

TEST REPORT FROM RFI GLOBAL SERVICES LTD

Test of: Psion Teklogix UK Ltd. 7535 + RA3020.

To: OET Bulletin 65 Supplement C: (2001-01)

Measurements were performed on the DASY4 System

Test Report Serial No: RFI/SARE1/RP47892JD03A

This Test Report Is Issued Under The Authority Of Andrew Brown, Operations Manager:	
AB	
Tested By: Richelieu Quoi	Checked By: Scott D'Adamo
R. Augi	-fott Diklamo
Report Copy No:	
PDF01	
Issue Date: 30 January 2006	Test Dates: 18 January 2006 to 20 January 2006

It should be noted that the standard, OET Bulletin 65 Supplement C: (2001-01) is not listed on RFI's current UKAS schedule and is therefore "not UKAS accredited".

This report is issued in Adobe Acrobat portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields.

This report may be copied in full. The results in this report apply only to the sample(s) tested.

RFI Global Services Ltd Pavilion A, Ashwood Park, Ashwood Way, Basingstoke, Hampshire RG23 8BG Telephone: +44 (0)1256 312000 Facsimile: +44 (0)1256 312001 Email: info@rfi-global.com Website: www.rfi-global.com

RFI GLOBAL SERVICES LTD

TEST REPORT S.No. RFI/SARE1/RP47892JD03A Page: 2 of 52 Issue Date: 30 January 2006

Test Of:Psion Teklogix UK Ltd.
7535 + RA3020.To:OET Bulletin 65 Supplement C: (2001-01)

This page has been left intentionally blank.

Table of Contents

1. Client Information	. 4
2. Equipment Under Test (EUT)	5
3. Test Specification, Methods and Procedures	. 8
4. Deviations from the Test Specification	. 9
5. Operation of the EUT During Testing	10
6. Summary of Test Results	11
7. Measurements, Examinations and Derived Results	12
8. SAR Measurement System	16
9. SAR Safety Limits	17
10. Details of SAR Evaluation	18
11. Evaluation Procedures	19
12. System Validation	20
13. Simulated Tissues	21
14. Tissue Parameters	22
15. DASY4 Systems Specifications	23
16. Validation Results – 900 MHz Band (Body)	24
17. Validation Results – 900 MHz Band (Body)	25
18. Validation Results – 1900 MHz Band (Body)	26
19. Measurement Uncertainty	27
Appendix 1. Test Equipment Used	30
Appendix 2. SAR Distribution Scans	32
Appendix 3. Calibration Data	33
Appendix 4. Photographs of EUT	35

1. Client Information

Company Name:	Psion Teklogix UK Ltd.
Address:	Bourne End Business Centre Cores End Road Bourne End Bucks SL8 5AS
Contact Name:	Mr S Lucas

Test Laboratory

Company Name:	RFI Global Services Ltd.
Address:	Ewhurst Park Ramsdell Basingstoke Hampshire RG26 5RQ.
Contact Name:	Mr A Brown

TEST REPORT S.No. RFI/SARE1/RP47892JD03A Page: 5 of 52 Issue Date: 30 January 2006

Test Of:Psion Teklogix UK Ltd.7535 + RA3020.To:OET Bulletin 65 Supplement C: (2001-01)

2. Equipment Under Test (EUT)

The following information (with the exception of the date of receipt) has been supplied by the client:

2.1. Identification of Equipment Under Test (EUT)

Brand Name:	Psion Teklogix
Model Name or Number:	7535 + RA3020
IMEI Number:	010666.00.002061.10
Hardware Version Number:	7535RA3020A
Software Version Number:	1.0
Serial Number:	HU0025489641
FCC ID:	GM37535GSMA
Country of Manufacture:	Canada
Date of Receipt:	18 January 2006

Brand Name:	Psion Teklogix
Model Name or Number:	CJ
Part Number:	1030070-003
Battery Type:	Lithium-ion Rechargeable Battery
Country of Manufacture:	Japan
Date of Receipt:	18 January 2006

2.2. Description of EUT

The equipment under test is a rugged handheld 7535 terminal (i.e. PC) running Windows CE, NET 4.2 Pro and Dual Band PCS Radio RA3020A, that is integrated inside the 7535 to offer the user the ability to access / send data in real time. Operating at 850 MHz / 1900 MHz.

