model:Dipole SID835 E-Field Probe:SSE5(SN17/14 EP220) Test Date:June 08, 2015

shall not be reproduced except in juli, without the written approval of Shenzhen LCS Compliance Testing Labora Page 34 of 97

Report No.: LCS1507060332E

Test mode:1900MHz(Body) Product Description:Validation Model :Dipole SID1900 E-Field Probe:SSE5(SN17/14 EP221) Test Date:June 09, 2015

Medium(liquid type)	MSL_1800
Frequency (MHz)	1900.0000
Relative permittivity (real part)	52.36
Conductivity (S/m)	1.56
Input power	100mW
Crest Factor	1.0
Conversion Factor	4.85
Variation (%)	-0.240000
SAR 10g (W/Kg)	2.083452
SAR 1g (W/Kg)	4.2213351
SURFACE SAR	VOLUME SAR
3 four Cannal	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 35 of 97

Report No.: LCS1507060332E

Test mode:2450MHz(Body) Product Description:Validation Model:Dipole SID2450 E-Field Probe:SSE5(SN17/14 EP220) Test Date:June 10, 2015

Me	dium(liquid type)	62	132	MSL_245	0	. 22	
F	requency (MHz)	130	6,81	2450.000	0	2.12	
Relative	permittivity (real part)		100	52.24	23	. 6	
Co	onductivity (S/m)	600	1.92				
632	Input power	123	100	100mW	203		
ES .	Crest Factor	100		1.0	300		
С	onversion Factor	200	3	4.05	5-33		
5	Variation (%)	1	23	-0.340000)		
S	AR 10g (W/Kg)	3	20	2.496041	5	1	
5 5	SAR 1g (W/Kg)	3	Para.	5.516251	M.S.	2.	
	URFACE SAR	a.	1920	VOLUME	SAR	82	
Constant Constant		ubr mi	2 600 4 8000 4 8000 5 9001 5 9000 5 9001 5 9000 5 9000 5 9000 5 9000 5 9000 5 9000 5 9000			rta-	
333 333		360	No.	3	343 133	20	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 36 of 97

Report No.: LCS1507060332E

5.7. SAR Test Graph Results

Test Mode:GPRS850MHz,Mid channel(Body Left Side) Product Description:Tablet POS Model:HM516 Test Date:June 07,2015

	1.92	
62	Medium(liquid type)	MSL_900
1.50	Frequency (MHz)	836.400024
100	Relative permittivity (real part)	56.15
13	Conductivity (S/m)	1.01
1	E-Field Probe	SN 17/14 EP220
	Crest Factor	2.0
	Conversion Factor	5.04
	Sensor	4mm
31	Area Scan	dx=8mm dy=8mm
3	Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
23	Variation (%)	-3.740000
60	SAR 10g (W/Kg)	0.054110
Sec. 3	SAR 1g (W/Kg)	0.103150
Ros	SURFACE SAR	VOLUME SAR
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		

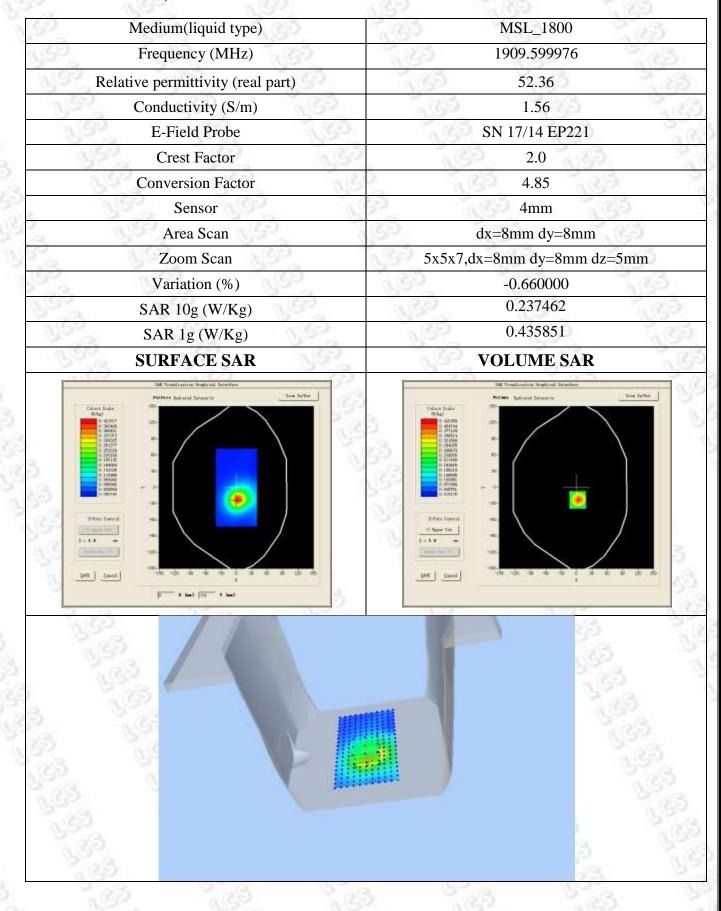
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 37 of 97

Report No.: LCS1507060332E

Test Mode:GPRS1900MHz,Mid channel(Body SAR-LCD Down) Product Description: Tablet POS Model:HM516 Test Date:June 09, 2015

