

Radio Satellite Communication Untertürkheimer Straße 6-10 . D-66117 Saarbrücken

Telefon: +49 (0)681 598-9100 Telefax: -9075

RSC11

issue test report consist of 66 Pages

Page 1 (66)

Accredited Bluetooth Test Facility (BQTF)

Test report no.: 2_2859-01-01/02 FCC Part 24 FCC ID: GM3GSMA

CETECOM – ICT Services GmbH Untertürkheimerstr. 6-10 66117 Saarbrücken, Germany

Telephone: + 49 (0) 681 / 598-0 Fax: + 49 (0) 681 / 9075

Test report nr.:2 2859-01-01/02 Issue date: 2002-09-23 Page 2 (66)

Table of Contents

- 1 General information
- 1.1 **Notes**
- 1.2
- Testing laboratory Details of applicant 1.3
- Application details Test item
- **Test standards**
- 2 **Technical test**
- 2.1 2.2 **Summary of test results**
- Test report
- **General information** 1

1.1 **Notes**

The test results of this test report relate exclusively to the test item specified in 1.5. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

1.2 **Testing laboratory**

CETECOM ICT Services GmbH

Untertürkheimer Straße 6 - 10

66117 Saarbrücken

Germany

Telefone : +49 681 598 - 9100 Telefax : +49 681 598 - 9075

E-mail : Michael.Berg@ict.cetecom.de

: www.cetecom-ict.de Internet

Accredited testing laboratory

DAR-registration number: TTI-P-G-166/98-30

The Test laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025.

Accredited Bluetooth[™] Test Facility (BQTF)

BLUETOOTH[™] is a trademark owned by Bluetooth SIG, Inc. and licensed to CETECOM

1.3 Details of applicant

Name : Psion Digital Ltd.
Street : 12 Park Crescent
City : London W1B 1PH

Country: UK

Telephone: +44 207 317 4296 Telefax: +44 207 317 4213 Contact: Mr. Steve Lucas Telephone: +44 207 317 4296

1.4 Application details

Date of receipt of application : 2002-07-17
Date of receipt of test item : 2002-09-19
Date of test : 2002-09-19/20

1.5 Test item

Type of equipment : **GSM Tri Band Data Terminal**

Type designation : netpad Manufacturer : Applicant

Street :

City

Country

Serial number : IMEI: 010099000057029 Unique ID: 1000-8C70-15B2-004E

Additional information :

Frequency : 1850 – 1910 MHz

Type of modulation : 300KGXW

Number of channels : 300

Antenna : Integral antenna

Power supply : 7,2V Rechargeable Lithium Ion Battery

Output power : 24.4 dBm Peak , ERP : 26.15 dBm (Burst); EIRP:28.25 dBm (Burst)

Type of equipment : Temperature range : $-30^{\circ}\text{C} - +60^{\circ}\text{C}$

FCC - ID : GM3GSMA

Hardware :

Software : 1.53 (210)

1.6 Test standards: FCC Part 24

2 Technical test

The radiated measurements were performed vertical and horizontal over the whole frequency range. We start at 1 m high with vertical receiving antenna and rotate the dish continuously. During rotation we use the antenna lift system to vary the high from 1 to 4 m. So we find maximum radiation output. At this points we do manual re-measurements. After this we do the same measurements in horizontal position of the receiving antenna. This (horizontal and vertical) is made for all the three planes of the test sample. We use the maximum received results.

All measurements was done based on ANSI C63.4.

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course of the tests performed.

FINAL VERDICT: PASS

Technical responsibility for area of testing:

2002-09-23 RSC 8411 Berg M.

Date Section Name Signature

Technical responsibility for area of testing:

2002-09-23 RSC8412 Hausknecht D. U. K. cus / e chi Date Section Name Signature

2.2 Testreport

TEST REPORT

Test report no.: 2_2859-01-01/02

TEST REPORT REFERENCE

LIST OF MEASUREMENTS

PARAMETER TO BE MEASURED Paragraph	PAGE
POWER OUTPUT SUBCLAUSE § 24.232	7
FREQUENCY STABILITY SUBCLAUSE § 24.235	9
AFC FREQ ERROR vs. VOLTAGE	10
AFC FREQ ERROR vs. TEMPERATURE	10
EMISSIONS LIMITS \$24.238	12
OCCUPIED BANDWIDTH \$2.989	37
Conducted emissions § 15.107/207	44
TEST SITE	48
PHOTOGRAPHS OF THE FOLLIPMENT	50

POWER OUTPUT

SUBCLAUSE § 24.232

Summery:

This paragraph contains both average , peak output powers and EIRP measurements for the mobile station.

In all cases, the peak output power is within the required mask (this mask is specified in the JTC standarts, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Spectrum Analyzer FSIQ 26 (peak and average)

This measurements were done at 3 frequencies, 1850,2 MHz, 1880,0 MHz and 1909,8 MHz (bottom, middle and top of operational frequency range)

Peak power and Average power was measured with a calibrated Signal Analyzer (FSIQ from R&S). Peak power: max Power of the Signal measured with 3 MHz ResBW and 3 MHz VBW. Average power is the integrated Power over Time from the modulated GSM Signal in the burst.

Limits:

Power Step	Nominal Peak Output Power (dBm)	Tolerance (dB)
0	+30	± 2

Power Measurements:

Conducted:

Frequency (MHz)	Power Step	Peak Output Power (dBm)	Burst Average Output Power (dBm)
1850.2	0	24.4	24.3
1880.0	0	24.1	24.0
1909.8	0	24.0	23.9
Measuremen	t uncertainty	±0.5	dB

EIRP Measurements

Description: This is the test for the maximum radiated power from the phone.

Rule Part 24.232(b) specifies that "Mobile/portable stations are limited to 2 watts e.i.r.p. peak power..." and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

Method of Measurement:

- 1. In an anechoic antenna test chamber, a half-wave dipole antenna for the frequency band of interest is placed at the reference center of the chamber. An RF Signal source for the frequency band of interest is connected to the dipole with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A known (measured) power (Pin) is applied to the input of the dipole, and the power received (Pr) at the chamber's probe antenna is recorded.
- 2. A "reference path loss" is established as Pin + 2.1 Pr.
- 3. The EUT is substituted for the dipole at the reference centre of the chamber. The EUT is put into CW test mode and a scan is performed to obtain the radiation pattern.
- 4. From the radiation pattern, the co-ordinates where the maximum antenna gain occurs is identified.
- 5. The EUT is then put into pulse mode at its maximum power level (Power Step 0).
- 6. "Gated mode" power measurements are performed with the receiving antenna placed at the co-ordinates determined in Step 3 to determine the output power as defined in FCC Rule 24.232 (b) and (c). The "reference path loss" from Step 1 is added to this result.
- 7. This value is EIRP since the measurement is calibrated using a half-wave dipole antenna of known gain (2.1 dBi) and known input power (Pin).
- 8. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.1dBi.

Limits:

Power Step	Burst Average EIRP (dBm)	
0	<33	

Power Measurements:

Radiated:

		BURST AVERAGE		MODULATION AVERAGE	
Frequency	Power Step	(d)	Bm)	(dl	Bm)
(MHz)		EIRP	ERP	EIRP	ERP
1850.2	0	28.25	26.15	19.15	17.05
1880.0	0	28.14	26.04	19.04	16.94
1909.8	0	28.14	26.04	19.04	16.94
Measurement unc	ertainty	±3 dB		·	

FREQUENCY STABILITY

SUBCLAUSE § 24.235

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU 200 DIGITAL RADIOCOMMUNICATION TESTER..