2.3. Modifications Incorporated in the EUT

During testing no modifications were made to the EUT, Hardware Version 7535RA3020A.

TEST REPORT S.No. RFI/SARE1/RP47892JD03A Page: 6 of 52 Issue Date: 30 January 2006

Test Of:Psion Teklogix UK Ltd.
7535 + RA3020.To:OET Bulletin 65 Supplement C: (2001-01)

2.4. Additional Information Related to the EUT

Equipment Class:	GSM 850 / GSM 1900		
FCC Rule Part(s):	OET Bulletin 65 Supplement C		
Device Category:	Portable (Standalone batte	ery powered device)
Application Type:	Certification		
Maximum Power Output:	GSM 850 at 33 dBm GSM 1900 at 30 dBm		
Transmitter Frequency Range:	850 MHz at (824.0 to 849.0) MHz 1900 MHz at (1850.0 to 1910.0) MHz		
Transmit Frequency Allocation of EUT When Under Test (Channels):	Channel Number Channel Frequency Description (MHz)		
	128	Low	824.2
	189	Middle	836.4
	251	High	848.8
	512	Low	1850.2
	660	Middle	1879.8
	810	High	1909.8
Modulation(s):	217 Hz		
Modulation Scheme (Crest Factor):	8.3		
Battery Type(s):	Lithium-ion		
Antenna Type:	0.25 Wave Monopole		
Number Of Antenna Positions:	1 Permanent (Integral)		
Intended Operating Environment:	Residential. Commercial,	Light Industry and V	Vithin GSM Coverage
Power Supply Requirement:			
AC Supply (Volts/Amps)			
Internal Battery Supply:	7.4 V (1900 mAh)		
Ports:	SIM		
	Portable Docking Module Tether port		

2.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Universal Radio Communication Tester
Brand Name:	Rohde & Schwarz
Model Name or Number:	CMU 200
Serial Number:	836202/093
RFI Asset Number:	M1138
Cable Length and Type:	1.5m (Rosenberger)
Connected to Port:	Air Link to Antenna (RF2 port)

3. Test Specification, Methods and Procedures

3.1. Test Specification

Reference:	OET Bulletin 65 Supplement C: (2001-01)
Title:	Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.

3.2. Methods and Procedures

The methods and procedures used were as detailed in:

EN 50361: 2001

Title: Basic standard for the measurement of specific absorption rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz).

ANSI/IEEE C95.1: 1999

IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz.

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 2001.

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with know precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

3.3. Definition Of Measurement Equipment

The measurement equipment used complied with the requirements as detailed in OET Bulletin 65 Supplement C, Appendix D.

TEST REPORT S.No. RFI/SARE1/RP47892JD03A Page: 9 of 52 Issue Date: 30 January 2006

Test Of:Psion Teklogix UK Ltd.
7535 + RA3020.To:OET Bulletin 65 Supplement C: (2001-01)

4. Deviations from the Test Specification

At the clients request testing was performed with the EUT operating in GSM850 and GSM1900 data call allocation only.

TEST REPORT S.No. RFI/SARE1/RP47892JD03A Page: 10 of 52 Issue Date: 30 January 2006

Test Of:Psion Teklogix UK Ltd.7535 + RA3020.To:OET Bulletin 65 Supplement C: (2001-01)

5. Operation of the EUT During Testing

5.1. Operating Modes

The EUT was tested in the following operating mode(s): Standalone, GSM data call configuration.

5.2. Configuration and Peripherals

The EUT was tested in the following configuration(s): Fully Powered.

TEST REPORT S.No. RFI/SARE1/RP47892JD03A Page: 11 of 52 Issue Date: 30 January 2006

Test Of:Psion Teklogix UK Ltd.7535 + RA3020.To:OET Bulletin 65 Supplement C: (2001-01)

6. Summary of Test Results

Test Name	Specification Reference	Compliancy Status
Specific Absorption Rate (SAR)	OET Bulletin 65 Supplement C	Complied

6.1. Location of Tests

All the measurements described in this report were performed at the premises of RFI Global Services Ltd, Ewhurst Park, Ramsdell, Basingstoke, Hampshire, RG26 5RQ.