MSL_1800 1909.599976 52.36
52.36
1.56
SN 17/14 EP221
2.0
4.85
4mm
dx=8mm dy=8mm
5x5x7,dx=8mm dy=8mm dz=5mm
1.160000
0.184165
0.412538
VOLUME SAR
Prove based (Name tie 2 + 5.4 * * (Second) (March tie (Second) (March ti
en approval of Shenzhen LCS Compliance Testing Laboratory Li

Report No.:LCS1507060332E


Test Mode:WCDMA850MHz,Mid channel(Body Left Side) Product Description:Tablet POS Model:HM516 Test Date:June 08, 2015

Medium(liquid type)	3.3	MSL_900	Black
Frequency (MHz)	5-33	836.400024	Noo.
Relative permittivity (real part)	393	56.15	Ros
Conductivity (S/m)	- 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 197	1.01	Re
E-Field Probe	2 82	SN 17/14 EP220	0
Crest Factor	74 N.	2.0	2
Conversion Factor	Sa B	5.04	30
Sensor	192	4mm	NGP .
Area Scan	190	dx=8mm dy=8m	m
Zoom Scan	5x5x7	,dx=8mm dy=8mm	n dz=5mm
Variation (%)	133	0.850000	123
SAR 10g (W/Kg)	627	0.061209	2.03
SAR 1g (W/Kg)	6.25	0.112111	2.38
SURFACE SAR	1.23	VOLUME SA	R
	Prove Endered Construction Prove Endered Construction Prove Endered Construction Prove Endered Prove End		* * * * *
			3 9

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 39 of 97

Report No.: LCS1507060332E

Test Mode:WCDMA1900MHz,Mid channel(Body SAR-LCD Down) Product Description: Tablet POS Model:HM516 Test Date:June 10, 2015

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 40 of 97

Report No.: LCS1507060332E

Test Mode:802.11b,Mid channel(Body SAR-LCD DOWN) Product Description: Tablet POS Model:HM516 Test Date:June 10, 2015

(GD)	Medium(liquid type)	627	MSL_2450	
150	Frequency (MHz)	163	2437.000000	ð.
R	elative permittivity (real part)	133	52.24	3
192	Conductivity (S/m)	2 13	1.92	12
Ner	E-Field Probe	65	SN 17/14 EP220	2
NS	Crest Factor	1. SP	1.0	19
6	Conversion Factor	asp.	4.05	
	Sensor	1.32	4mm	
(a.)	Area Scan	CEN	dx=8mm dy=8mm	
E.	Zoom Scan	5x5	5x7,dx=8mm dy=8mm dz=5mm	
222	Variation (%)	1.50	-0.880000	
Ser.	SAR 10g (W/Kg)	32	0.242569	Ş.
Res	SAR 1g (W/Kg)	2 33	0.584810	35
Ree	SURFACE SAR	82 N.	VOLUME SAR	R
2000 C		23 A.*		5.0
				100 m
10	3 2.2		23	1

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 41 of 97

6.CALIBRATION CERTIFICATES

SARTIMO Calibration Certificate-Extended Dipole Calibrations

According to KDB 450824 D02, Dipoles must be recalibrated at least once every three years; however, immediate re-calibration is required for following conditions. The test laboratory must ensure that the required supporting information and documentation have been included in the SAR report to qualify for extended 3-year calibration interval.

- 1) When the most recent return-loss, measured at least annually, deviates by more than 20% from theprevious measurement (i.e. 0.2 of the dB value) or not meeting the required -20 dB return-loss specification
- 2) When the most recent measurement of the real or imaginary parts of the impedance, measured at least annually, deviates by more than 5 ∩ from the previous measurement

Summary Result:

SID835				
Frquency	Return Loss(dB)	Requirement(dB)	Impedence	
835	-24.46	-20	55.4Ω+2.4jΩ	

SID1900	\$ 33	623	Sis S
Frquency	Return Loss(dB)	Requirement(dB)	Impedence
1900	-23.68	-20	51.2Ω+6.4jΩ

SID 2450	123	Las Bas	3000
Frquency	Return Loss(dB)	Requirement(dB)	Impedence
2450	-25.61	-20	44.9Ω-0.9jΩ

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 42 of 97

Report No.: LCS1507060332E

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.287.1.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/14/2014	JS
Checked by :	Jérôme LUC	Product Manager	10/14/2014	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	10/14/2014	thim Authoushi

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Date	Modifications
10/14/2014	Initial release

Page: 2/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

Report No.: LCS1507060332E

SA	TIMO	COMOSAR E-FIELD PROBE CALIBRATION REPORT
----	------	--

Ref: ACR.287.1.14.SATU.A

TABLE OF CONTENTS

1	Dev	evice Under Test			
2	Prod	luct Description			
	2.1	General Information	4		
3	Mea	surement Method			
	3.1	Linearity	4		
	3.2	Sensitivity			
	3.3	Lower Detection Limit			
	3.4	Isotropy			
	3.5	Boundary Effect			
4	Mea	surement Uncertainty			
5	Cali	bration Measurement Results6			
	5.1	Sensitivity in air	6		
	5.2	Linearity	7		
	5.3	Sensitivity in liquid	7		
	5.4	Isotropy			
6	List	of Equipment9			