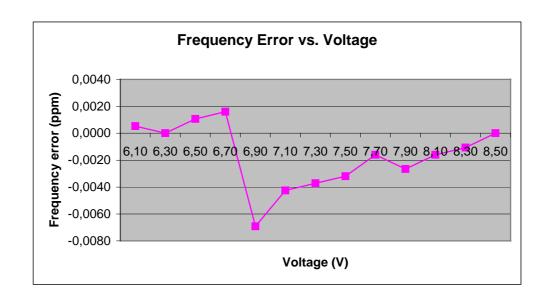
- 1. Measure the carrier frequency at room temperature.
- 2. Subject the mobile station to overnight soak at -30 C.
- 3. With the mobile station, powered with 3.6 Volts, connected to the CMU 200 and in a simulated call on channel 661 (centre channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
- 4. Repeat the above measurements at 10 C increments from -30 C to +60 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with nominal 3.6 Volts. Vary supply voltage from minimum 3.4 Volts to maximum 4.0 Volts, in 13 steps remeasuring carrier frequency at each voltage. Pause at 3.6 V ac Volts for 1 1/2 hours un-powered, to allow any self heating to stabilize, before continuing.
- 6. Subject the mobile station to overnight soak at +60 C.
- 7. With the mobile station, powered with 3.6 Volts, connected to the CMU 200 and in a simulated call on channel 661(centre channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
- 8. Repeat the above measurements at 10 C increments from +60 C to -30 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5 C during the measurement procedure.

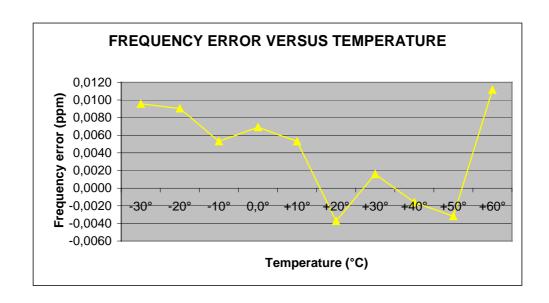
Measurement Limit:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. This transceiver is specified to operate with an input voltage of between 3.4 V dc and 4.0 V dc, with a nominal voltage of 3.6V dc...

Test report nr.:2_2859-01-01/02 Issue date: 2002-09-23 Page 10 (66)

AFC FREQ ERROR vs. VOLTAGE


Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
6.1	1	0,00000005	0,0005
6.3	0	0,00000000	0,0000
6.5	2	0,00000011	0,0011
6.7	3	0,00000016	0,0016
6.9	-13	-0,00000069	-0,0069
7.1	-8	-0,00000043	-0,0043
7.3	-7	-0,00000037	-0,0037
7.5	-6	-0,00000032	-0,0032
7.7	-3	-0,00000016	-0,0016
7.9	-5	-0,00000027	-0,0027
8.1	-3	-0,00000016	-0,0016
8.3	-2	-0,00000011	-0,0011
8.5	0	0,00000000	0,0000


AFC FREQ ERROR vs. TEMPERATURE

TEMPERATURE	Frequency Error	Frequency Error	Frequency Error
(° C)	(Hz)	(%)	(ppm)
-30	18	0,00000096	0,0096
-20	17	0,00000090	0,0090
-10	10	0,00000053	0,0053
±0.0	13	0,00000069	0,0069
+10	10	0,00000053	0,0053
+20	-7	-0,00000037	-0,0037
+30	3	0,00000016	0,0016
+40	-3	-0,00000016	-0,0016
+50	-6	-0,00000032	-0,0032
+60	21	0,00000112	0,0112

Test report nr.:2_2859-01-01/02 Issue date: 2002-09-23 Page 11 (66)

EMISSIONS LIMITS

§24.238

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4 – 1992 requirements and is recognised by the FCC to be in compliance for a 3 and a10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission test procedure is as follows:

- a) The test item was placed on a 0. 8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load.
- c) A double ridged waveguide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters using the equation shown below:

 $Pg = E^{2} 4\pi d^{2} / 120\pi = E^{2} d^{2} / 30$ where : P = power in watts

g = arithmetic gain of transmitting antenna over isotropic radiator.

E = maximum field strength in volts/meter

d = measurement distance in meter

Using a dipole gain of 1.67 or 2.2 dB and a test distance of 3 meters, this equation reduces to:

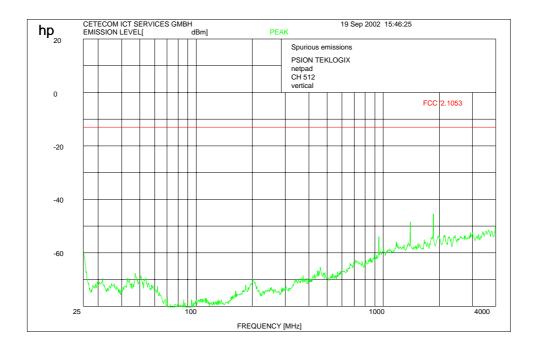
P(dBm) = E(dBuV/m) - 97.2dB

Measurement Limit:

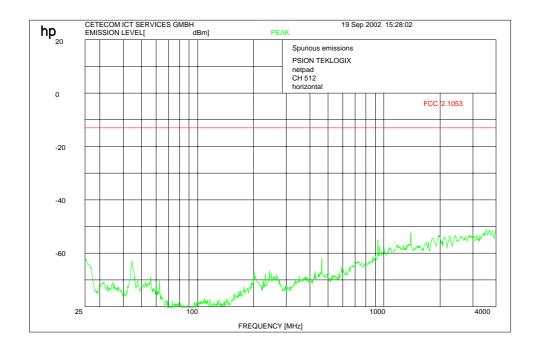
Sec. 24.238 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

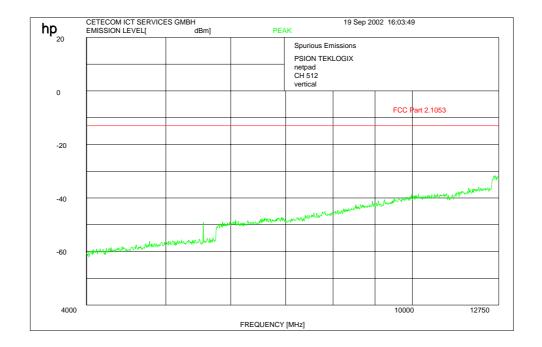
Measurement Results:

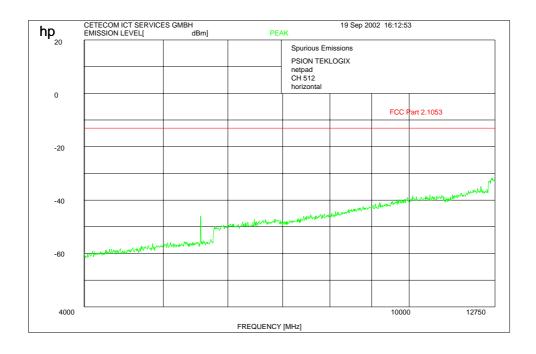

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (1850.2 MHz, 1879.8 MHz and 1909.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

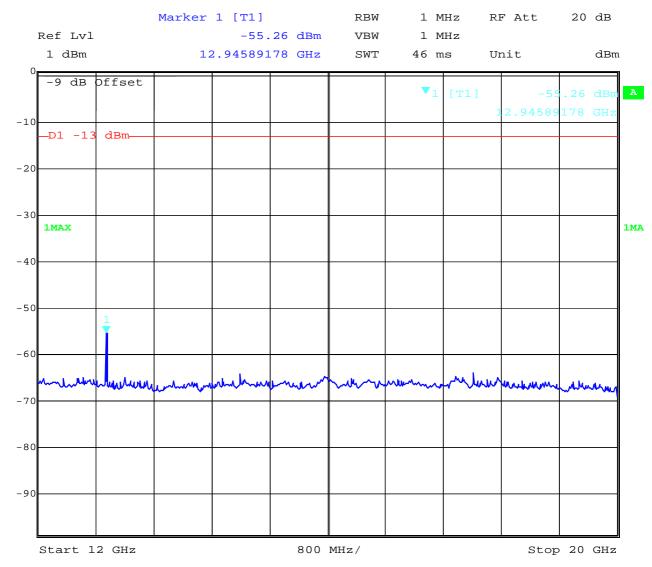
RESULTS OF OPEN FIELD RADIATED TEST FOR FCC-24:

