ENGINEERING TEST REPORT

Vehicle Mount Computer Model No.: 8530G2

FCC ID: GM38530G2

Applicant:

Psion Teklogix Inc. 2100 Meadowvale Blvd. Toronto, Ontario Canada, L5N 7J9

In Accordance With

FEDERAL COMMUNICATIONS COMMISSION (FCC) PART 15, SUBPART C, SECTION 15.247 Frequency Hopping and Digital Modulation Systems (Bluetooth) Operating in the Frequency Band 2402-2480 MHz

UltraTech's File No.: TEK-535F15C247

echnologist 2006 ^v selected.
<u>o.ca</u>
BSMI
SL2-IN-E-1119R

TABLE OF CONTENTS

EXHIB	IT 1.	INTRODUCTION	1
1.1. 1.2. 1.3.	RELA	E FED SUBMITTAL(S)/GRANT(S) IATIVE REFERENCES	1
EXHIB		PERFORMANCE ASSESSMENT	
2.1.	CLIEN	IT INFORMATION	2
2.2.		PMENT UNDER TEST (EUT) INFORMATION	
2.3.		TECHNICAL SPECIFICATIONS	
2.4.		OF EUT'S PORTS	
2.5.		LLARY EQUIPMENT	
2.6.		SETUP BLOCK DIAGRAM	
BLOCK	K DIAG	RAM OF TEST SETUP	6
EXHIB	IT 3.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	7
3.1.	CLIM	ATE TEST CONDITIONS	7
3.2.		ATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS	
EXHIB	IT 4.	SUMMARY OF TEST RESULTS	8
4.1.	LOCA	TION OF TESTS	8
4.2.		CABILITY & SUMMARY OF EMC EMISSION TEST RESULTS	
4.3.	MODI	FICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	8
EXHIB	IT 5.	MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	9
5.1.	TEST	PROCEDURES	9
5.2.	MEAS	UREMENT UNCERTAINTIES	9
5.3.		UREMENT EQUIPMENT USED	
5.4.		LIANCE WITH FCC PART 15 – GENERAL TECHNICAL REQUIREMENTS	
5.5.		& 20 DB BANDWIDTH [§15.247(A)(1)&(2)]	
5.6.		OUTPUT POWER [§§ 15.247(B)(1)&(3)]	
5.7.		OUS RADIATED EMISSIONS @ 3 METERS [§ 15.247(D)]	
5.8. 5.9.		R SPECTRAL DENSITY [§ 15.247(E) & (F)] AGE TIME OF OCCUPANCY [§ 15.247(F)]	
EXHIB	IT 6.	MEASUREMENT UNCERTAINTY	41
6.1.	LINE	CONDUCTED EMISSION MEASUREMENT UNCERTAINTY	41
6.2.	RADL	ATED EMISSION MEASUREMENT UNCERTAINTY	42

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	Part 15, Subpart C, Section 15.247	
Title:	Telecommunication - Code of Federal Regulations, CFR 47, Part 15	
Purpose of Test:	To gain FCC Equipment Authorization for Frequency Hopping and Digital Modulation Systems (Bluetooth) Operating in the Frequency Band 2402-2480 MHz.	
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.	
Environmental Classification:	 Residential Light-industry, Commercial Industry 	

1.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

1.3. NORMATIVE REFERENCES

Publication	Year	Title
FCC 47CFR Parts 0-19	2005	Code of Federal Regulations, Title 47 – Telecommunication
ANSI C63.4	2003	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
CISPR 22 +A1 EN 55022	2003-04-10 2004-10-14 2003	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
CISPR 16-1-1	2003	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus
CISPR 16-2-1	2003	Specification for radio disturbance and immunity measuring apparatus and methods. Part 2-1: Conducted disturbance measurement
CISPR 16-2-3	2003	Specification for radio disturbance and immunity measuring apparatus and methods. Part 2-3: Radiated disturbance measurement
FCC Public Notice DA 00- 705	2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems
KDB Publication No. 558074	2005	Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

APPLICANT:	
Name:	Psion Teklogix Inc.
Address:	2100 Meadowvale Blvd. Mississauga, ON Canada, L5N 7J9
Contact Person:	Mr. Sada Dharwarkar Phone #: 905-812-6200 (3358) Fax #: 905-812-6301 Email Address: Sada.Dharwarkar@psionteklogix.com

MANUFACTURER:	
Name:	Psion Teklogix Inc.
Address:	2100 Meadowvale Blvd. Mississauga, ON Canada, L5N 7J9
Contact Person:	Mr. Sada Dharwarkar Phone #: 905-812-6200 (3358) Fax #: 905-812-6301 Email Address: Sada.Dharwarkar@psionteklogix.com

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	Psion Teklogix Inc.	
Product Name:	Vehicle Mount Computer	
Model Name or Number: 8530G2		
Serial Number:	VA5026094972	
Type of Equipment:	Radio Equipment (Multiple Transmitter)	
Power Supply Type:	Vehicle Battery 13.8 V DC or PHIHONG Switching Power Supply, 18V DC, 3.3A	
Primary User Functions of EUT:	Vehicle Mount RF real time data collection computer used in supply chain and inventory management solutions.	

