

The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, MI 48109-2122 Tel: (734) 764-0500

Measured Radio Frequency Emissions From

TRW TPM Transmitter FCC ID: GQ4-32T IC: 1470A-13T

Report No. 415031-462 September 26, 2008

Copyright © 2008

For: TRW Inc. 24175 Research Drive Farmington Hills, MI 48335-2642

Contact: Vasudhaa Chalasani vasudhaa.chalasani@trw.com Tel: 248.426.5725 Fax: 248.478.7241 PO: Verbal

Measurements made by:

Valdis V. Liepa

Tests supervised by: Report approved by:

Valdis V. Liepa Research Scientist

Test Report Prepared by: Joseph D. Brunett

Summary

Tests for compliance with FCC Regulations Part 15, Subpart C, and Industry Canada RSS-210/GEN, were performed on TRW model/PN(s) 42607-08010, 42607-0C070. This device is subject to the Rules and Regulations as a Transmitter.

In testing completed on July 17, 2008, the device tested in the worst case met the allowed FCC specifications for radiated emissions by 1.0 dB (see p. 6). Besides harmonics, there were no other significant spurious emissions found; emissions from digital circuitry were negligible. The conducted emission tests do not apply, since the device is powered from a 3 VDC battery.

1. Introduction

TRW model/PN(s) 42607-08010, 42607-0C070 was tested for compliance with FCC Regulations, Part 15, adopted under Docket 87-389, April 18, 1989 as subsequently amended, and with Industry Canada RSS-210/Gen, Issue 6, September 2005. The tests were performed at the University of Michigan Radiation Laboratory Willow Run Test Range following the procedures described in ANSI C63.4-2003 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The Site description and attenuation characteristics of the Open Area Test Site are on file with FCC Laboratory, Columbia, Maryland (FCC Reg. No: 91050) and with Industry Canada, Ottawa, ON (File Ref. No: IC 2057A-1).

2. Equipment Used

The pertinent test equipment commonly used in our facility for measurements is listed in Table 2.1 below. The middle column identifies the specific equipment used in these tests. The quality system employed at the University of Michigan Radiation Laboratory Willow Run Test Range has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to national standards.

Test Instrument	Used	Manufacturer/Model	Q Number
Spectrum Analyzer (9kHz-26GHz)	Х	Hewlett-Packard 8593E, SN: 3412A01131	HP8593E1
Spectrum Analyzer (9kHz-6.5GHz)		Hewlett-Packard 8595E, SN: 3543A01546	JDB8595E
Power Meter		Hewlett-Packard, 432A	HP432A1
Harmonic Mixer (26-40 GHz)		Hewlett-Packard 11970A, SN: 3003A08327	HP11970A1
Harmonic Mixer (40-60 GHz)		Hewlett-Packard 11970U, SN: 2332A00500	HP11970U1
Harmonic Mixer (75-110 GHz)		Hewlett-Packard 11970W, SN: 2521A00179	HP11970W1
Harmonic Mixer (140-220 GHz)		Pacific Millimeter Prod., GMA, SN: 26	PMPGMA1
S-Band Std. Gain Horn		S/A, Model SGH-2.6	SBAND1
C-Band Std. Gain Horn		University of Michigan, NRL design	CBAND1
XN-Band Std. Gain Horn		University of Michigan, NRL design	XNBAND1
X-Band Std. Gain Horn		S/A, Model 12-8.2	XBAND1
X-band horn (8.2- 12.4 GHz)		Narda 640	XBAND2
X-band horn (8.2- 12.4 GHz)		Scientific Atlanta, 12-8.2, SN: 730	XBAND3
K-band horn (18-26.5 GHz)		FXR, Inc., K638KF	KBAND1
Ka-band horn (26.5-40 GHz)		FXR, Inc., U638A	KABAND1
U-band horn (40-60 GHz)		Custom Microwave, HO19	UBAND1
W-band horn(75-110 GHz)		Custom Microwave, HO10	WBAND1
G-band horn (140-220 GHz)		Custom Microwave, HO5R	GBAND1
Bicone Antenna (30-250 MHz)	Х	University of Michigan, RLBC-1	LBBIC1
Bicone Antenna (200-1000 MHz)	Х	University of Michigan, RLBC-2	HBBIC1
Dipole Antenna Set (30-1000 MHz)	Х	University of Michigan, RLDP-1,-2,-3	UMDIP1
Dipole Antenna Set (30-1000 MHz)		EMCO 3121C, SN: 992 (Ref. Antennas)	EMDIP1
Active Rod Antenna (30 Hz-50 MHz)		EMCO 3301B, SN: 3223	EMROD1
Active Loop Antenna (30 Hz-50 MHz)		EMCO 6502, SN:2855	EMLOOP1
Ridge-horn Antenna (300-5000 MHz)	Х	University of Michigan	UMRH1
Amplifier (5-1000 MHz)	Х	Avantek, A11-1, A25-1S	AVAMP1
Amplifier (5-4500 MHz)	Х	Avantek	AVAMP2
Amplifier (4.5-13 GHz)		Avantek, AFT-12665	AVAMP3
Amplifier (6-16 GHz)		Trek	TRAMP1
Amplifier (16-26 GHz)		Avantek	AVAMP4
LISN Box		University of Michigan	UMLISN1
Signal Generator		Hewlett-Packard 8657B	HPSG1

Table 2.1 Test Equipment.