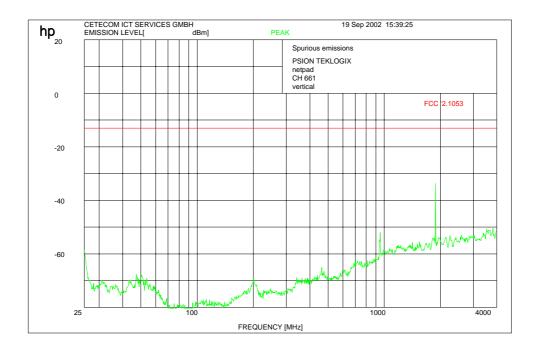

		EMIS	SION LIMITAT	TONS	
f (MHz)		amplitude of emission (dBm)	limit max. allowed emmision power (dBm)	actual attenuation below frequency of operation (dBc)	results
			CH 512		
1850.2		28.25	-13.0 (41.25 dBc)		carrier
all	peaks	>>20 dB		below	Limit
L			CH 661		
1880.0		28.14	-13.0 (41.14 dBc)		carrier
all	peaks	>>20 dB		below	Limit
			CH 810		
1909.8		28.14	-13.0 (41.14 dBc)		carrier
all	peaks	>>20 dB		below	Limit
Measure	ment uncer	tainty		± 0.5dB	

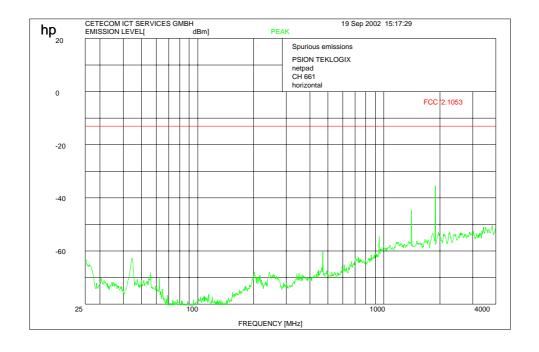
Channel 512 (up to 4 GHz horizontal and vertical)
Measured with Docking Station and external Power Supply (Sunpower 2MA18-150)



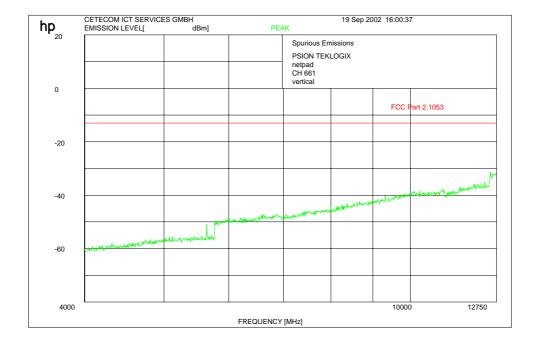

Peaks at 1850.2 MHz shows the carrier frequency suppressed by narrow band rejection filter

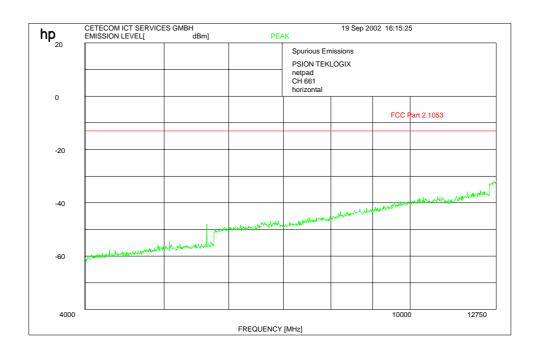

Channel 512 (up to 12 GHz horizontal and vertical)
Measured with Docking Station and external Power Supply (Sunpower 2MA18-150)

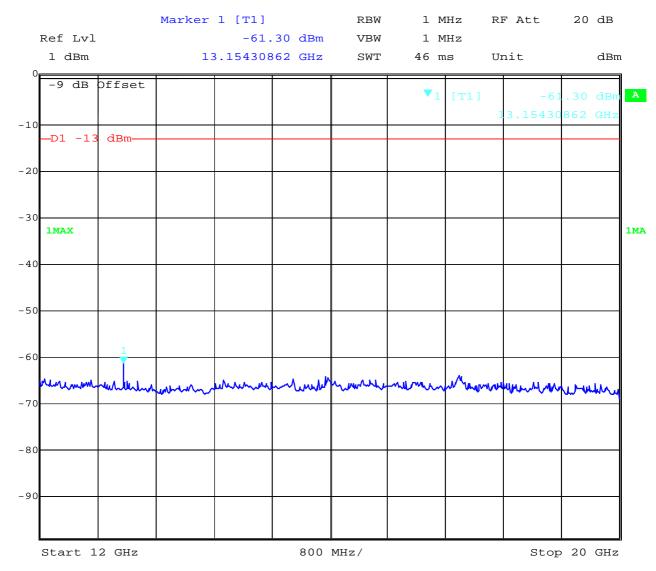

Channel 512 : up to 20 GHz (vertical/horizontal)
Measured with Docking Station and external Power Supply (Sunpower 2MA18-150)


Date: 20.SEP.2002 08:05:12

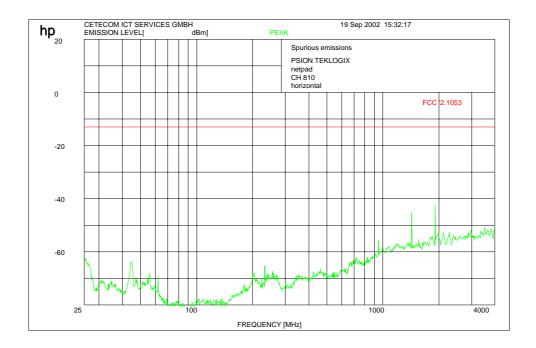
Channel 661 (up to 4 GHz) Measured with Docking Station and external Power Supply (Sunpower 2MA18-150)



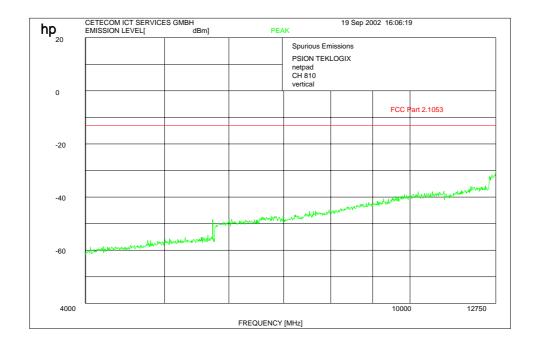

Peaks at 1880 MHz shows the carrier frequency suppressed by narrow band rejection filter

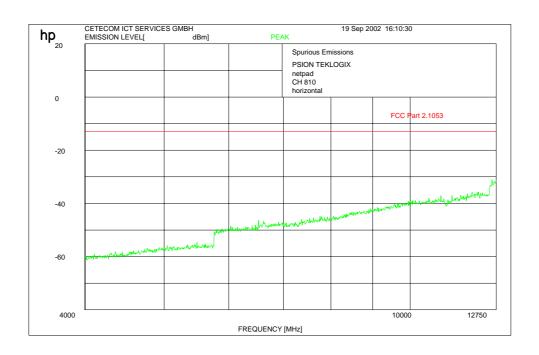

Channel 661 (up to 12 GHz) Measured with Docking Station and external Power Supply (Sunpower 2MA18-150)