2.3. EUT'S TECHNICAL SPECIFICATIONS

HARDWARE	
MANUFACTURER	Psion Teklogix Inc.
PRODUCT	8530 G2 Bluetooth + RA2040 + RA1001
TEKLOGIX MODEL NUMBER	8530G2
SERIAL NUMBER	VA5026094972
MLB PART NUMBER	VA1EP5460400
DISPLAY	RoHS
EQUIPMENT TYPE	MOBILE
INTENDED OPERATING ENVIRONMENT	Commercial, Industrial, or Business
MISCELANEOUS HARDWARE	
MANUFACTURER	PHIHONG
PRODUCT	SWITCHING POWER SUPPLY
MODEL NUMBER	PSA65U-180 (RoHS)
SERIAL NUMBER	P60600791A7
TEKLOGIX PART NUMBER	N/A

SOFTWARE	
SOFTWARE VERSION	Microsoft
APPLICATION VERSION	Windows XP
CLOCK SPEED	520 MHz
DUTY CYCLE	25%

RADIO 1	
LOCATION	Main Logic Board
MANUFACTURER:	Murata
PRODUCT	2.4 GHz FHSS Bluetooth Radio Chip Set
PART NUMBER	LBMA2U2BL2-092
TEKLOGIX MODEL NUMBER	N/A
SERIAL NUMBER	N/A
FCC ID	N/A
POWER	4 mW EIRP
FREQUENCY RANGE	2.402 to 2.480 GHz
DATA RATES	57.6 – 723.2 kbps
CHANNELS	79
INTERNAL/EXTRENAL ANTENNA	Internal
RF CABLE TYPE	None
ANTENNA TYPE + GAIN	Chip, 2.0 dBi
TEKLOGIX PART NUMBER	N/A

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

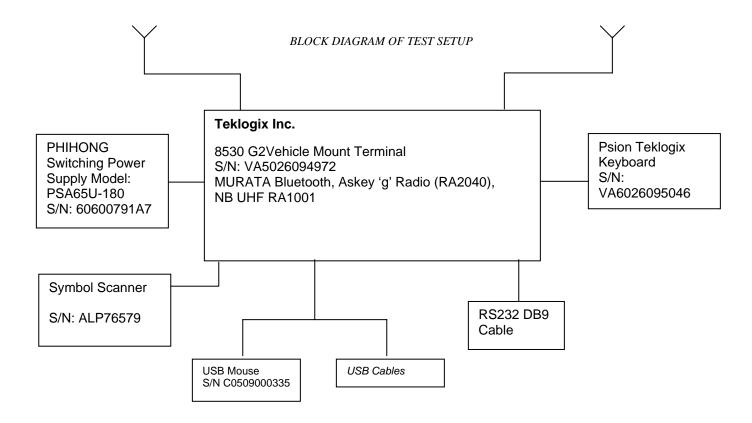
RADIO 2	
MANUFACTURER	Askey
PRODUCT	802.11b/g DSSS or OFDM
TEKLOGIX MODEL NUMBER	RA2040
TEKLOGIX PART NUMBER	N/A
SERIAL NUMBER	1001933-002
FCC ID NUMBER	GM3RA2040
OUTPUT POWER	15 dBm + - 1.5dBm
OPERATING FREQUENCY RANGE	2.4-2.5GHz
DATA RATES	11MBps
CHANNELS	11 (FCC)
OPERATING VOLTAGE	DC 3.3V
REF. OSC. FREQUENCIES	32 MHz
ANTENNA	MOBILE MARK IMAG5-2400
GAIN	3 dBi
ANTENNA CONNECTOR TYPE	Reverse Polarity SMA

RADIO 3	
MANUFACTURER	Psion Teklogix Inc.
PRODUCT	NB UHF
TEKLOGIX MODEL NUMBER	RA1001
TEKLOGIX PART NUMBER	1001411-1
SERIAL NUMBER	RA1SP6100020
OUTPUT POWER (WATTS)	1 W
OPERATING FREQUENCY RANGE	435-451 MHz
DATA RATES	9600
CHANNELS	20
OPERATING VOLTAGE	5 VDC 1.5A
REF. OSC. FREQUENCIES	32 MHz
ANTENNA	1/4 Wave
GAIN	0 dBi
ANTENNA CONNECTOR TYPE	SMA

2.4. LIST OF EUT'S PORTS

LIST OF EUT PORTS				
INTERFACE PORT NAME	PORT/CABLE TYPE	CABLE LENGTH	SHEILDED? YES/NO	TERMINATED? YES/NO
Serial Port	DB-9	5'	NO	YES
Auxiliary Port Host/Device Interface	HDB-26 Pin F	5'	YES	YES
Key Board	DB-26 Pin Male	2 Meter	YES	YES
Scanner	JB5	9'	NO	YES
Mouse	USB	5'	NO	YES
Antenna 1	SMA Rev. Polarity (802.11b/g)	9'	YES	YES
Antenna 2	SMA Polarity (Narrow Band)	9'	YES	YES
Power Port	AMP CPC	1.5'	NO	YES

2.5. ANCILLARY EQUIPMENT


The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

Ancillary Equipment # 1	
Description:	Scanner Symbol
Brand name:	Psion Teklogix
Model Name:	LS3408-ER20005
Serial Number:	ALP76579
Connected to EUT's Port:	Tether

Ancillary Equipment # 2		
Description:	Switching Power Supply	
Brand name:	PHIHONG	
Model Name:	PSA65U-180	
Serial Number:	P60600791A7	
Connected to EUT's Port:	AMP CPC	

Ancillary Equipment # 3		
Description:	Mouse	
Brand name:	Pilot Optical Mouse	
Model Name:	72127	
Serial Number:	C0509000335	
Connected to EUT's Port:	Auxiliary	

2.6. TEST SETUP BLOCK DIAGRAM

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power input source:	PHIHONG Switching Power Supply, 18V DC, 3.3A

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

Operating Modes:	 Each of lowest, middle and highest channel frequencies transmits continuously for emissions measurements. The EUT operates in frequency hopping mode and direct sequence or digital modulation mode. 	
Special Test Software:	Special software is provided by the applicant to select and operate the EUT at each channel frequency continuously and mode of operation such as frequency hopping and direct sequence or digital modulation for testing purpose.	
Special Hardware Used:	N/A	
Transmitter Test Antenna:	a: The EUT is tested with the antenna fitted in a manner typical of normal intended use as integral antenna equipment.	