3. Configuration and Identification of Device Under Test (DUT)

3.1 Design and Identification of the Device

The DUT is a 315 MHz TPMS, Tire Pressure Monitor Sensor (transmitter), $2.5 \times 0.75 \times 3$ inches in size, and is FSK modulated. The transmitter consists of an RF MMIC that is stabilized by a 9.84 MHz crystal. The stem and PCB are used as the antenna. The DUT was designed and manufactured by TRW Inc., 24175 Research Drive, Farmington Hills, MI 48335-2642. It is identified as:

TRW TPMS Transmitter Model/PN(s): 42607-08010, 42607-0C070 FCC ID: GQ4-32T IC: 1470A-13T

3.2 Models

There are two versions of the DUT, one with a 20 degree bend (42607-08010) between the tire stem and the PCB and one with a 40 degree bend (42607-0C070) between the stem and the PCB. All electronic components are identical. The DUT with the 20 degree stem demonstrated the highest fundamental output power, and was fully tested.

3.3 Modes of Operation

The DUT periodically transmits tire pressure data and is subject to FCC part 15.231(e) emissions limits. The device is also capable of being remotely actuated (via LF interrogation) by trained service personnel, and (per FCC correspondence) those modes fall under FCC part 15.231(a)(5). Figure 6.1 demonstrates compliance with both 15.231(a)(2) and (5). A list of all operating modes is included in the Description of Operation exhibit.

3.4 EMI/EMC Relevant Modifications

There were no modifications made to the DUT by this laboratory.

4. Regulatory Limits

The DUT tested falls under the category of an Intentional Radiators and the Digital Devices. For FCC, it is subject to Part 15, Subpart C (Section 15.231(a),(c), & (e),15.209) and Subpart A (Section 15.33). For Industry Canada it is subject to RSS-210 (2.6, 2.7). The applicable testing frequencies with corresponding emission limits are given in Tables 4.1 and 4.2 below.

4.1 Radiated Emission Limits

Table 4.1. General Radiated Emission Limits (FCC: 15.33, 15.35, 15.209; IC: RSS-210, 2.7 Table 2) (Digital Class B)

Freq. (MHz)	E_{lim} (3m) $\mu V/m$	$E_{lim} dB(\mu V/m)$
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-2000	500	54.0

Note: Average readings apply above 1000 MHz (1 MHz BW) Quasi-Peak readings apply to 1000 MHz (120 kHz BW)

	Fundan	nental	Spurious**		
Frequency	Ave. E _{li}	_m (3m)	Ave. E_{lim} (3m)		
(MHz)	(µV/m)	$dB (\mu V/m)$	(µV/m)	$dB (\mu V/m)$	
260.0-470.0	1500-5000*		150-500		
315.0	2417	67.7	241.7	47.7	
433.9	4399	72.9	439.9	52.9	
322-335.4	Restricted				
399.9-410	Bands		200	46.0	
608-614	Danus				
960-1240					
1300-1427					
1435-1626.5	Restricted		500	54.0	
1660-1710	Bands		500	54.0	
1718.9-1722.2					
2200-2300					

Table 4.2. Radiated Emission Limits (FCC: 15.231(e), 15.205(a); IC: RSS-210; 2.7 Table 5). (Transmitter)

* Linear interpolation, formula: E = -2833.2 + 16.67*f (MHz)

** Measure up to tenth harmonic; 120 kHz RBW up to 1 GHz, 1 MHz RBW above 1 GHz

4.3 Exemptions

For devices operating in transportation vehicles, digital emissions are exempt (FCC 15.103(a), IC correspondence) and need not be reported.

4.4 Power Line Conducted Emission Limits

The power line conducted emission limits and tests do not apply here, as the DUT is powered by a 3 VDC battery.

4.5 Supply Voltage Variation

Measurements of the variation in the fundamental radiated emission shall be performed with the supply voltage varied between 85% and 115% of the nominal rated value. For battery operated equipment, the equipment tests shall be performed using a new battery.

5. Test Procedures

5.1 Semi-Anechoic Chamber Radiated Emission Testing

To become familiar with the emission behavior of the DUT, the DUT was first studied and measured in a shielded semi-anechoic chamber. In the chamber is set-up similar to that of an outdoor 3-meter site, with a turntable, antenna mast, and a ground plane. Instrumentation includes spectrum analyzers and other equipment as needed.