Page: 3/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 45 of 97

Report No.:LCS1507060332E

1

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.287.1.14.SATU.A

DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	Satimo		
Model	SSE5		
Serial Number	SN 17/14 EP220		
Product Condition (new / used)	New		
Frequency Range of Probe	0.7 GHz-3GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.179 MΩ		
	Dipole 2: R2=0.175 MΩ		
	Dipole 3: R3=0.180 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

Satimo's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

9	and the second se	the second se
2 5 u b		

Figure 1 – Satimo COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 46 of 97

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.287.1.14.SATU.A

3.2 <u>SENSITIVITY</u>

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%

Page: 5/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 47 of 97

Report No.: LCS1507060332E

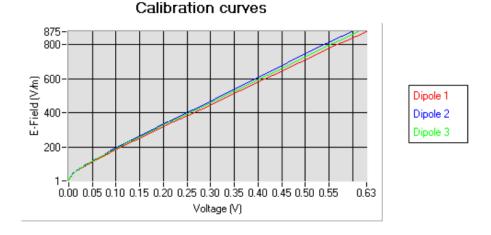
COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.287.1.14.SATU.A

Combined standard uncertainty			5.831%
Expanded uncertainty 95 % confidence level k = 2			12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters		
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

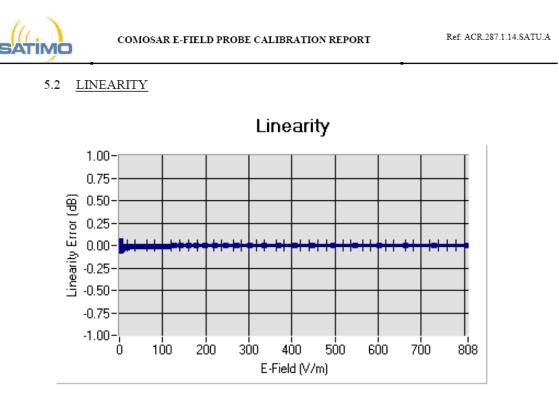

5.1 SENSITIVITY IN AIR

Normx dipole	Normy dipole	Normz dipole
$1 (\mu V/(V/m)^2)$	$2 (\mu V/(V/m)^2)$	$3 (\mu V/(V/m)^2)$
6.02	5.52	5.72

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
99	98	99

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$



Page: 6/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 48 of 97

Report No.: LCS1507060332E

Linearity: 1+/-1.47% (+/-0.06dB)

5.3 SENSITIVITY IN LIQUID

Liquid	Frequency	Permittivity	Epsilon (S/m)	ConvF
	<u>(MHz +/-</u>			
	<u>100MHz)</u>			
HL750	750	42.06	0.89	4.58
BL750	750	56.57	0.99	4.71
HL850	835	42.81	0.89	4.86
BL850	835	53.46	0.96	5.04
HL900	900	42.47	0.96	4.74
BL900	900	56.69	1.08	4.92
HL1800	1800	41.31	1.38	4.16
BL1800	1800	53.27	1.51	4.29
HL2000	2000	39.72	1.43	4.19
BL2000	2000	53.91	1.53	4.28
HL2450	2450	39.05	1.77	3.94
BL2450	2450	52.97	1.93	4.05

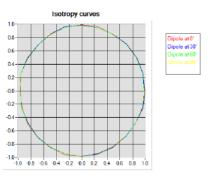
LOWER DETECTION LIMIT: 7mW/kg

Page: 7/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

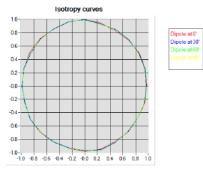
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 49 of 97

Report No.: LCS1507060332E


COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.287.1.14.SATU.A

5.4 ISOTROPY


HL900 MHz

- Axial isotropy:	0.04 dB
- Hemispherical isotropy:	0.07 dB

HL1800 MHz

- Axial isotropy:	
- Hemispherical isotropy:	

0.06 dB 0.08 dB

Page: 8/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 50 of 97

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.287.1.14.SATU.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
Flat Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Reference Probe	Satimo	EP 94 SN 37/08	10/2013	10/2014	
Multimeter	Keithley 2000	1188656	12/2013	12/2016	
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	12/2013	12/2016	
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.	
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Temperature / Humidity Sensor	Control Company	11-661-9	8/2012	8/2015	

Page: 9/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 51 of 97

Report No.:LCS1507060332E

COMOSAR E-Field Probe Calibration Report

Ref : ACR.262.1.14.SATU.A

SHENZHEN STS TEST SERVICES CO., LTD. 1/F, BUILDING 2, ZHUOKE SCIENCE PARK, CHONGQING ROAD FUYONG, BAO' AN DISTRICT, SHENZHEN,CHINA SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: SN 17/14 EP221

> Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

09/01/2014

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALIBAIR test bench, for use with a SATIMO COMOSAR system only. All calibration results are traceable to national metrology institutions.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 52 of 97

Report No.: LCS1507060332E

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.262.1.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	9/19/2014	JS
Checked by :	Jérôme LUC	Product Manager	9/19/2014	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	9/19/2014	Hum Buthneshi

	Customer Name
Distribution :	Shenzhen STS Test Services Co., Ltd.