TEST REPORT S.No. RFI/SARE1/RP47892JD03A Page: 12 of 52 Issue Date: 30 January 2006

Test Of:Psion Teklogix UK Ltd.
7535 + RA3020.To:OET Bulletin 65 Supplement C: (2001-01)

7. Measurements, Examinations and Derived Results

7.1. General Comments

This section contains test results only.

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to section 18 for details of measurement uncertainties.

TEST REPORT S.No. RFI/SARE1/RP47892JD03A Page: 13 of 52 Issue Date: 30 January 2006

Test Of:Psion Teklogix UK Ltd.7535 + RA3020.To:OET Bulletin 65 Supplement C: (2001-01)

7.2. Test Results

7.2.1. Test Results for Specific Absorption Rate – GSM850 Body

Test Summary:

Maximum Level (W/kg):	0.529
Limit (W/kg):	1.600
Margin (W/kg):	1.071

Environmental Conditions:

Temperature Variation in Lab (°C):	25.0 to 26.0
Temperature Variation in Liquid (°C):	23.8 to 24.1

ERP Measurements before Test:

Refer to section 7.2.3

Results:

Position	Section of Phantom	Channel Number	Level 1g (W/kg)	Limit 1g (W/kg)	Margin 1g (W/kg)	Result
Front of EUT Upper with Display Facing Phantom	Flat	189	0.469	1.6	1.131	Complied
Front of EUT Lower with Display Facing Phantom	Flat	189	0.197	1.6	1.403	Complied
Rear of EUT Upper	Flat	189	0.411	1.6	1.189	Complied
Rear of EUT Lower	Flat	189	0.170	1.6	1.430	Complied
EUT in Case (Upper Section)	Flat	189	0.341	1.6	1.259	Complied
EUT in Case (Lower Section)	Flat	189	0.079	1.6	1.521	Complied
Front of EUT Upper with Display Facing Phantom	Flat	128	0.529	1.6	1.071	Complied
Front of EUT Upper with Display Facing Phantom	Flat	251	0.452	1.6	1.148	Complied
Rear of EUT Upper	Flat	128	0.420	1.6	1.180	Complied
Rear of EUT Upper	Flat	251	0.331	1.6	1.269	Complied

TEST REPORT S.No. RFI/SARE1/RP47892JD03A Page: 14 of 52 Issue Date: 30 January 2006

Test Of:Psion Teklogix UK Ltd.7535 + RA3020.To:OET Bulletin 65 Supplement C: (2001-01)

7.2.2. Test Results for Specific Absorption Rate – GSM1900 Body

Test Summary:

Maximum Level (W/kg):	0.197
Limit (W/kg):	1.600
Margin (W/kg):	1.403

Environmental Conditions:

Temperature Variation in Lab (°C):	25.0 to 26.0
Temperature Variation in Liquid (°C):	23.8 to 24.0

EIRP Measurements before Test:	Refer to section 7.2.4

Results:

Position	Section of Phantom	Channel Number	Level 1g (W/kg)	Limit 1g (W/kg)	Margin 1g (W/kg)	Result
Front of EUT Upper with Display Facing Phantom	Flat	660	0.195	1.6	1.405	Complied
Front of EUT Lower with Display Facing Phantom	Flat	660	0.092	1.6	1.508	Complied
Rear of EUT Upper	Flat	660	0.071	1.6	1.529	Complied
Rear of EUT Lower	Flat	660	0.013	1.6	1.587	Complied
EUT in Case (Upper Section)	Flat	660	0.041	1.6	1.559	Complied
EUT in Case (Lower Section)	Flat	660	0.034	1.6	1.566	Complied
Front of EUT Upper with Display Facing Phantom	Flat	512	0.197	1.6	1.403	Complied
Front of EUT Upper with Display Facing Phantom	Flat	810	0.167	1.6	1.433	Complied

TEST REPORT S.No. RFI/SARE1/RP47892JD03A Page: 15 of 52 Issue Date: 30 January 2006

Test Of:Psion Teklogix UK Ltd.7535 + RA3020.To:OET Bulletin 65 Supplement C: (2001-01)

7.2.3. ERP Measurement

Date: 03 January 2006

Channel	Frequency (MHz)	TX Power before Test (dBm)
Bottom	824.2	31.2
Middle	836.6	31.1
Тор	848.8	29.8

7.2.4. EIRP Measurement

Date: 03 January 2006

Channel	Frequency (MHz)	TX Power before Test (dBm)
Bottom	1850.2	30.7
Middle	1879.8	30.5
Тор	1909.8	30.9

Note(s):

- 1. EIRP and ERP measurements are performed before testing only.
- 2. The test configuration for the 'EUT in case' set-up was performed with the EUT antenna placed closest to the body.