Transmitter Test Signals		
Frequency Band(s):	2402 - 2480 MHz	
Frequency(ies) Tested: (Near lowest, near middle & near highest frequencies in the frequency range of operation.)	2402, 2441 & 2480 MHz.	
RF Power Output:	4 mW EIRP	
Normal Test Modulation:	Bluetooth	
Modulating Signal Source:	Internal	

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049-1). Last Date of Site Calibration: June 20, 2005.

FCC Section(s)	Test Requirements	Compliance (Yes/No)
15. 207	AC Power Conducted Emissions	Yes (Note 1)
15.247(a)(1)&(2)	20dB & 6 dB Bandwidth	Yes
15.247(b)(1) & (3)	Peak Output Power	Yes
15.247(b)(5), 15.247(e)(i) & 1.1307(b)(1)	RF Exposure	Yes (Note 2)
15.247(d), 15.209 & 15.205	Spurious Radiated Emissions	Yes
15.247(e)&(f)	Power Spectral Density	Yes
15.247(f)	Average Time of Occupancy	Yes
15.109	Class B Radiated Emissions	Yes (Note 1)

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

Notes:

- (1) A separate engineering test report for compliance with FCC Part 15, Subpart B Class B Unintentional Radiators will be provided upon request.
- (2) The SAR tests and RF Exposure requirements is exempted, the device operates at substantially low output power level (4 mW), with a low gain antenna (2 dBi).

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None.

EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

5.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in ANSI C63.4; KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247); FCC Public Notice DA 00-705: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

5.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document LAB 34 with a confidence level of 95%. Please refer to Exhibit 6 for Measurement Uncertainties.

5.3. MEASUREMENT EQUIPMENT USED

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CISPR 16-1.

5.4. COMPLIANCE WITH FCC PART 15 – GENERAL TECHNICAL REQUIREMENTS

FCC Section	FCC Rules		
15.203	Described how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.	The integral antenna is permanently mounted on the printed circuit board and located inside the enclosure	
	The exception is in those cases where EUT must be professionally installed. In order to demonstrate that professional installation is required, the following 3 points must be addressed:		
	 The application (or intended use) of the EUT The installation requirements of the EUT The method by which the EUT will be marketed 		
15.204	Provided the information for every antenna proposed for use with the EUT: (a) type (e.g. Yagi, patch, grid, dish, etc), (b) manufacturer and model number (c) gain with reference to an isotropic radiator	Manufacturer:MurataType:ChipPart No.:LBMA2U2BL2-092Frequency Range:2.402 – 2.480 GHzGain:2.0 dBi	

5.5. 6 dB & 20 dB Bandwidth [§15.247(a)(1)&(2)]

5.5.1. Limit

- For Frequency Hopping System, minimum of 25 kHz.
- For a Digital Modulation System, the 6 dB bandwidth shall be at least 500 KHz.

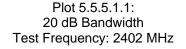
5.5.2. Method of Measurements

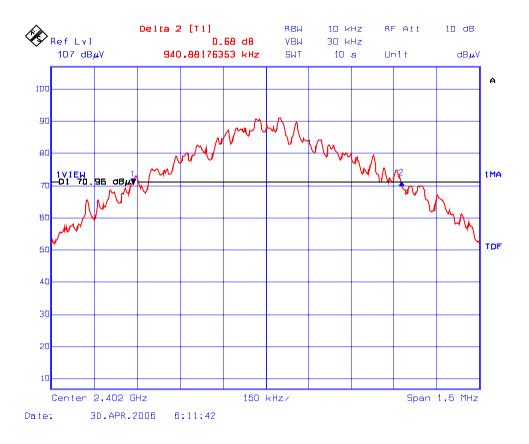
Refer to FCC Public Notice DA 00-705, KDB Publication No. 558074 and ANSI C63.4 for measurement methods.

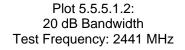
5.5.3. Test Arrangement

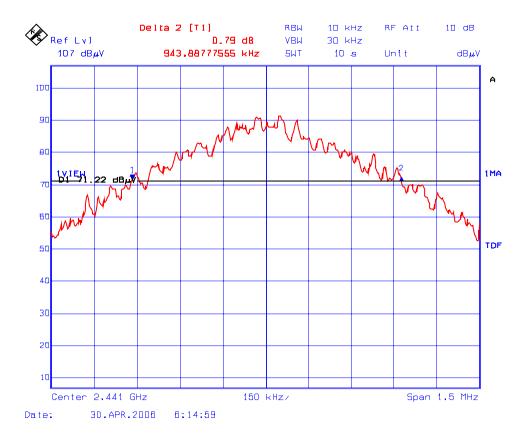
See Section 2.6 of this test report.

5.5.4. Test Equipment List

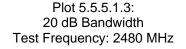

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Rohde & Schwarz	FSEK20/B4/B21	834157/005	9 kHz – 40 GHz with external mixer
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz

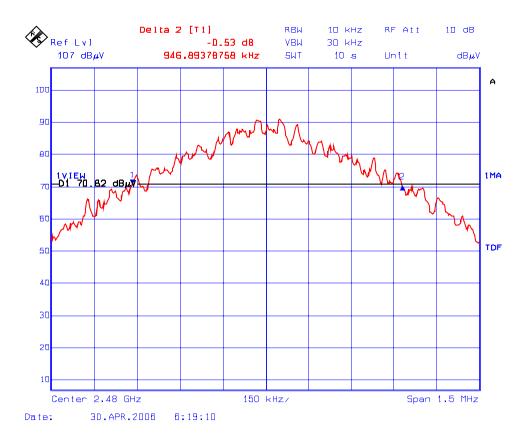

5.5.5. Test Data


5.5.5.1. For Frequency Hopping Spread Spectrum Mode


Frequency (MHz)	20 dB Bandwidth (MHz)
2402	0.941
2441	0.944
2480	0.947

See the following plots for detailed measurements.