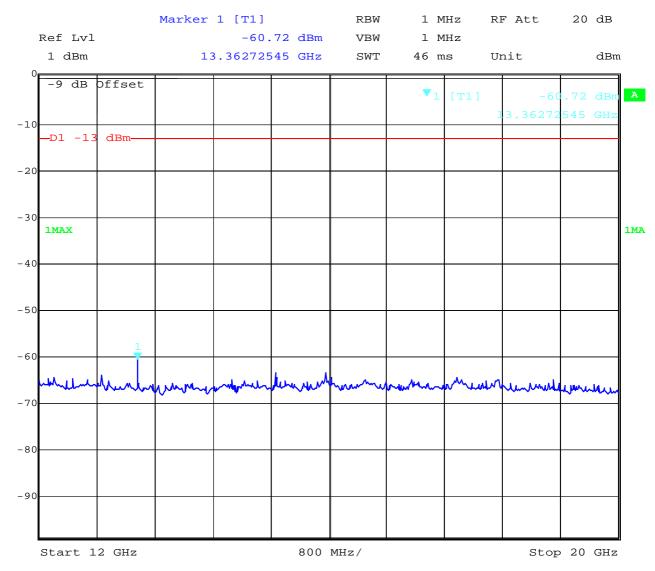

Channel 661 : up to 20 GHz Measured with Docking Station and external Power Supply (Sunpower 2MA18-150)


Date: 20.SEP.2002 08:06:18

Channel 810 up to 4 GHz Measured with Docking Station and external Power Supply (Sunpower 2MA18-150)

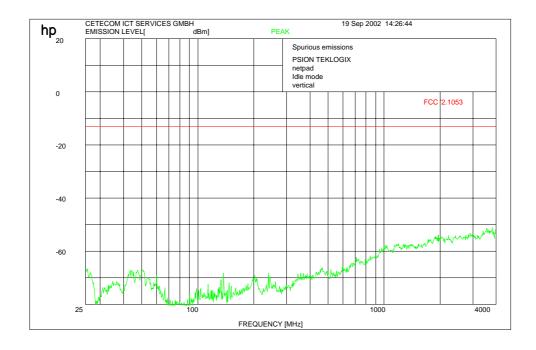

Peak at 1909.8 MHz shows the carrier frequency suppressed by narrow band rejection filter

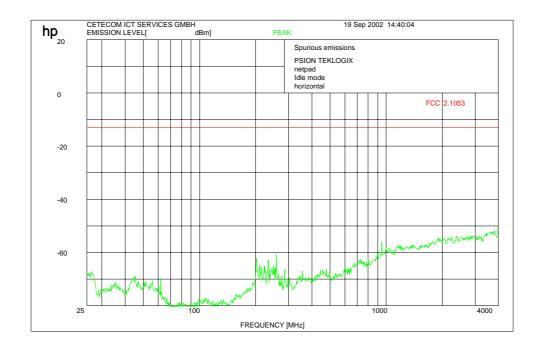



Channel 810 up to 12 GHz Measured with Docking Station and external Power Supply (Sunpower 2MA18-150)

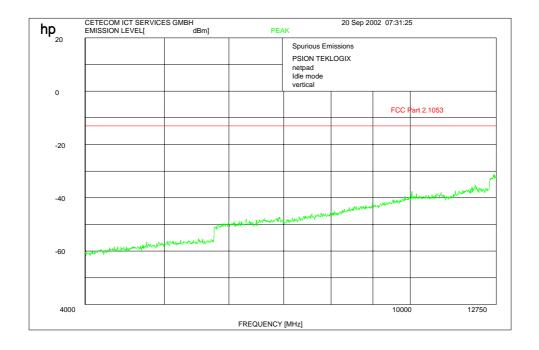
Channel 810 : up to 20 GHz Measured with Docking Station and external Power Supply (Sunpower 2MA18-150)

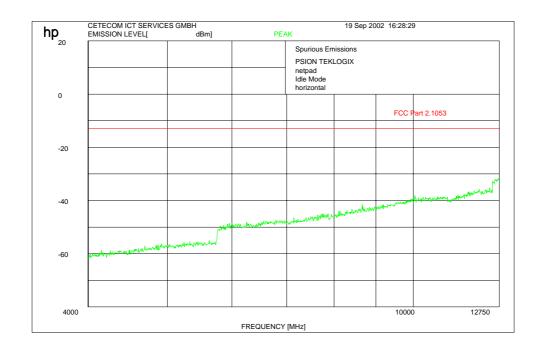
Date: 20.SEP.2002 08:07:01

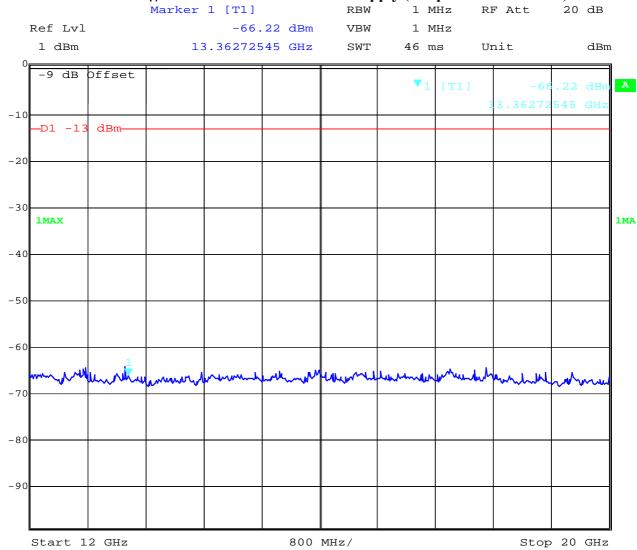



Channel 661 (this is valid for all 3 channels and up to 1 GHz) Idle-Mode $\,$

No Radiated Emissions less than 20 dB below the limit was found!


Channel 661 (this is valid for all 3 channels and up to 4 GHz , Idle-Mode Measured with Docking Station and external Power Supply (Sunpower 2MA18-150)




Channel 661 (this is valid for all 3 channels and up to 12 GHz, Idle-Mode Measured with Docking Station and external Power Supply (Sunpower 2MA18-150)

Channel 661 (this is valid for all 3 channels and up to 20 GHz , Idle-Mode Measured with Docking Station and external Power Supply (Sunpower 2MA18-150)

Conducted Spurious Emissions

Measurement Procedure:

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

- 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.
- 2. Determine mobile station transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

USPCS Transmitter

Channel Frequency

512 1850.2 MHz

661 1880.0 MHz

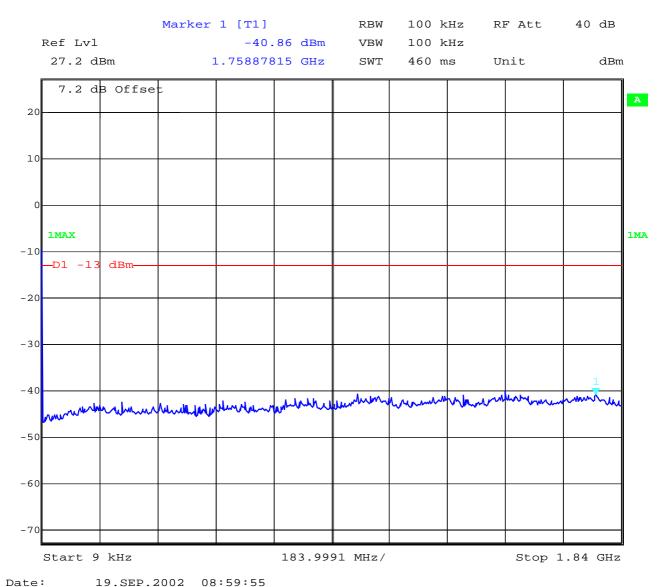
810 1909.8 MHz

Measurement Limit:

Sec. 24.238 Emission Limits.