Issue	Date	Modifications
A	9/19/2014	Initial release

Page: 2/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 53 of 97

Report No.: LCS1507060332E

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.262.1.14.SATU.A

TABLE OF CONTENTS

1	Dev	vice Under Test	
2	Pro	duct Description	
	2.1	General Information	4
3	Me	asurement Method	
	3.1	Linearity	4
	3.2	Sensitivity	5
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Me	asurement Uncertainty	
5	Cal	ibration Measurement Results	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	8
6	List	of Equipment	

Page: 3/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 54 of 97

Report No.: LCS1507060332E

1

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.262.1.14.SATU.A

DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE			
Manufacturer	Satimo			
Model	SSE5			
Serial Number	SN 17/14 EP221			
Product Condition (new / used)	New			
Frequency Range of Probe	0.4 GHz- 6 GHz			
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.179 MΩ			
	Dipole 2: R2=0.167 MΩ			
	Dipole 3: R3=0.178 MΩ			

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

Satimo's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – Satimo COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 55 of 97

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.262.1.14.SATU.A

3.2 <u>SENSITIVITY</u>

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	√3	1	1.732%
Reflected power	3.00%	Rectangular	√3	1	1.732%
Liquid conductivity	5.00%	Rectangular	√3	1	2.887%
Liquid permittivity	4.00%	Rectangular	√3	1	2.309%
Field homogeneity	3.00%	Rectangular	√3	1	1.732%
Field probe positioning	5.00%	Rectangular	√3	1	2.887%
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%

Page: 5/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 56 of 97

Report No.: LCS1507060332E

1	1.			
SA	TI	M	0	

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.262.1.14.SATU.A

Combined standard uncertainty	5.831%
Expanded uncertainty 95 % confidence level k = 2	12.0%

5 CALIBRATION MEASUREMENT RESULTS

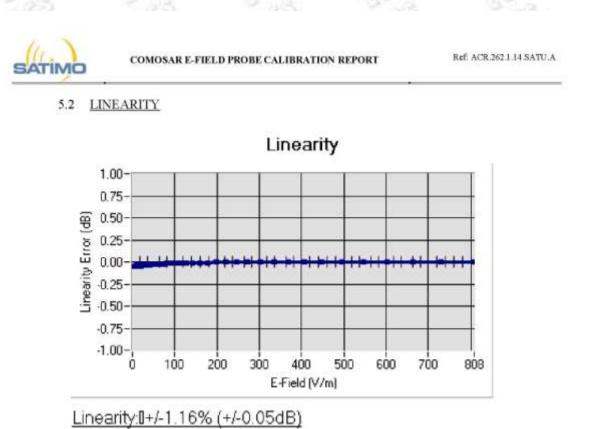

	Calibration Parameters	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

5.1 SENSITIVITY IN AIR

	Normy dipole $2 (\mu V/(V/m)^2)$	
4.81	6.15	6.02

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
95	100	90

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula: $E = \sqrt{E_1^2 + E_2^2 + E_3^2}$


Calibration curves

Page: 6/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 57 of 97

Report No.: LCS1507060332E

5.3 SENSITIVITY IN LIQUID

Liquid	Frequency (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	ConvF
HL450	450	43,90	0.87	4.84
BL450	450	58.63	0.98	4.98
HL750	750	42.06	0.89	4.53
BL750	750	56.57	0.99	4.70
HL850	835	42.81	0.89	4.83
BL850	835	53,46	0.96	5.02
HL900	900	42.47	0.96	4.74
BL900	900	56.69	1.08	4.89
HL1800	1800	41.31	1.38	4.25
BL1800	1800	53.27	1.51	4.34
HL1900	1900	41.09	1.42	4.71
BL1900	1900	54,20	1.54	4.85
HL2000	2000	39.72	1.43	4.27
BL2000	2000	53.91	1.53	4.44
HL2450	2450	39.05	1.77	4.11
BL2450	2450	52.97	1.93	4.25
HL2600	2600	38.35	1.92	4.20
BL2600	2600	51.81	2.19	4.32

LOWER DETECTION LIMIT: 7mW/kg

Page: 7/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 58 of 97

Report No.: LCS1507060332E

1	K			S.	
- 1	11			٦	
		4		ar.	-
3	٩T		IV	16	

COMOSAR E-FIELD PROBE CALIBRATION REPORT

0.04 dB 0.07 dB Ref. ACR.262.1.14.SATU.A

5.4 ISOTROPY

HL900 MHz

- Axial isotropy:	
- Hemispherical	isotropy:

Isotropy carves

HL1800 MHz

- Axial isotropy:	0.05 dB
- Hemispherical isotropy:	0.08 dB

1	H	TH		i
1			X	Digense at
1				Deste al
1			7	
1			1	
1			1	
Y		++++	-1-	
			1-	
1		40 02 04	10 10 1	8

Page: 8/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 59 of 97

Report No.: LCS1507060332E

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.262.1.14.SATU.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
Flat Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Reference Probe	Satimo	EP 94 SN 37/08	10/2013	10/2014	
Multimeter	Keithley 2000	1188656	12/2013	12/2016	
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	12/2013	12/2016	
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.	
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated, No cal required.	
Temperature / Humidity Sensor	Control Company	11-661-9	8/2012	8/2015	