All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

5.5.5.2. For Digital Modulation System

Frequency (MHz)	6 dB Bandwidth (MHz)
2402	0.537
2441	0.545
2480	0.551

See the following plots for detailed measurements.

Plot 5.5.5.2.1: 6 dB Bandwidth Test Frequency: 2402 MHz

Plot 5.5.5.2.2: 6 dB Bandwidth Test Frequency: 2441 MHz

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Plot 5.5.5.2.3: 6 dB Bandwidth Test Frequency: 2480 MHz

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

5.6. PEAK OUTPUT POWER [§§ 15.247(b)(1)&(3)]

5.6.1. Limit

- FCC 15.247(b)(1): Maximum peak output power of the transmitter shall not exceed 1 Watt.
- FCC 15.247(b)(4(i): If the device is not for fixed point to point radio, the antenna of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.6.2. Method of Measurements

Refer to FCC Public Notice DA 00-705, KDB Publication No. 558074 and ANSI C63.4 for measurement methods.

5.6.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Rohde & Schwarz	FSEK20/B4/B21	834157/005	9 kHz – 40 GHz with external mixer
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz

5.6.4. Test Data

Frequency (MHz)	E-Field in 1 MHz @ 3m (dBuV/m)	Antenna Polarization (V/H)	*Calculated Peak Power (Watt)
2402	97.76	V	0.00089
2402	97.97	Н	0.00094
2441	95.54	V	0.00054
2441	97.13	Н	0.00077
2480	94.88	V	0.00046
2480	97.08	Н	0.00076

*Peak power is calculated using the following equation:

 $P = (E \times D) \text{ squared } / (30 \times G)$

Where: E = the measured maximum field strength in V/m

- G = the numeric gain of the transmitting antenna over an isotropic radiator.
- D = the distance in meters form which the field strength was measured.

P = the power in watts

5.7. SPURIOUS RADIATED EMISSIONS @ 3 METERS [§ 15.247(d)]

5.7.1. Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

MHz	MHz	MHz	GHz		
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15		
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46		
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75		
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5		
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2		
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5		
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7		
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4		
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5		
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2		
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4		
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12		
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0		
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8		
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5		
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)		
13.36 - 13.41					

47 CFR 15.205(a) - Restricted Bands of Operation

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

47 CFR 15.209(a) - Radiated emission limits, general requirements

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)			
0.009 - 0.490	2400/F(kHz)	300			
0.490 - 1.705	24000/F(kHz)	30			
1.705 - 30.0	30	30			
30 - 88	100 **	3			
88 - 216	150 **	3			
216 - 960	200 **	3			
Above 960	500	3			
** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.					

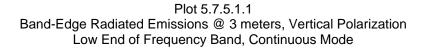
ULTRATECH GROUP OF LABS

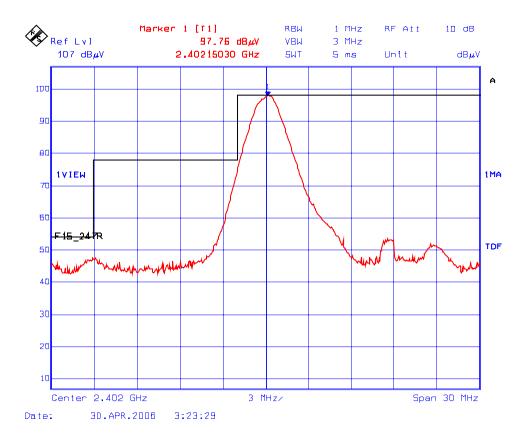
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

5.7.2. Method of Measurements

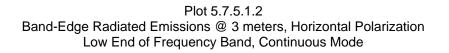
Refer to Ultratech Test Procedures, Files # ULTR P002-2004 or ULTR P003-2004 and ANSI C63.4 for measurement methods

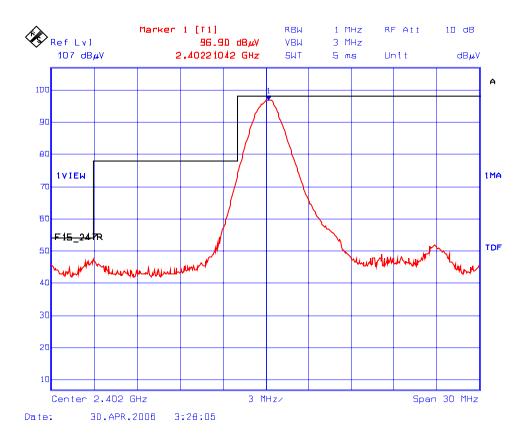
5.7.3. Test Arrangement

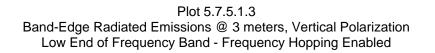

Refer to Section 2.6 of this test report for test setup.