TEST REPORT S.No. RFI/SARE1/RP47892JD03A Page: 16 of 52 Issue Date: 30 January 2006

Test Of:Psion Teklogix UK Ltd.7535 + RA3020.To:OET Bulletin 65 Supplement C: (2001-01)

8. SAR Measurement System

RFI Global Services Ltd, SAR measurement facility utilises the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG[™]) of Zurich, Switzerland. The DASY4 system is comprised of the robot controller, computer, near-field probe, probe alignment sensor, and the SAM phantom containing brain or muscle equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller; teach pendant (Joystick), and remote control. This is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. The data acquisition electronics (DAE) performs signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection etc. The DAE is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. The DAE3 utilises a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching mulitplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

9. SAR Safety Limits

Exposure Limits	SAR
(General Populations/Uncontrolled Exposure Environment)	(W/Kg)
Spatial Peak (averaged over any 1 g of tissue)	1.600

Note(s):

- 1. OET Bulletin 65 Supplement C SAR safety limits specified in the table above applies to devices operated in the general population / uncontrolled exposure environment.
- 2. Uncontrolled environments are defined as locations where there is exposure of individuals who have no knowledge or control of their exposure.

TEST REPORT S.No. RFI/SARE1/RP47892JD03A Page: 18 of 52 Issue Date: 30 January 2006

Test Of:Psion Teklogix UK Ltd.7535 + RA3020.To:OET Bulletin 65 Supplement C: (2001-01)

10. Details of SAR Evaluation

The equipment under test was found to be compliant for localised Specific Absorption Rate (SAR) based on the following provisions and conditions:

- a) The Handheld terminal with integrated radio was exercised positioned under the flat section of the phantom.
- b) Measurements were performed with the EUT, display facing the phantom, rear facing the facing and side facing the phantom consecutively.
- c) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- d) The device was keyed to operate continuously in Tranceive Mode for the duration of the test.
- e) The location of the maximum spatial SAR distribution (Hot Spot) was determined relative to the EUT and its antenna.
- f) The EUT was tested with a fully charged battery.

TEST REPORT S.No. RFI/SARE1/RP47892JD03A Page: 19 of 52 Issue Date: 30 January 2006

Test Of:Psion Teklogix UK Ltd.7535 + RA3020.To:OET Bulletin 65 Supplement C: (2001-01)

11. Evaluation Procedures

The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

 a) (i) The evaluation was performed in an applicable area of the phantom depending on the type of device being tested. For devices worn about the ear during normal operation, both the left and right ear positions were evaluated at the centre frequency of the band at maximum power. The side, which produced the greatest SAR, determined which side of the phantom would be used for the entire evaluation. The positioning of the head worn device relative to the phantom was dictated by FCC OET Bulletin 65 Supplement C.

(ii) For body worn devices or devices which can be operated within 20 cm of the body, the flat section of the phantom was used. The type of device being evaluated dictated the distance of the EUT to the outer surface of the phantom flat section.

- b) The SAR was determined by a pre-defined procedure within the DASY4 software. The exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm or appropriate resolution.
- c) A 7x7x7 matrix was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d) If the EUT had any appreciable drift over the course of the evaluation, then the EUT was re-evaluated. Any unusual anomalies over the course of the test also warranted a re-evaluation.

12. System Validation

Prior to the assessment, the system was verified in the flat region of the phantom.