In testing for radiated emissions, a transmitter was provided by the manufacturer that is capable of repeated emissions. It was placed on the test table flat, on its side, and on its end. In the chamber we studied and recorded all the emissions using a Bicone antenna up to 300 MHz and a ridged horn antenna above 200 MHz. The measurements made in the chamber below 1 GHz are used for pre-test evaluation only. The measurements made above 1 GHz are used in pre-test evaluation and in final compliance assessment. We note that for the horn antenna, the antenna pattern is directive and the measurement is essentially that of free space (no ground reflection). Consequently, it is not essential to measure the DUT for both antenna polarizations, as long as the DUT is measured on all three of its major axis. In the chamber we also recorded the spectrum and modulation characteristics of the carrier. These data are presented in subsequent sections.

5.2 Open Area Test Site (OATS) Radiated Emission Testing

After the chamber measurements are complete, emissions are re-measured on the outdoor 3-meter open area test site at the fundamental and harmonics up to 1 GHz using tuned dipoles and/or a high frequency biconical antenna. The DUT is placed on the test table flat, on its side, and on its end, and worst case emissions are recorded. Photographs included in this filing show the DUT on the OATS.

5.3 Field Calculation for Radiated Emission Measurements

To convert the dBm's measured on the spectrum analyzer to $dB(\mu V/m)$, we use expression

$$E_3(dB\mu V/m) = 107 + P_R + K_A - K_G$$

where

 P_R = power recorded on spectrum analyzer, dB, measured at 3m

 K_A = antenna factor, dB/m

 K_G = pre-amplifier gain, including cable loss, dB

When presenting the data, at each frequency the highest measured emission under all of the possible orientations is given. Computations and results are given in Table 5.1. There we see that the DUT meets the limit by XX dB.

5.4 Power Line Conducted Emission Testing

These tests do not apply, since the DUT is powered from a 3 VDC battery.

6. Test Results

6.1 Correction For Pulse Operation

When the transmitter is activated (with 3 second resting period or by single LF interrogation), it can, in the worst case, transmit four 7.75 ms words, two of which may occur within any given 100 ms window. See Figure 6.1. Computing the duty factor results in:

 $K_E = (2 \times 7.75 \text{ ms}) / 100 \text{ ms} = 0.155 \text{ or} -16.2 \text{ dB}.$

6.2 Emission Spectrum

Using the ridge-horn antenna and DUT placed in its aperture, emission spectrum was recorded and is shown in Figure 6.2. We note that in scanning from 30 MHz to 4.5 GHz using Bicone and the ridge horn antennas, there were no other significant spurious emissions observed.

6.3 Bandwidth of the Emission Spectrum

The measured spectrum of the signal is shown in Figure 6.3. The allowed (-20 dB, 99%) bandwidth is 0.25% of 315 MHz MHz, or 787.25 kHz. From the plot we see that the -20 dB bandwidth is 138.0 kHz, and the center frequency is 315 MHz.

6.4 Effect of Supply Voltage Variation and Test Battery Voltages

The DUT has been designed to be powered by a 3 VDC battery. For this test, the battery was replaced by a laboratory variable power supply. Relative power radiated was measured at the fundamental as the voltage was varied from 2 to 4 volts. The emission variation is shown in Figure 6.4.

Batteries:	before testing	$V_{oc} =$	3.23 V
	after testing	$V_{oc} =$	3.03 V
Ave. current	from batteries	I = 9	0.1 mA (cw)

	Radiated Emission - RFTRW 32T; FCC/IC										
	Freq.	Ant.	Ant.	Pr	Det.	Ka	Kg	E3*	E3lim	Pass	
#	MHz	Used	Pol.	dBm	Used	dB/m	dB	$dB\mu V/m$	dBµV/m	dB	Comments
1	315.0	Dip	Н	-28.3	Pk	18.6	21.3	59.8	67.7	7.9	flat 20 deg. Stem
2	315.0	Dip	V	-35.5	Pk	18.6	21.3	52.6	67.7	15.1	end
3	630.0	Dip	Н	-60.5	Pk	24.4	18.2	36.5	47.7	11.2	flat
4	630.0	Dip	V	-61.2	Pk	24.4	18.2	35.8	47.7	11.9	end
5	945.0	Dip	Н	-75.2	Pk	28.8	16.2	28.2	47.7	19.4	flat, noise
6	945.0	Dip	V	-75.6	Pk	28.8	16.2	27.8	47.7	19.8	end, noise
7	1260.0	Horn	Н	-39.2	Pk	20.6	28.1	44.1	54.0	9.9	flat
8	1575.0	Horn	Η	-51.4	Pk	21.5	28.1	32.8	54.0	21.2	flat
9	1890.0	Horn	Н	-31.9	Pk	22.2	28.1	53.0	54.0	1.0	end
10	2205.0	Horn	Н	-35.9	Pk	23.0	26.5	51.4	54.0	2.5	flat
11	2520.0	Horn	Н	-37.8	Pk	23.9	26.0	50.9	54.0	3.1	end
12	2835.0	Horn	Η	-53.2	Pk	24.8	24.7	37.7	54.0	16.3	flat
13	3150.0	Horn	Н	-58.3	Pk	25.8	23.6	34.7	54.0	19.2	flat
14											
15											
16											
17	315.0	Dip	Н	-28.3	Pk	18.6	21.3	59.8	67.7	7.9	flat 40 deg. stem
18	1890.0	Horn	Η	-33.6	Pk	22.2	28.1	51.3	54.0	2.7	end
19											
20											
21											
22											
23											
24	24 * Includes 16.2 dB duty factor										
25											
26				Digital	emissio	ns more	than 20	dB below l	FCC/IC Clas	s B Li	mit.
27											