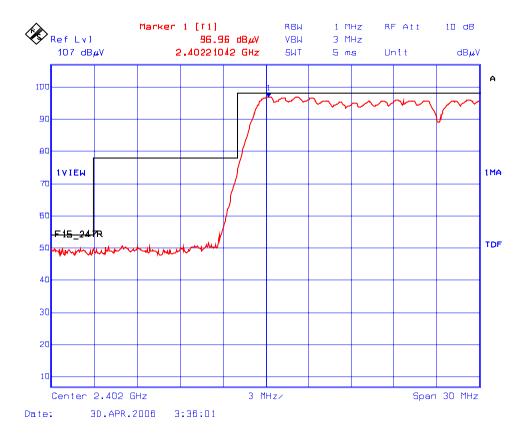

5.7.4. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Rohde & Schwarz	FSEK20/B4/B21	834157/005	9 kHz – 40 GHz with external mixer
Microwave Amplifier	Hewlett Packard	HP 83017A		1 GHz to 26.5 GHz
Biconilog Antenna	EMCO	3143	1029	20 MHz to 2 GHz
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz
Horn Antenna	EMCO	3160-09		18 GHz – 26.5 GHz
Horn Antenna	EMCO	3160-10		26.5 GHz – 40 GHz
Mixer	Tektronix	118-0098-00		18 GHz – 26.5 GHz
Mixer	Tektronix	119-0098-00		26.5 GHz – 40 GHz

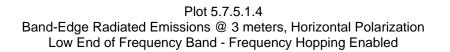

5.7.5. Test Data

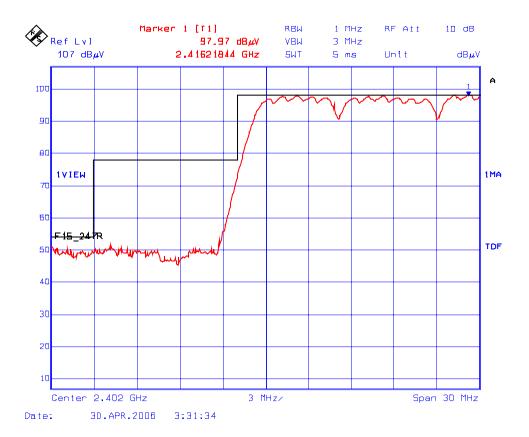

5.7.5.1. Band-edge Radiated Emissions

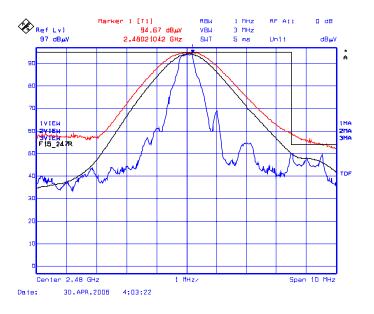




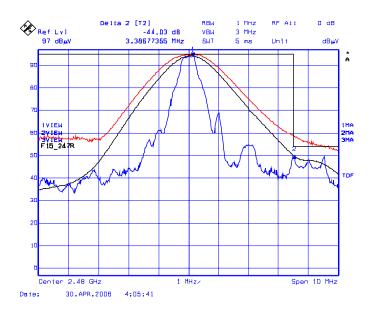
ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com



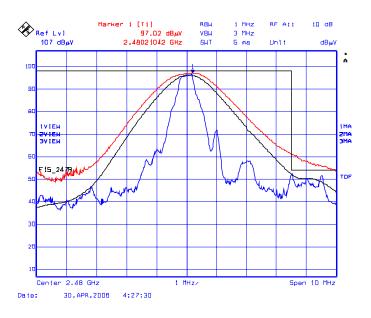




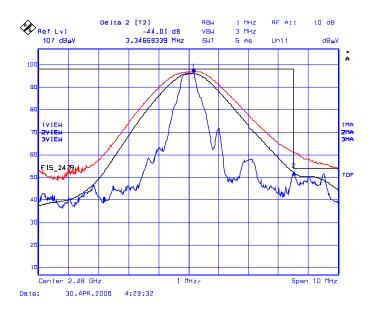
All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)



Plot 5.7.5.1.5 Band-Edge Radiated Emissions @ 3 meters, Vertical Polarization, Upper End of Frequency Band

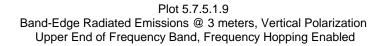


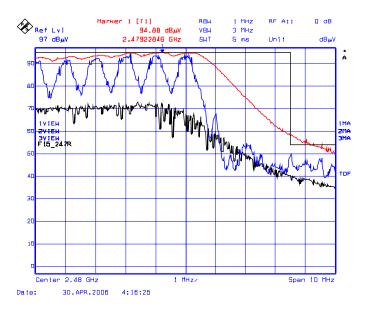
Plot 5.7.5.1.6 Band-Edge Radiated Emissions @ 3 meters, Vertical Polarization, Upper End of Frequency Band

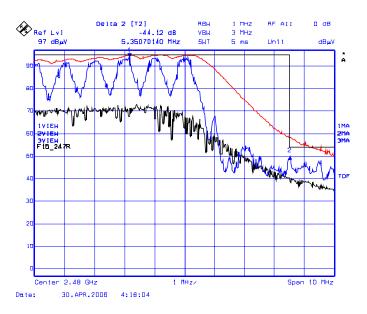


Trace 1 _: RBW = 1 MHz, VBW = 3 MHz Trace 2 _: RBW = 100 kHz, VBW = 300 kHz, Delta (Peak to Band-Edge): 44.03 dB Trace 3 _: RBW = 1 MHz, VBW = 10 Hz Band-Edge Level at 2484 MHz: 94.67 dBuV/m - 44.03 dB= **50.64 dBuV/m**

Plot 5.7.5.1.7 Band-Edge Radiated Emissions @ 3 meters, Horizontal Polarization, Upper End of Frequency Band