Page: 9/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 60 of 97

Report No.:LCS1507060332E

6.2. SID835Dipole Calibration Ceriticate

SAR Reference Dipole Calibration Report

Ref: ACR.287.4.14.SATU.A

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. 1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD

BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA SATIMO COMOSAR REFERENCE DIPOLE FREQUENCY: 835 MHZ SERIAL NO.: SN 07/14 DIP 0G835-303

> Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 61 of 97

Report No.:LCS1507060332E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/14/2014	JS
Checked by :	Jérôme LUC	Product Manager	10/14/2014	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	10/14/2014	thim Authoushi

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Modifications
А	10/14/2014	Initial release
	1	•

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 62 of 97

Report No.: LCS1507060332E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

TABLE OF CONTENTS

1	Intro	duction4	
2	Dev	ce Under Test	
3	Prod	uct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results	
	6.1	Return Loss and Impedance	6
	6.2	Mechanical Dimensions	
7	Vali	dation measurement7	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	7
	7.3	Body Liquid Measurement	
	7.4	SAR Measurement Result With Body Liquid	9
8	List	of Equipment11	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 63 of 97

Report No.:LCS1507060332E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE	
Manufacturer	Satimo	
Model	SID835	
Serial Number	SN 07/14 DIP 0G835-303	
Product Condition (new / used)	New	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 64 of 97

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss		
400-6000MHz	0.1 dB		

5.2 <u>DIMENSION MEASUREMENT</u>

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

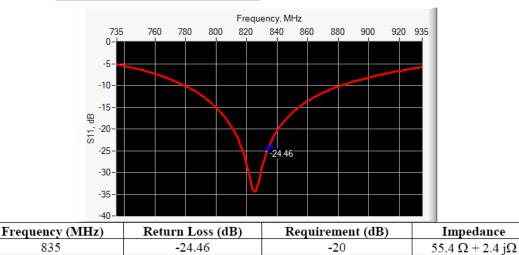
Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 65 of 97

Report No.: LCS1507060332E



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Lm	ım	h m	m	d r	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.	PASS	89.8 ±1 %.	PASS	3.6 ±1 %.	PASS
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 66 of 97

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ε,')		Conductiv	ity (σ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %	PASS	0.90 ±5 %	PASS
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80 ±5 %	
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

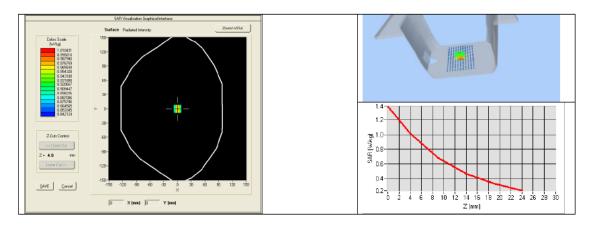
Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 42.3 sigma : 0.92
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm

Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 67 of 97

Report No.:LCS1507060332E



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR	1 g SAR (W/kg/W)		(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56	9.60 (0.96)	6.22	6.20 (0.62)
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 68 of 97

Report No.: LCS1507060332E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ɛr')		Conductiv	ity (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %	PASS	0.97 ±5 %	PASS
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

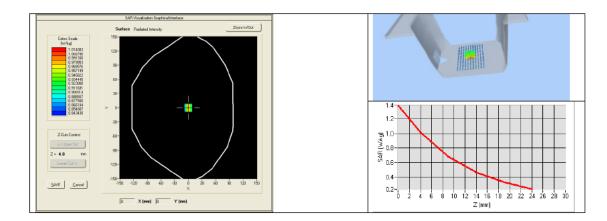
7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 54.1 sigma : 0.97
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 69 of 97


Report No.: LCS1507060332E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
835	9.90 (0.99)	6.39 (0.64)