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0

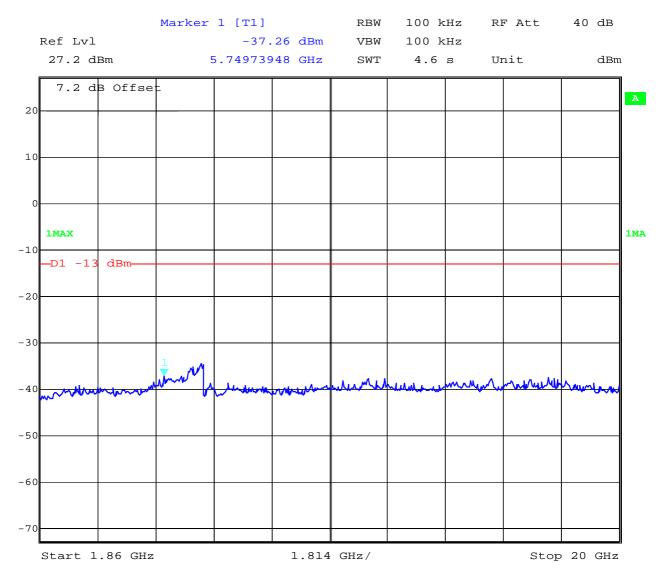
dBm, this becomes a constant specification limit of -13 dBm.


	EMIS	SION LIMITAT	TIONS	
f (MHz)	amplitude of emission (dBm)	limit max. allowed emmision power (dBm)	actual attenuation below frequency of operation (dBc)	results
	T T	CH 512	T	
1850.2 1850.000	24.4 -22.3	-13.0 (37.4 dBc)	46.7	carrier complies
		СН 661		
1880.0	24.1	-13.0		carrier
1879.000	-32.92	(27.1 dBc)	57.02	complies
4466.774	-38.61		62.71	complies
8713.006	-38.11		62.21	complies
I		CH 810	1	
1909.8	24.0	-13.0		carrier
1910.020	-19.78	(37.0 dBc)	43.78	complies
1910.074	-19.09		43.09	complies
2789.579	-38.93		62.93	complies
Measurement u	ıncertainty		± 0.5dB	

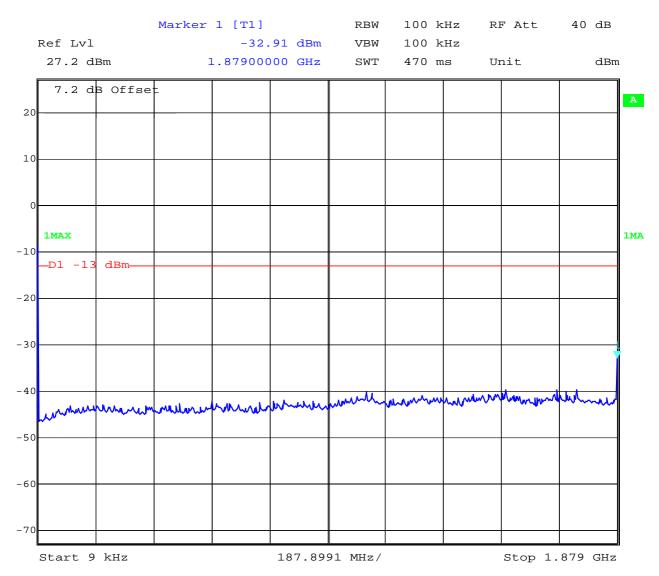
Test report nr.:2_2859-01-01/02 Issue date: 2002-09-23 Page 29 (66)

Measurements:

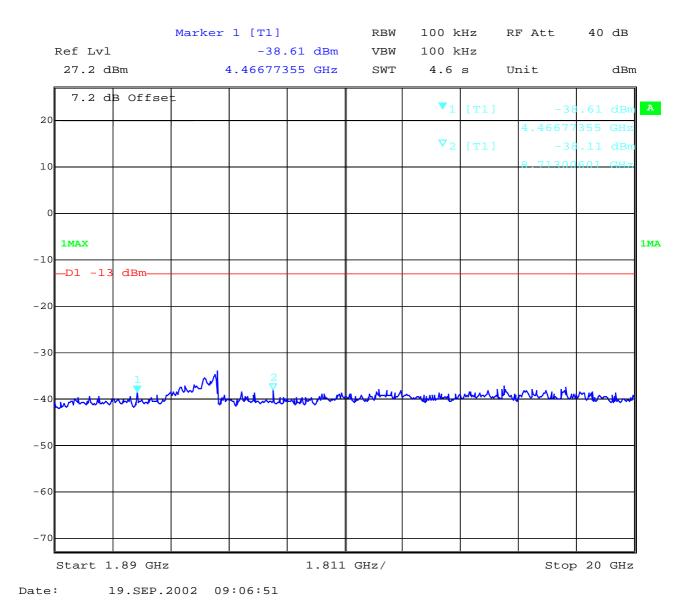
Channel: 512


Channel 512

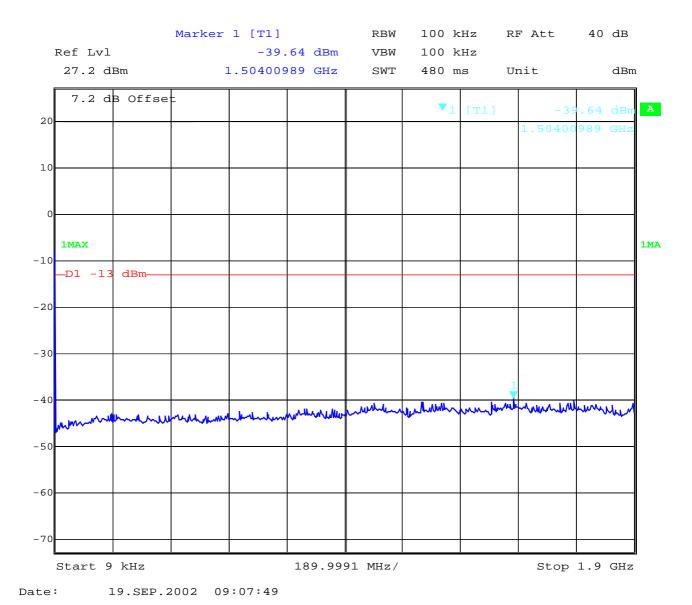
Date: 19.SEP.2002 09:01:37


Channel 512

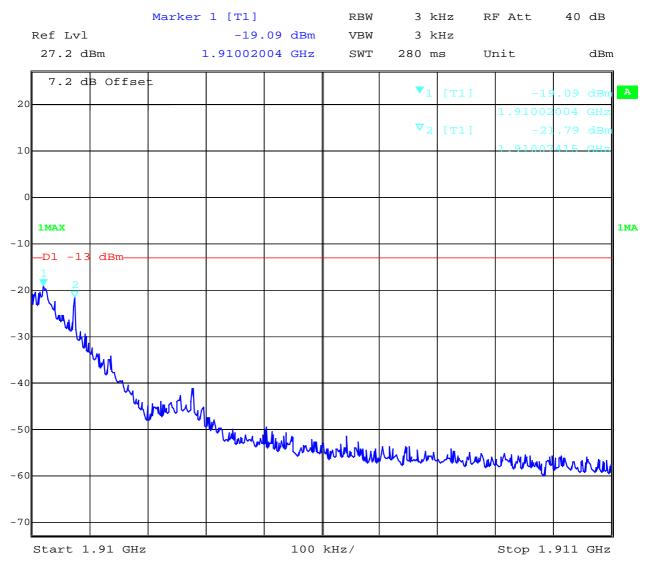
Date: 19.SEP.2002 09:03:40


Channel 661

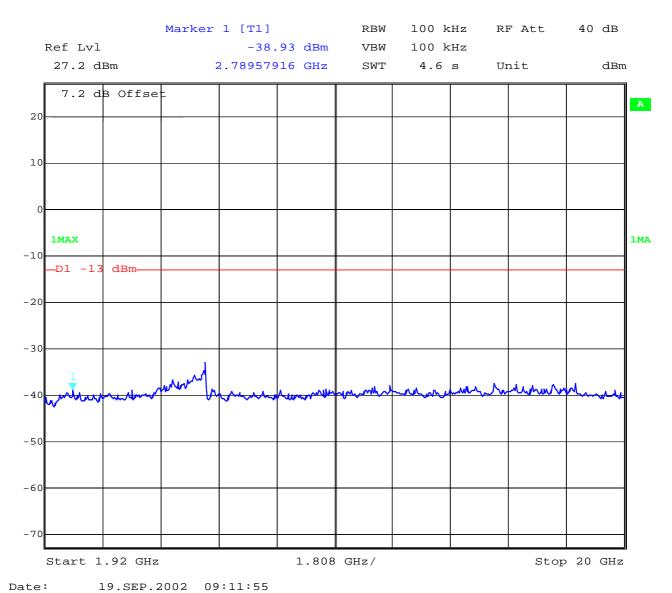
Date: 19.SEP.2002 09:04:55



Channel 661



Channel 810


Channel 810

Date: 19.SEP.2002 09:09:28

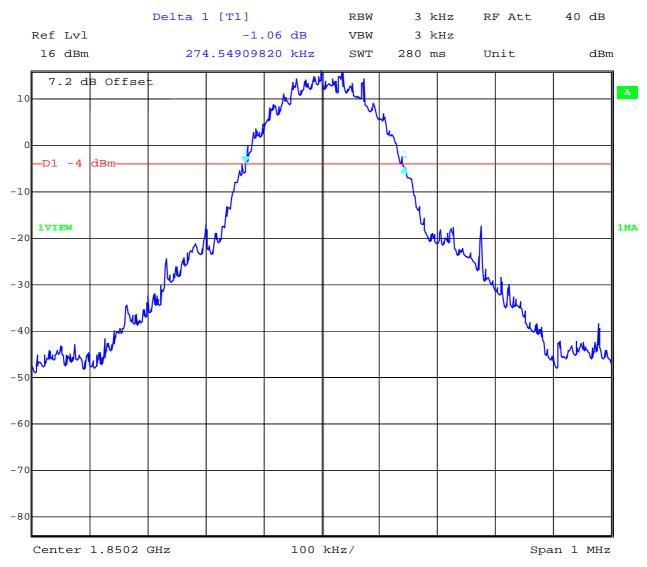
Channel 810

19.001.2002 09.11.33

OCCUPIED BANDWIDTH

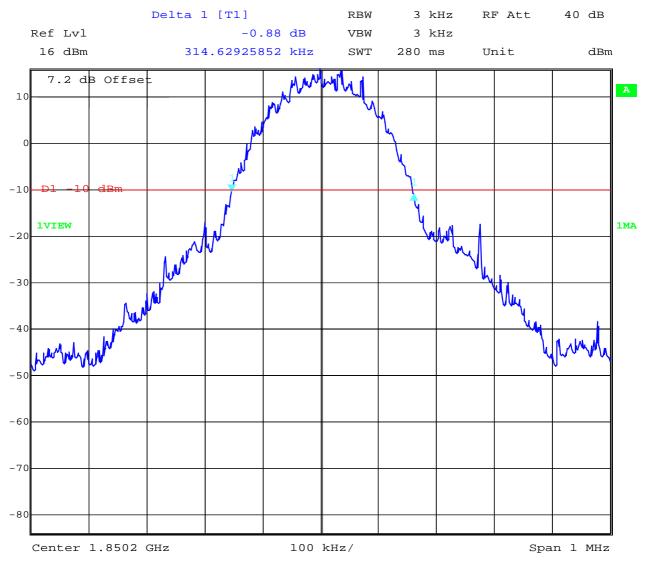
§2.989

Occupied Bandwidth Results

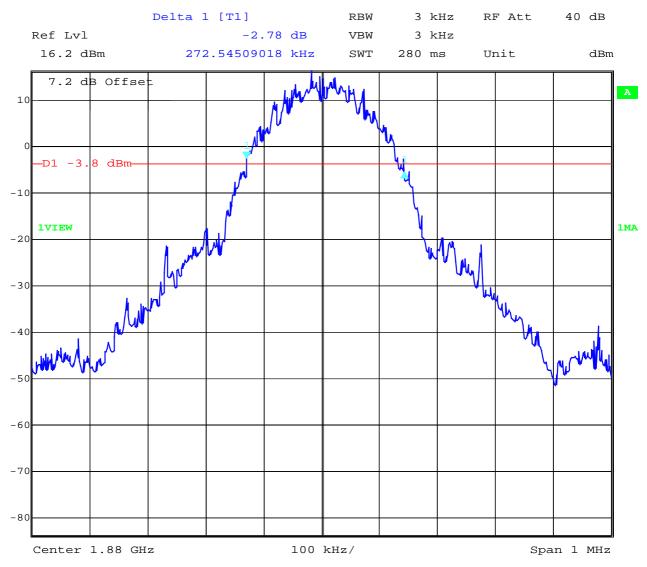

Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the USPCS frequency band. Table 8.2 below lists the measured 99% power and -26dBC occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Frequency	99% Occupied Bandwidth	-26 dBc Bandwidth
1850.2 MHz	274.549	314.629
1880.0 MHz	272.545	312.625
1909.8 MHz	282.625	320.701

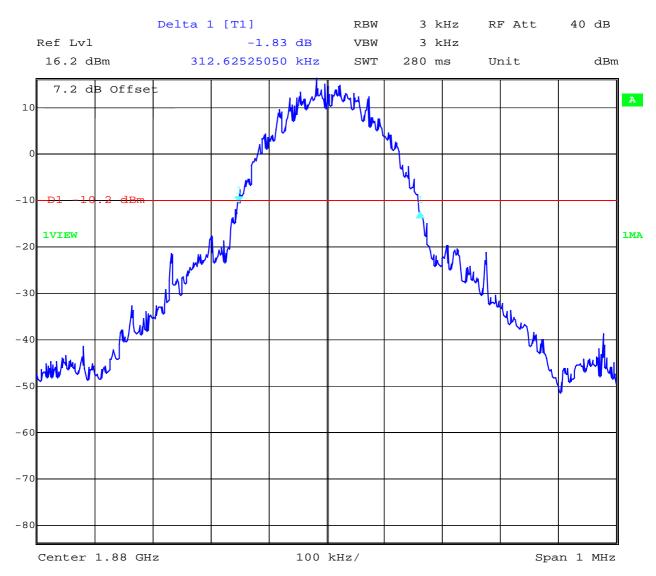
Part 24.238 (a) requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 267 kHz, this equates to a resolution bandwidth of at least 2.7 kHz. For this testing, a resolution bandwidth 3.0 kHz was used.