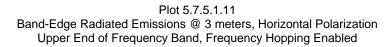


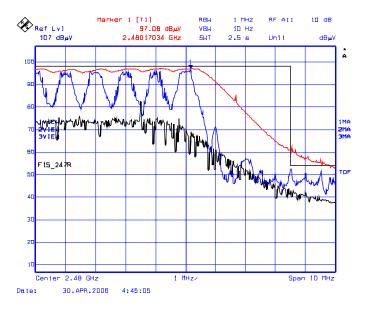

Plot 5.7.5.1.8 Band-Edge Radiated Emissions @ 3 meters, Horizontal Polarization, Upper End of Frequency Band

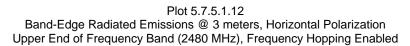

Trace 1 _: RBW = 1 MHz, VBW = 3 MHz Trace 2 _: RBW = 100 kHz, VBW = 300 kHz, Delta (Peak to Band-Edge): 44.01dB Trace 3 _: RBW = 1 MHz, VBW = 10 Hz Band-Edge Level at 2483.5 MHz: 97.02 dBuV/m - 44.01 dB= **53.01 dBuV/m**

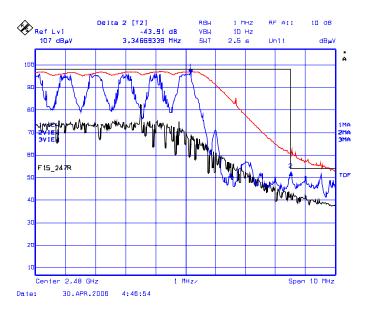
ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Plot 5.7.5.1.10 Band-Edge Radiated Emissions @ 3 meters, Vertical Polarization Upper End of Frequency Band (2480 MHz), Frequency Hopping Enabled




Trace 1 _: RBW = 1 MHz, VBW = 3 MHz Trace 2 _: RBW = 100 kHz, VBW = 300 kHz, Delta (Peak to Band-Edge): 44.12 dB Trace 3 _: RBW = 1 MHz, VBW = 10 Hz Band-Edge Level at 2484 MHz: 94.88 dBuV/m - 44.12 dB= **50.76 dBuV/m**


ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com


File #: TEK-535F15C247 June 6, 2006

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Trace 1 _: RBW = 1 MHz, VBW = 3 MHz Trace 2 _: RBW = 100 kHz, VBW = 300 kHz, Delta (Peak to Band-Edge): 43.91 dB Trace 3 _: RBW = 1 MHz, VBW = 10 Hz Band-Edge Level at 2484 MHz: 97.08 dBuV/m - 43.91 dB= 53.17 dBuV/m

5.7.5.2. Transmitter Radiated Spurious Emissions

The emissions were scanned from 30 MHz to 25 GHz; and No Spurious emissions found within the 20 dB below the limits.

Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
		Funda	amental Fred	quency: 2402	2 MHz		
2402	97.76	-	V	-	-	-	-
2402	97.97	-	Н	-	-	-	-
		Funda	amental Fred	quency: 2441	MHz		
2441	95.54	-	V	-	-	-	-
2441	97.13	-	Н	-	-	-	-
	Fundamental Frequency: 2480 MHz						
2480	94.88	-	V	-	-	-	-
2480	97.08	-	Н	-	-	-	-

5.8. POWER SPECTRAL DENSITY [§ 15.247(e) & (f)]

5.8.1. Limit

For a digitally modulated system, the power spectral density conducted from the intentional radiator to the antenna shall not be grater than 8 dBm in any 3 KHz bandwidth within this band during any time interval of continuous transmission.

5.8.2. Method of Measurements

KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247), using Alternative Test Procedures.

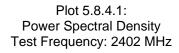
5.8.3. Test Equipment List

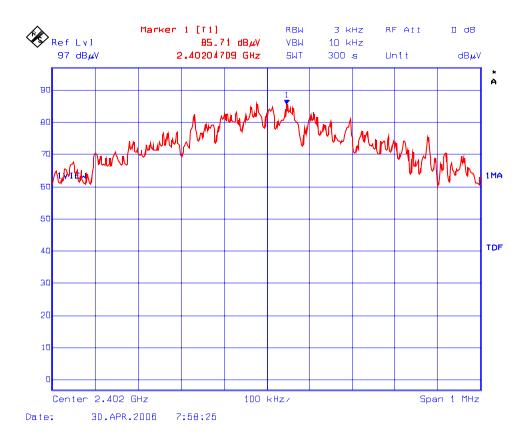
Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Rohde & Schwarz	FSEK20/B4/B21	834157/005	9 kHz – 40 GHz with external mixer
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz

5.8.4. Test Data

Frequency (MHz)	Peak E-Field in 3 kHz BW @ 3m (dBµV/m)	Tx Ant. Gain (dBi)	*Calculated SPD (dBm)	Limit dBm)	Margin (dBm)
2402	85.71	2.0	-11.5	+8.0	-19.5
2441	85.56	2.0	-11.7	+8.0	-19.7
2480	85.32	2.0	-11.9	+8.0	-19.9

*SPD is calculated using the following equation:

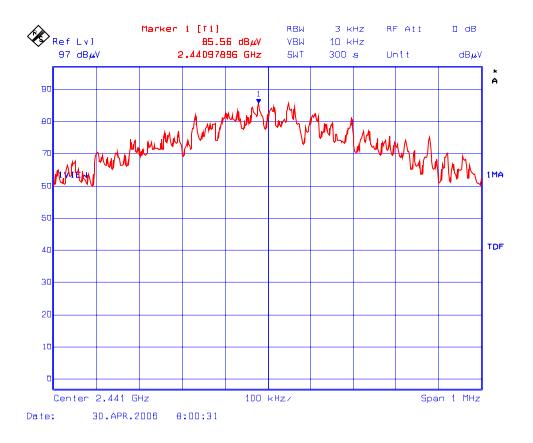

 $P = (E \times D)$ squared / (30 x G)