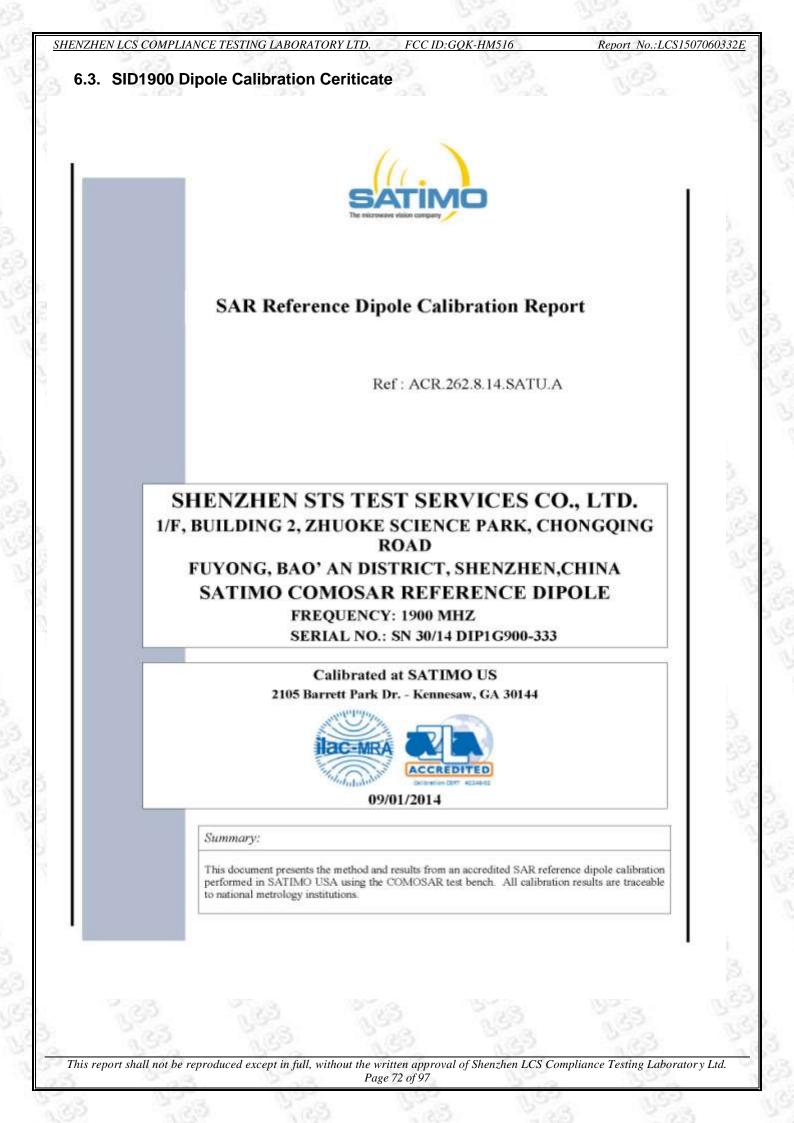
Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 70 of 97

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A


8 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016		
Calipers	Carrera	CALIPER-01	12/2013	12/2016		
Reference Probe	Satimo	EPG122 SN 18/11	10/2013	10/2014		
Multimeter	Keithley 2000	1188656	12/2013	12/2016		
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	12/2013	12/2016		
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015		

Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 71 of 97

Report No.: LCS1507060332E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

8.7. TO 17.5	Function	Date	Signature
Jérôme LUC	Product Manager	9/19/2014	JS
Jérôme LUC	Product Manager	9/19/2014	JS
Kim RUTKOWSKI	Quality Manager	9/19/2014	ALM Putthershi
	Jérôme LUC	Jérôme LUC Product Manager	Jérôme LUC Product Manager 9/19/2014

	Customer Name
Distribution :	Shenzhen STS Test Services Co., Ltd.

Issue	Date	Modifications	
A	9/19/2014	Initial release	

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 73 of 97

Report No.: LCS1507060332E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

TABLE OF CONTENTS

1	Int	roduction	
2	De	vice Under Test	
3	Pro	oduct Description	
	3.1	General Information	4
4	Me	easurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	easurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Ca	libration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Va	lidation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 74 of 97

Report No.: LCS1507060332E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

D	evice Under Test
Device Type	COMOSAR 1900 MHz REFERENCE DIPOLE
Manufacturer	Satimo
Model	SID1900
Serial Number	SN 30/14 DIP1G900-333
Product Condition (new / used)	New

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 75 of 97

Report No.:LCS1507060332E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

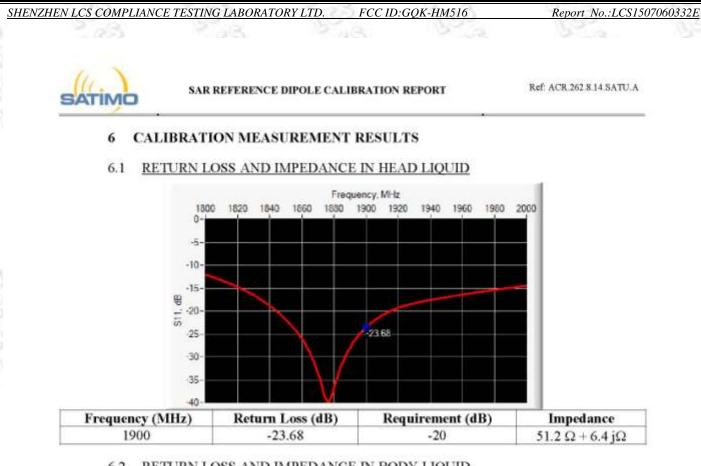
Frequency band	Expanded Uncertainty on Return Loss
 400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT


The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 76 of 97

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Ln	m	hm	m	d r	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8±1%.		3.6 ±1 %.	