A 900 MHz and 1900 MHz dipole were used respectively. A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of \pm 5% for the 900 MHz and 1900 MHz dipoles. The applicable verification (normalised to 1 Watt) is as follows:

Dipole Validation Kit	Target SAR 1g (W/kg)	Measured SAR 1g (W/kg)
D900V2: SN124	10.50	10.56
D900V2: SN124	10.50	10.52
D1900V2: SN540	39.10	38.80

13. Simulated Tissues

The body mixture consists of water and glycol. Visual inspection is made to ensure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue.

Ingredient	Frequency		
	900 MHz Body		
De-Ionised Water	50.75%		
Sugar	48.21%		
Salt	0.94%		
Kathon	0.10%		

Ingredient	Frequency		
	1900 MHz Body		
De-Ionised Water	69.79%		
Diglycol Butyl Ether (DGBE)	30.00%		
Salt	0.20%		

14. Tissue Parameters

The dielectric parameters of the fluids were verified prior to the SAR evaluation using an 85070C Dielectric Probe Kit and an 8753E network analyser. The dielectric parameters of the fluid are as follows:

Frequency (MHz)	Equivalent Tissue	Dielectric Constant E r	Conductivity σ (mho/m)
900	Body	52.39	1.00
1900	Body	51.54	1.55

TEST REPORT S.No. RFI/SARE1/RP47892JD03A Page: 23 of 52 Issue Date: 30 January 2006

Test Of:Psion Teklogix UK Ltd.
7535 + RA3020.To:OET Bulletin 65 Supplement C: (2001-01)

15. DASY4 Systems Specifications

Robot System

Positioner: Repeatability: No. of Axis: Serial Number: Reach: Payload: Control Unit: Programming Language:	Stäubli Unimation Corp. Robot Model: RX90L 0.025 mm 6 F00/SD89A1/A/01 1185 mm 3.5 kg CS7 V+
Data Acquisition Electronic (DAE)	<u>System</u>
<u>Cell Controller</u> PC: Operating System: Data Card: Serial Number:	Dell Precision 340 Windows NT DASY4 Measurement Server 1080
<u>Data Converter</u> Features: Software: Connecting Lines:	Signal Amplifier, multiplexer, A/D converter and control logic. DASY4 Software Optical downlink for data and status info. Optical uplink for commands and clock.
PC Interface Card	
Function:	24 bit (64 MHz) DSP for real time processing Link to DAE3 16 nit A/D converter for surface detection system serial link to robot direct emergency stop output for robot.
E-Field Probe	
Model: Serial No: Construction: Frequency: Linearity: Probe Length (mm): Probe Diameter (mm): Tip Length (mm): Tip Diameter (mm): Sensor X Offset (mm): Sensor Y Offset (mm): Sensor Z Offset (mm):	ET3DV6 1528 Triangular core fibre optic detection system 10 MHz to 3 GHz ±0.2 dB (30 MHz to 3 GHz) 337 12 10 6.8 2.7 2.7 2.7
Phantom:	SAM Phantom
Shell Material: Thickness:	Fibreglass 2.0 \pm 0.1 mm

16. Validation Results - 900 MHz Band (Body)

Date: 18 January 2006

16.1. System Validation

Validation of the system test configuration was carried out prior to testing.

Validation Dipole Type and Serial No.	Calibrated Value of SAR in 1g volume (W/kg) at 900 MHz	Measured Value of SAR in 1g volume (W/kg) at 900 MHz	Percentage Difference (≤5%)
D900V2: SN124 10.50		10.56	(+0.57%) Yes

A 900 MHz dipole was used to perform 850 MHz body system validation. This was possible as the device centre frequency is within ±100 MHz of the verification frequency.

15.2 Liquid Properties

Properties of the tissue simulating liquid were measured prior to testing.

Property	Target Value (900 MHz)	Measured/Calculated Value (900 MHz)	Percentage Difference (≤5%)	
Relative Permittivity	55.00	52.39	(+4.74%) Yes	
Conductivity	1.05	1.00	(+4.64%) Yes	

15.3 Temperature Variation

The temperature of the laboratory and within the tissue simulating liquid for this test shall not exceed the range +15.0 °C to +30.0 °C.

The actual temperature measured at the beginning and end of each test was recorded and the maximum range is shown below:

Measurement	Measurement Maximum Temperature (°C)			
Laboratory	26.0	25.0		
Tissue Simulating Liquid	24.1	23.8		

17. Validation Results - 900 MHz Band (Body)

Date: 20 January 2006

17.1. System Validation

Validation of the system test configuration was carried out prior to testing.