Where: E = the measured maximum field strength in V/m

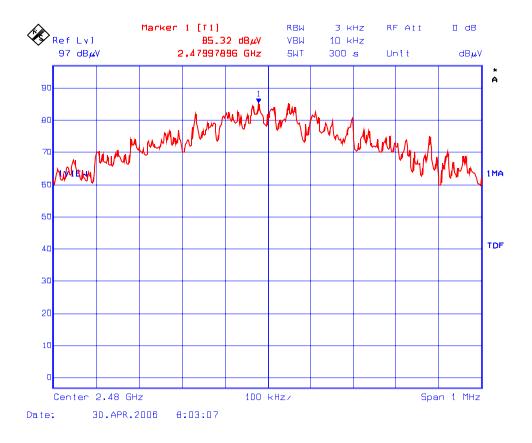
G = the numeric gain of the transmitting antenna over an isotropic radiator.

D = the distance in meters form which the field strength was measured.

P = the power in watts



ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com File #: TEK-535F15C247 June 6, 2006


All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Plot 5.8.4.2: Power Spectral Density Test Frequency: 2441 MHz

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Plot 5.8.4.3: Power Spectral Density Test Frequency: 2480 MHz

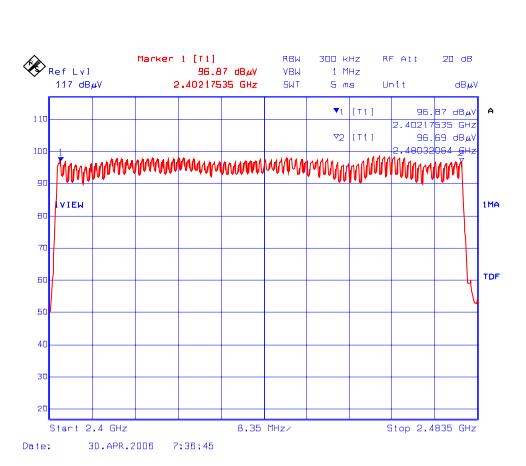
ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

5.9. AVERAGE TIME OF OCCUPANCY [§ 15.247(f)]

5.9.1. Limit

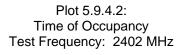
The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned off shall have an average time of occupancy on any frequency not to exceed 0.4 seconds with in a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4.

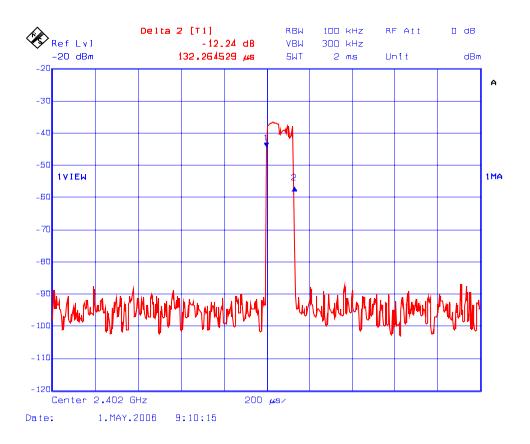
5.9.2. Method of Measurements


Refer to FCC DA-00-705 and ANSI C63.4 for measurement methods.

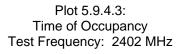
5.9.3. Test Equipment List

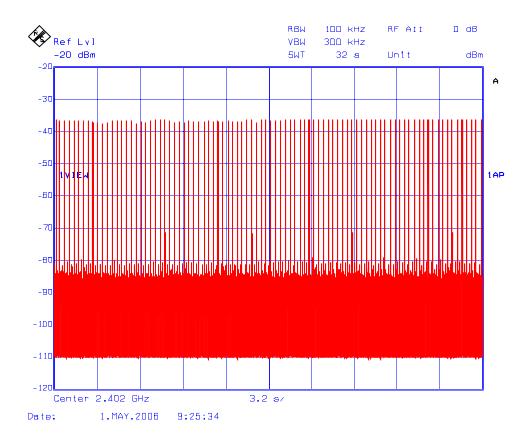
Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Rohde & Schwarz	FSEK20/B4/B21	834157/005	9 kHz – 40 GHz with external mixer
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz

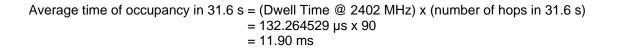

5.9.4. Test Data


See the following plots for measurement details.

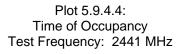
Plot 5.9.4.1: Number of Hopping Frequencies 79 channels