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 77 of 97

Report No.: LCS1507060332E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

	•					
900	149.0 ±1 %.		83.3±1%.		3.6±1 %.	
1450	89.1 ±1 %.		51.7±1%		3.6 ±1 %.	
1500	80.5±1%.		50.0±1%.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7±1%.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0±1%.		41.7±1%		3.6 ±1 %.	
1900	68.0±1%.	PASS	39.5±1%	PASS	3.6 ±1 %.	PAS
1950	66.3±1%.		38.5±1%		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0±1%.		35.7±1%.		3.6 ±1 %.	
2300	55.5±1%.		32.6±1%.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5±1%.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5±1%.		25.0±1%.		3.6 ±1 %.	
3500	37.0±1%.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1%,		26.4±1%.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Frequency MHz	Relative per	mittivity (ɛ,')	Conductiv	ity (o) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87±5%	
450	43.5 ±5 %		0.87±5%	
750	41.9 ±5 %		0.89±5%	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20±5%	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37±5%	
1800	40.0 ±5 %		1.40±5%	
1900	40.0 ±5 %	PASS	1.40±5%	PASS
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40±5%	

7.1 HEAD LIQUID MEASUREMENT

Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 78 of 97

Report No.:LCS1507060332E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262 8.14 SATU A

2100	39.8 ±5 %	1.49 ±5 %
2300	39.5 ±5 %	1.67±5%
2450	39.2 ±5 %	1.80 ±5 %
2600	39.0 ±5 %	1.96±5%
3000	38.5 ±5 %	2.40 ±5 %
3500	37.9 ±5 %	2.91±5%

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

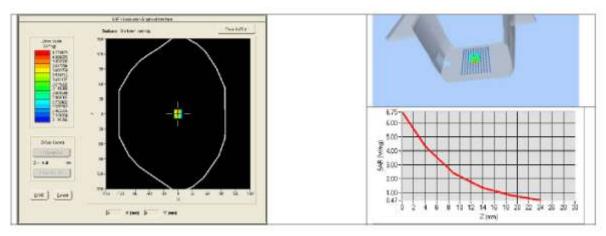
Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 41.1 sigma : 1.42
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7	39.84 (3.98)	20.5	20.20 (2.02)
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	

Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 79 of 97


Report No.: LCS1507060332E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

2450	52.4	24	
2600	55.3	24.6	
3000	63.8	25.7	
3500	67.1	25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (e,')	Conductiv	ity (ơ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80±5%	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94±5%	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0±5 %		1.05±5%	
915	55.0 ±5 %		1.06±5%	
1450	54.0 ±5 %		1.30±5%	
1610	53.8±5 %		1.40±5%	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %	PASS	1.52 ±5 %	PASS
2000	53.3 ±5 %		1.52±5%	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16±5%	
3000	52.0 ±5 %		2.73±5%	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	

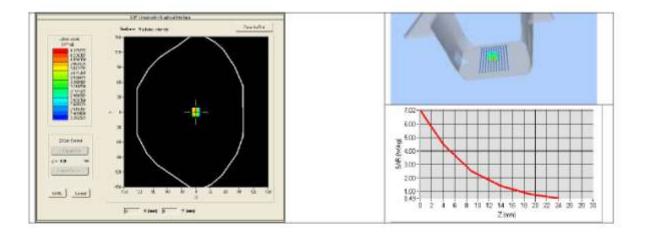
Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 80 of 97

Report No.: LCS1507060332E

SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref: ACR.262.8.14.SATU.A

5500	48.6 ±10 %	5.65 ±10 %	
5600	48.5 ±10 %	5.77 ±10 %	
5800	48.2 ±10 %	6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 54.2 sigma : 1.54
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W	
	measured	measured	
1900	43.33 (4.33)	21.59 (2.16)	

Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 81 of 97

Report No.: LCS1507060332E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.8.14.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	NA Validated. No cal V required. n		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Calipers	Carrera	CALIPER-01	12/2013	12/2016	
Reference Probe	Satimo	EPG122 SN 18/11	10/2013	10/2014	
Multimeter	Keithley 2000	1188656	12/2013	12/2016	
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016	
Amplifier	Aethercomm	SN 046	Characterized prior to Characterize test. No cal required. test. No cal		
Power Meter	HP E4418A	US38261498	12/2013	12/2016	
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015	

Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 82 of 97

SHENZHEN LCS (COMPLIANCE	TESTING L	ABORATORY LTD.	FCC ID:GQK-HM516

Report No.:LCS1507060332E

6.4. SID2450 Dipole Calibration Ceriticate

SAR Reference Dipole Calibration Report

Ref: ACR.287.8.14.SATU.A

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA SATIMO COMOSAR REFERENCE DIPOLE

> FREQUENCY: 2450 MHZ SERIAL NO.: SN 07/14 DIP 2G450-306

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

to national metrology institutions.

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 83 of 97

Report No.: LCS1507060332E

	(n.				
	11			١.	
5	AT	11	/11		
			1		

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR.287.8.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/14/2014	Jes
Checked by :	Jérôme LUC	Product Manager	10/14/2014	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	10/14/2014	Aum Authoushi

a	Customer Name
	Shenzhen LCS
Distribution :	Compliance Testing Laboratory Ltd.