Channel 512 99% Occupied Bandwidth

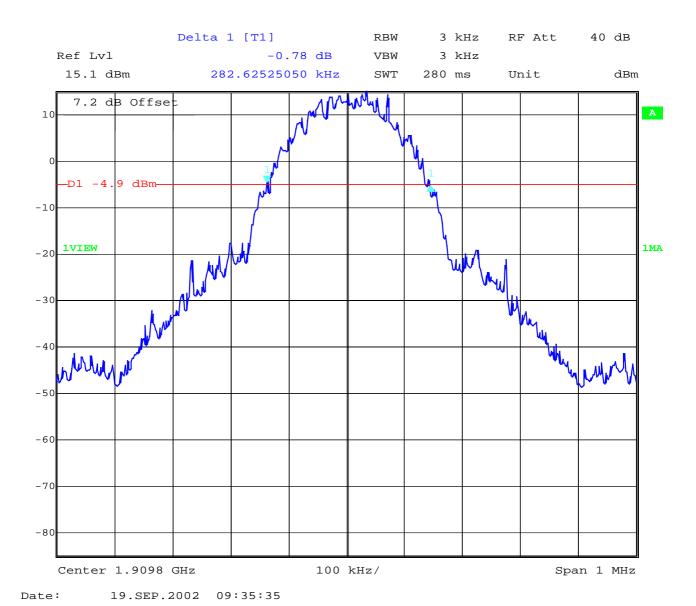
Date: 19.SEP.2002 09:24:04


Channel 512 -26 dBc Bandwidth

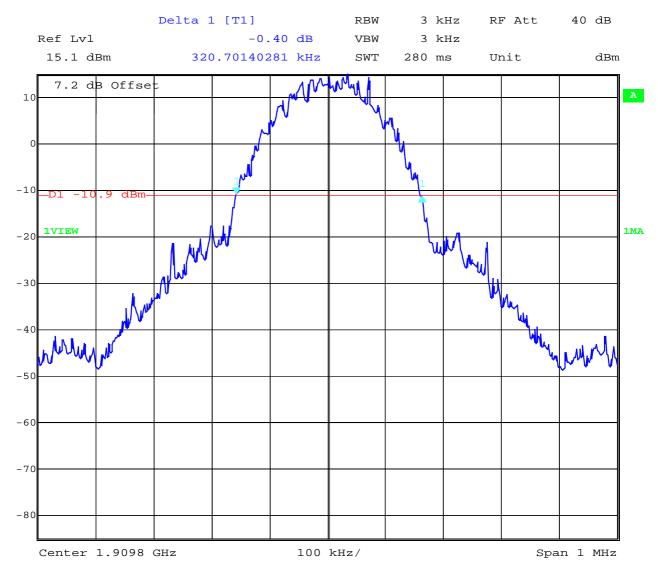
Date: 19.SEP.2002 09:24:45


Channel 661 99% Occupied Bandwidth

Date: 19.SEP.2002 09:32:43


Channel 661 -26 dBc Bandwidth

Date: 19.SEP.2002 09:31:51

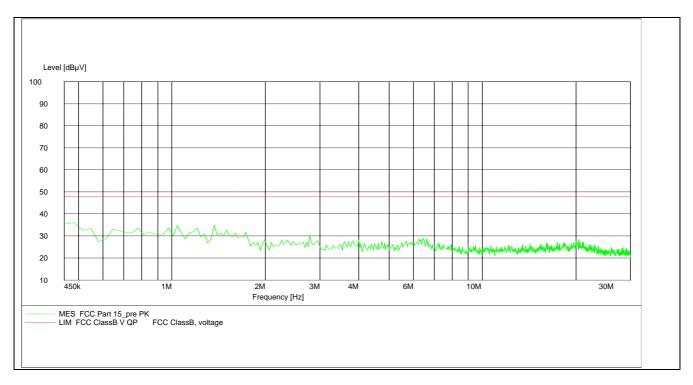


Channel 810 99% Occupied Bandwidth

Channel 810 -26 dBc Bandwidth

Date: 19.SEP.2002 09:36:10

Conducted emissions § 15.107/207


EUT: netpad Applicant: Psion Operating condition: traffic

Test Site: CETECOM ICT Services GmbH Saarbrücken, Room 006

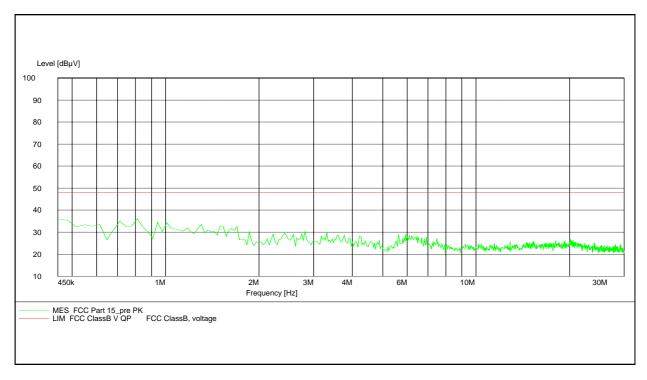
Operator: BER

Power Supply: 115V/60 Hz

Start of Test: 19.09.02 / 13:46:45

Limits SUBCLAUSE § 15.107 / 207

Frequency (MHz)	Conducted Limits (µV)
0.45 - 1.705	1000 / 60 dBµV (Class A)
1.705 - 30.0	3000 / 69.5 dBμV (Class A)
0.45 – 30.0	250 / 48 dBμV (Class B)


EUT: netpad
Applicant: Psion
Operating condition: idle mode

Test Site: CETECOM ICT Services GmbH Saarbrücken, Room 006

Operator: BER

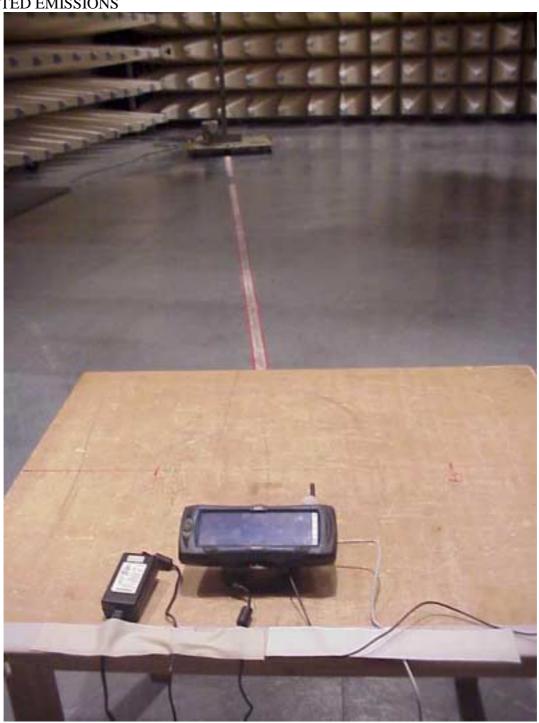
Power Supply: 115V/60 Hz

Start of Test: 19.09.02 / 13:46:45

TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

To simplify the identification on each page of the test equipment used, on each page of the test report, each item of test equipment and ancillaries such as cables are identified (numbered) by the Test Laboratory, below.

No	Instrument/Anaillery	Tymo	Manufacturer	Carriel No.
	Instrument/Ancillary	Type	Manufacturer	Serial No.
01	Spectrum Analyzer	8566 A	Hewlett-Packard	1925A00257
02	Analyzer Display	8566 A	Hewlett-Packard	1925A00860
03	Oscilloscope	7633	Tektronix	230054
04	Radio Communication	CMTA 54	Rohde & Schwarz	894 043/010
0.5	Analyzer	60 2 0 4	TT 1 (T 1)	20404050
05	System Power Supply	6038 A	Hewlett-Packard	2848A07027
06	Signal Generator	8111 A	Hewlett-Packard	2215G00867
07	Signal Generator	8662 A	Hewlett-Packard	2224A01012
08	Function Generator	AFGU	Rohde & Schwarz	862 480/032
09	Regulating Transformer	MPL	Erfi	91350
10	LISN	NNLA 8120	Schwarzbeck	8120331
11	Relay-Matrix	PSU	Rohde & Schwarz	893 285/020
12	Power-Meter	436 A	Hewlett-Packard	2101A12378
13	Power-Sensor	8484 A	Hewlett-Packard	2237A10156
14	Power-Sensor	8482 A	Hewlett-Packard	2237A00616
15	Modulation Meter	9008	Racal-Dana	2647
16	Frequency Counter	5340 A	Hewlett-Packard	1532A03899
17	Anechoic Chamber		MWB	87400/002
18	Spectrum Analyzer	85660 B	Hewlett-Packard	2747A05306
19	Analyzer Display	85662 A	Hewlett-Packard	2816A16541
20	Quasi Peak Adapter	85650 A	Hewlett-Packard	2811A01131
21	RF-Preselector	85685 A	Hewlett-Packard	2833A00768
22	Biconical Antenna	3104	Emco	3758
23	Log. Per. Antenna	3146	Emco	2130
24	Double Ridged Horn	3115	Emco	3088
25	EMI-Testreceiver	ESAI	Rohde & Schwarz	863 180/013
26	EMI-Analyzer-Display	ESAI-D	Rohde & Schwarz	862 771/008
27	Biconical Antenna	HK 116	Rohde & Schwarz	888 945/013
28	Log. Per. Antenna	HL 223	Rohde & Schwarz	825 584/002
29	Relay-Switch-Unit	RSU	Rohde & Schwarz	375 339/002
30	Highpass	HM985955	FSY Microwave	001
31	Amplifier	P42-GA29	Tron-Tech	B 23602
32	Anechoic Chamber		Frankonia	
33	Control Computer	PSM 7	Rohde & Schwarz	834 621/004
34	EMI Test Receiver	ESMI	Rohde & Schwarz	827 063/010
35	EMI Test Receiver	Display	Rohde & Schwarz	829 808/010
	Zivii Tost Receiver	Disping	Long & Schwarz	02/ 000/010