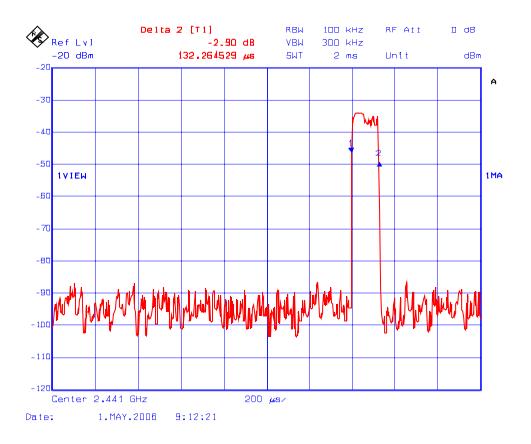

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

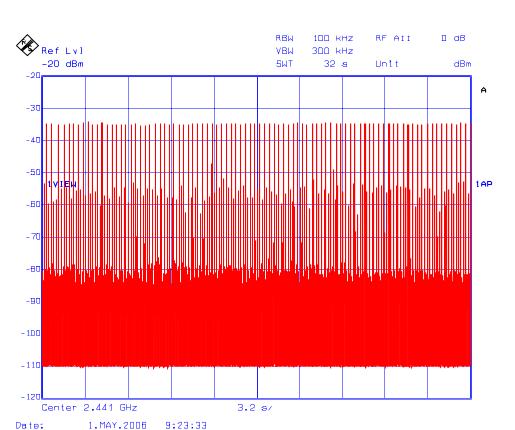


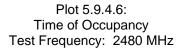


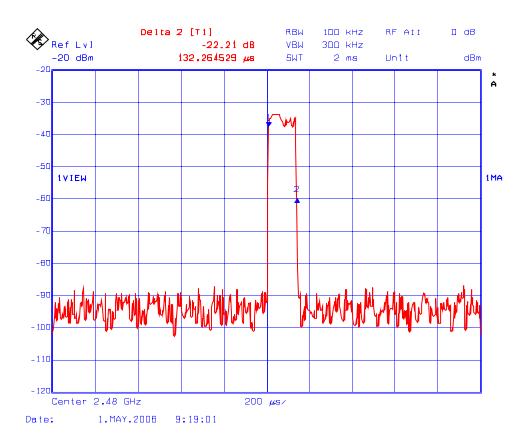
Dwell Time @ 2402 MHz = 132.264529 µs

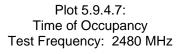

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

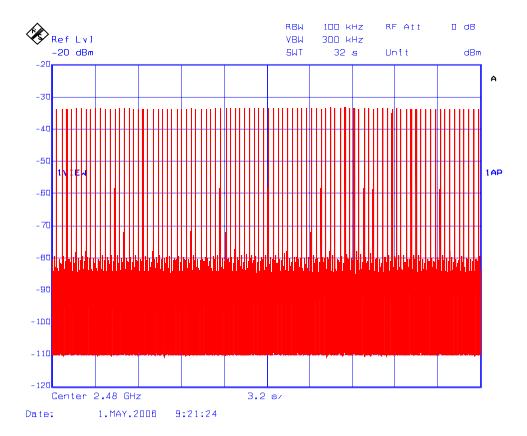



All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)


Dwell Time @ 2441 MHz = 132.264529 µs


ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com


Plot 5.9.4.5: Time of Occupancy Test Frequency: 2441 MHz


Average time of occupancy in 31.6 s = (Dwell Time @ 2441 MHz) x (number of hops in 31.6 s) = 132.264529 μ s x 90 = 11.90 ms

Dwell Time @ 2480 MHz = 132.264529 µs

Average time of occupancy in 31.6 s = (Dwell Time @ 2480 MHz) x (number of hops in 31.6 s) = $132.264529 \ \mu s \ x \ 90$ = $11.90 \ ms$

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

EXHIBIT 6. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994)

6.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAINTY (dB)		
(Line Conducted)	DISTRIBUTION	9-150 kHz	0.15-30 MHz	
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
LISN coupling specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
Cable and Input Transient Limiter calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5	
Mismatch: Receiver VRC $\Gamma_1 = 0.03$ LISN VRC $\Gamma_R = 0.8(9 \text{ kHz}) 0.2 (30 \text{ MHz})$ Uncertainty limits $20\text{Log}(1\pm\Gamma_1\Gamma_R)$	U-Shaped	<u>+</u> 0.2	<u>+</u> 0.3	
System repeatability	Std. deviation	<u>+</u> 0.2	<u>+</u> 0.05	
Repeatability of EUT				
Combined standard uncertainty	Normal	<u>+</u> 1.25	<u>+</u> 1.30	
Expanded uncertainty U	Normal (k=2)	<u>+</u> 2.50	<u>+</u> 2.60	

Sample Calculation for Measurement Accuracy in 450 kHz to 30 MHz Band:

$$u_{c}(y) = \sqrt{\sum_{i=1}^{m} u_{i}^{2}(y)} = \pm \sqrt{(1.5^{2} + 1.5^{2})/3 + (0.5/2)^{2} + (0.05/2)^{2} + 0.35^{2}} = \pm 1.30 \text{ dB}$$

 $U = 2u_c(y) = + 2.6 \text{ dB}$

CONTRIBUTION	PROBABILITY	UNCERTA	INTY (<u>+</u> dB)
(Radiated Emissions)	DISTRIBUTION	3 m	10 m
Antenna Factor Calibration	Normal (k=2)	<u>+</u> 1.0	<u>+</u> 1.0
Cable Loss Calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5
Antenna Directivity	Rectangular	+0.5	+0.5
Antenna factor variation with height	Rectangular	<u>+</u> 2.0	<u>+</u> 0.5
Antenna phase center variation	Rectangular	0.0	<u>+</u> 0.2
Antenna factor frequency interpolation	Rectangular	<u>+</u> 0.25	<u>+</u> 0.25
Measurement distance variation	Rectangular	<u>+</u> 0.6	<u>+</u> 0.4
Site imperfections	Rectangular	<u>+</u> 2.0	<u>+</u> 2.0
Mismatch: Receiver VRC $\Gamma_1 = 0.2$ Antenna VRC $\Gamma_R = 0.67$ (Bi) 0.3 (Lp) Uncertainty limits 20Log(1± Γ_1 Γ_R)	U-Shaped	+1.1 -1.25	<u>+</u> 0.5
System repeatability	Std. Deviation	<u>+</u> 0.5	<u>+</u> 0.5
Repeatability of EUT		-	-
Combined standard uncertainty	Normal	+2.19 / -2.21	+1.74 / -1.72
Expanded uncertainty U	Normal (k=2)	+4.38 / -4.42	+3.48 / -3.44

6.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k = 2 is used:

 $U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB}$ And $U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$