Issue	Date	Modifications	
A	10/14/2014	Initial release	

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of \$ATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of \$ATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 84 of 97

Report No.: LCS1507060332E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU.A

TABLE OF CONTENTS

I	Intr	oduction	
2	Dev	vice Under Test	
3		duct Description	
	3.1	General Information	_4
4	Me	asurement Method	
3	4.1	Return Loss Requirements	5
2	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty	
	5.1	Return Loss	5
8	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results	
8	6.1	Return Loss and Impedance	6
1	6.2	Mechanical Dimensions	6
7	Val	idation measurement	
0	7.1	Head Liquid Measurement	_7
22	7.2	SAR Measurement Result With Head Liquid	7
2	7.3	Body Liquid Measurement	9
8	7.4	SAR Measurement Result With Body Liquid	9
8	Lis	t of Equipment	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 85 of 97

Report No.: LCS1507060332E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU,A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE			
Manufacturer	Satimo			
Model	SID2450			
Serial Number	SN 07/14 DIP 2G450-306			
Product Condition (new / used)	New			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

This document shall not be reproduced, except in full or in part, without the written approval of \$ATTMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of \$ATTMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 86 of 97

Report No.: LCS1507060332E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8:14.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

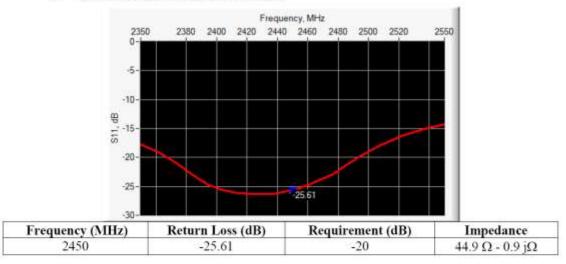
Scan Volume	Expanded Uncertainty	
1 g	20.3 %	
10 g	20.1 %	

Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 87 of 97

Report No.: LCS1507060332E



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU,A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Ln	nm	n h.mm		d r	mm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8±1%.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	PASS	30.4 ±1 %.	PASS	3.6 ±1 %.	PASS
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of \$ATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of \$ATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 88 of 97

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR,287.8.14.SATU.A

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_{τ} ')		Conductiv	ity (o) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0±5%		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %	PASS	1.80 ±5 %	PASS
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

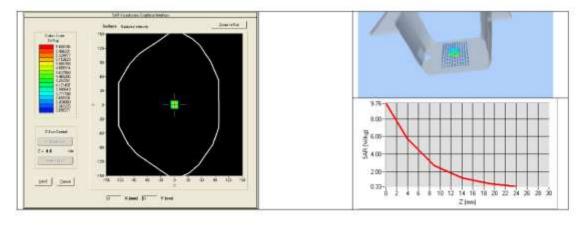
Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' ; 39.0 sigma : 1.77
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm

Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 89 of 97

Report No.: LCS1507060332E



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU.A

Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	2450 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR	(W/kg/W)	10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36,4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	53.89 (5.39)	24	24.15 (2.42)
2600	55.3		24.6	
3000	63,8		25.7	
3500	67.1		25	

Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 90 of 97

Report No.: LCS1507060332E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU.A

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	Relative permittivity (ϵ_{r}')		ity (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0±5%		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3±5%		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %	PASS	1.95 ±5 %	PASS
2600	52.5 ±5 %		2.16±5%	
3000	52.0 ±5 %		2.73±5%	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

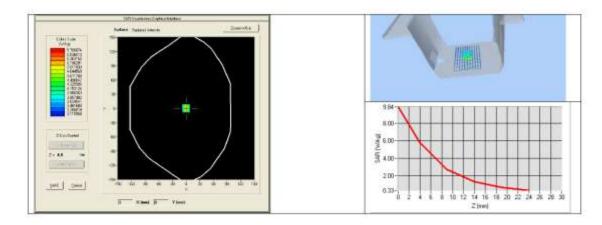
7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Body Liquid Values: eps': 53.0 sigma : 1.93		
Distance between dipole center and liquid	10.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm		
Frequency	2450 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 91 of 97


Report No.: LCS1507060332E

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 287.8.14.SATU.A

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
2450	54.65 (5.46)	24.58 (2.46)	

Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of \$ATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of \$ATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 92 of 97

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.5ATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016		
Calipers	Carrera	CALIPER-01	12/2013	12/2016		
Reference Probe	Satimo	EPG122 SN 18/11	10/2013	10/2014		
Multimeter	Keithley 2000	1188656	12/2013	12/2016		
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016		
Amplifier	Aethercomm	SN 046		Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	12/2013	12/2016		
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015		

Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 93 of 97

7. SAR System PHOTOGRAPHS

DEPTH OF THE LIQUID IN THE PHANTOM-ZOOM IN

Note: The position used in the measurement were according to IEEE1528-2003

Report No.:LCS1507060332E

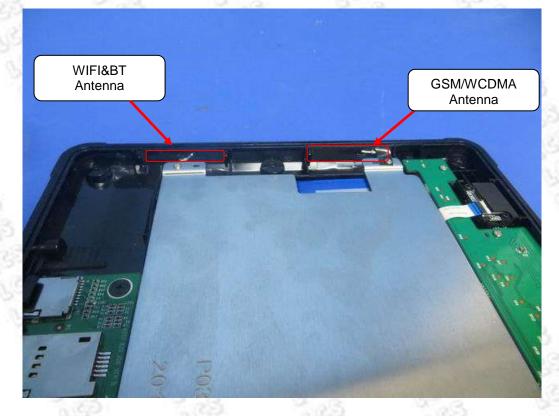
8. SETUP PHOTOGRAPHS

0mm body-worn Back Side Setup Photo

0mm body-worn Left Side Setup Photo

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 95 of 97

Report No.:LCS1507060332E


9. EUTPHOTOGRAPHS

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 96 of 97

Report No.:LCS1507060332E

......The End of Test Report.....

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 97 of 97