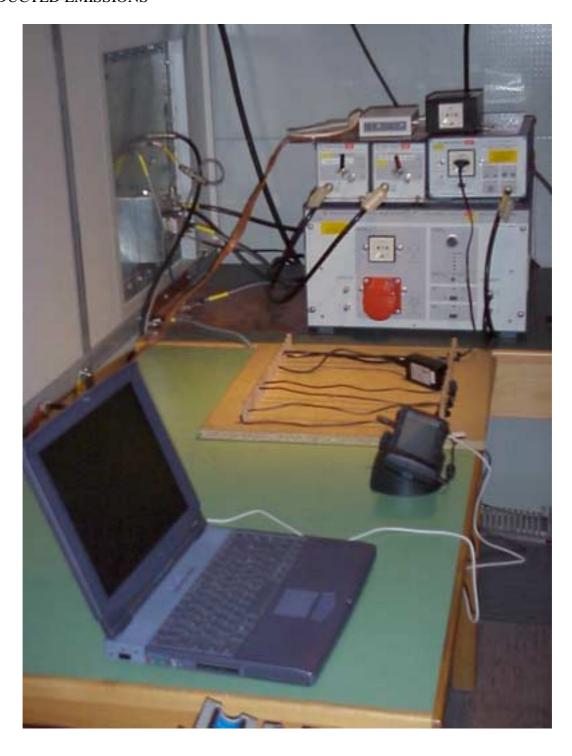

TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

To simplify the identification on each page of the test equipment used, on each page of the test report, each item of test equipment and ancillaries such as cables are identified (numbered) by the Test Laboratory, below.

No	Instrument/Ancillary	Type	Manufacturer	Serial No.
36	Control Computer	HD 100	Deisel	100/322/93
37	Relay Matrix	PSN	Rohde & Schwarz	829 065/003
38	Control Unit	GB 016 A2	Rohde & Schwarz	344 122/008
39	Relay Switch Unit	RSU	Rohde & Schwarz	316 790/001
40	Power Supply	6032A	Hewlett Packard	2846A04063
41	Spectrum Monitor	EZM	Rohde & Schwarz	883 720/006
42	Measuring Receiver	ESH 3	Rohde & Schwarz	890 174/002
43	Measuring Receiver	ESVP	Rohde & Schwarz	891 752/005
44	Bicon Ant. 20-300MHz	HK 116	Rohde & Schwarz	833 162/011
45	Logper Ant. 0.3-1 GHz	HL 223	Rohde & Schwarz	832 914/010
46	Amplifier 0.1-4 GHz	AFS4	Miteq Inc.	206461
47	Logper Ant. 1-18 GHz	HL 024 A2	Rohde & Schwarz	342 662/002
48	Polarisation Network	HL 024 Z1	Rohde & Schwarz	341 570/002
49	Double Ridged Horn	3115	EMCO	9107-3696
	Antenna 1-26.5 GHz			
50	Microw. Sys. Amplifier	8317A	Hewlett Packard	3123A00105
	0.5- 26.5 GHz			
51	Audio Analyzer	UPD	Rohde & Schwarz	1030.7500.04
52	Controler	PSM 7	Rohde & Schwarz	883 086/026
53	DC V-Network	ESH3-Z6	Rohde & Schwarz	861 406/005
54	DC V-Network	ESH3-Z6	Rohde & Schwarz	893 689/012
55	AC 2 Phase V-Network	ESH3-Z5	Rohde & Schwarz	861 189/014
56	AC 2 Phase V-Network	ESH3-Z5	Rohde & Schwarz	894 981/019
57	AC-3 Phase V-Network	ESH2-Z5	Rohde & Schwarz	882 394/007
58	Power Supply	6032A	Rohde & Schwarz	2933A05441
59	RF-Test Receiver	ESVP.52	Rohde & Schwarz	881 487/021
60	Spectrum Monitor	EZM	Rohde & Schwarz	883 086/026
61	RF-Test Receiver	ESH3	Rohde & Schwarz	881 515/002
62	Relay Matrix	PSU	Rohde & Schwarz	882 943/029
63	Relay Matrix	PSU	Rohde & Schwarz	828 628/007
64	Spectrum Analyzer	FSIQ 26	Rohde & Schwarz	119.6001.27
65	Spectrum Analyzer	HP 8565E	Hewlett Packard	3473A00773
66				
67				
68				

<u>Test site</u> RADIATED EMISSIONS

Test site
RADIATED EMISSIONS


Test site RADIATED EMISSIONS

semi anechoic chamber

Test site CONDUCTED EMISSIONS

Photographs of the equipment

Photographs of the equipment

Photographs of the equipment

Photograph no.: 3

Back site

Photographs of the equipment

Photograph no.: 4

Battery

Photographs of the equipment

Photograph no.: 5Docking Station

Photographs of the equipment

Photograph no.: 6
Docking Station

Photographs of the equipment

Photograph no.: 7
Power Supply

Photographs of the equipment

Photograph no.: 8 Internal View

Photographs of the equipment

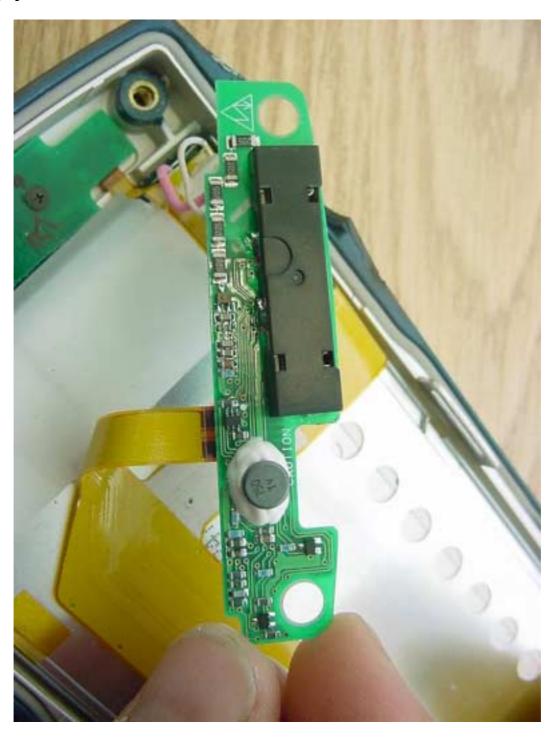
Photographs of the equipment

Photographs of the equipment



Photographs of the equipment

Photographs of the equipment



Photographs of the equipment

Photographs of the equipment