Table 5.1 Highest Emissions Measured

	Conducted Emissions							
	Freq.	Line	Det.	Vtest	Vlim	Pass		
#	MHz	Side	Used	dBµV	dBµV	dB	Comments	
	Not applicable							

Meas. 07/24/08; U of Mich.

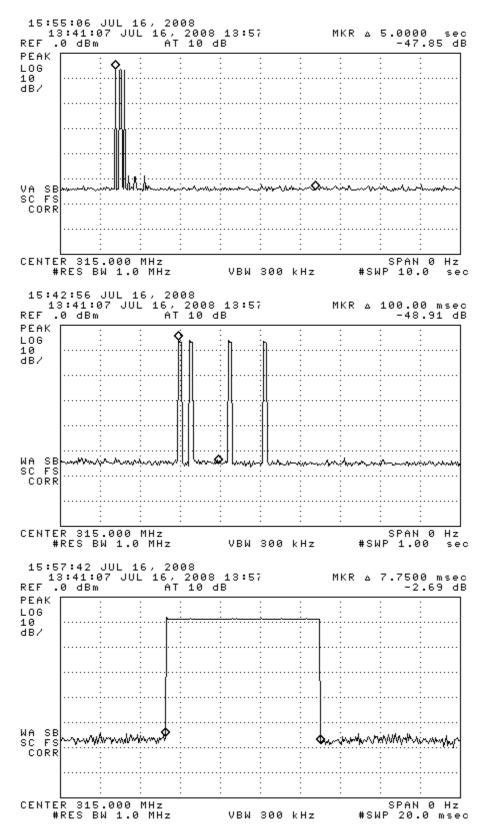


Figure 6.1. Transmissions modulation characteristics: (top) complete transmission after LF interrogation, (center) expanded transmission 4-words, (bottom) expanded word.

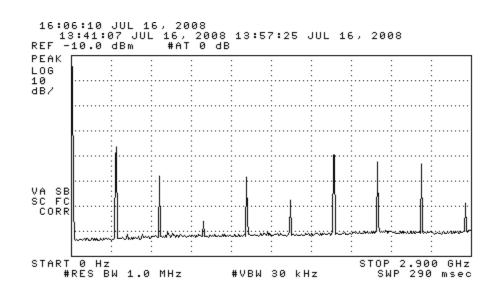


Figure 6.2.Emission spectrum of the DUT (pulsed emission).The amplitudes are only indicative (not calibrated).

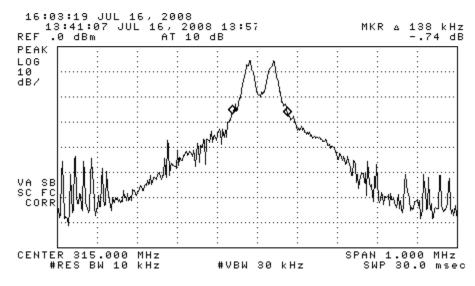


Figure 6.3. Measured bandwidth of the DUT (pulsed emission).

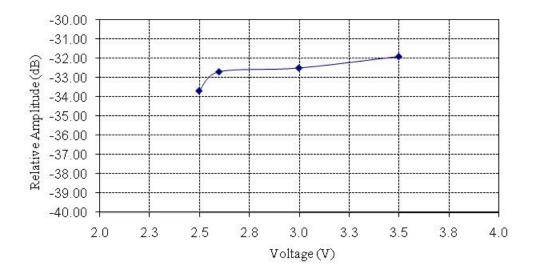


Figure 6.4. Relative emissions at 315 MHz vs. supply voltage. (pulsed emission)

DUT on OATS – one of three axes tested

DUT on OATS (close-up) – one of three axes tested