Validation Dipole Type and Serial No.	Calibrated Value of SAR in 1g volume (W/kg) at 900 MHz	Measured Value of SAR in 1g volume (W/kg) at 900 MHz	Percentage Difference (≤5%)
D900V2: SN124 10.50		10.52	(+0.19%) Yes

A 900 MHz dipole was used to perform 850 MHz body system validation. This was possible as the device centre frequency is within ±100 MHz of the verification frequency.

16.2. Liquid Properties

Properties of the tissue simulating liquid were measured prior to testing.

Property	Target Value (900 MHz)	Measured/Calculated Value (900 MHz)	Percentage Difference (≤5%)	
Relative Permittivity	55.00	52.39	(+4.74%) Yes	
Conductivity	1.05	1.00	(+4.64%) Yes	

16.3. Temperature Variation

The temperature of the laboratory and within the tissue simulating liquid for this test shall not exceed the range +15.0 °C to +30.0 °C.

The actual temperature measured at the beginning and end of each test was recorded and the maximum range is shown below:

Measurement	Maximum Temperature (°C)	Minimum Temperature (°C)	
Laboratory	26.0	25.0	
Tissue Simulating Liquid	24.3	23.8	

18. Validation Results - 1900 MHz Band (Body)

Date: 19 January 2006

18.1. System Validation

Validation of the system test configuration was carried out prior to testing.

Validation Dipole Type and Serial No.	Calibrated Value of SAR in 1g volume (W/kg) at 1900 MHz	Measured Value of SAR in 1g volume (W/kg) at 1900 MHz	Percentage Difference (≤5%)
D1900V2: SN540 39.10		38.80	(-0.77%) Yes

16.2. Liquid Properties

Properties of the tissue simulating liquid were measured prior to testing.

Property	Target Value (1900 MHz)	Measured/Calculated Value (1900 MHz)	Percentage Difference (≤5%)
Relative Permittivity	53.30	51.54	(-3.30%) Yes
Conductivity	1.52	1.55	(+2.04%) Yes

16.3. Temperature Variation

The temperature of the laboratory and within the tissue simulating liquid for this test shall not exceed the range +15.0 $^{\circ}$ C to +30.0 $^{\circ}$ C.

The actual temperature measured at the beginning and end of each test was recorded and the maximum range is shown below:

Measurement	Maximum Temperature (°C)	Minimum Temperature (°C)
Laboratory	26.0	25.0
Tissue Simulating Liquid	24.0	23.8

TEST REPORT S.No. RFI/SARE1/RP47892JD03A Page: 27 of 52 Issue Date: 30 January 2006

Test Of:Psion Teklogix UK Ltd.7535 + RA3020.To:OET Bulletin 65 Supplement C: (2001-01)

19. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Range	Confidence Level	Calculated Uncertainty
Specific Absorption Rate	850 MHz	95%	± 17.12
Specific Absorption Rate	1900 MHz	95%	± 17.12

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environment. However, the estimated measurement uncertainties in SAR are less than 30%.

According to ANSI/IEEE C95.3, the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of ± 1 to 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least ± 2 dB can be expected.

According to CENELEC, typical worst-case uncertainty of field measurements is ± 5 dB. For well-defined modulation characteristics the uncertainty can be reduced to ± 3 dB.

TEST REPORT S.No. RFI/SARE1/RP47892JD03A Page: 28 of 52 Issue Date: 30 January 2006

Test Of:Psion Teklogix UK Ltd.
7535 + RA3020.To:OET Bulletin 65 Supplement C: (2001-01)

Measurement Uncertainty (Continued)

Specific Absorption Rate Uncertainty at 850 MHz, GSM Modulation Scheme calculated in accordance with IEEE 1528-200X

		+	-	Probability			Standard	Uncertainty	ບ _i or
Туре	Source of uncertainty	Value	Value	Distribution	Divisor	Ci	+ u (dBμV)	- u (dBµV)	ບ _{eff}
В	Probe calibration	8.900	8.900	normal (k=2)	2.0000	1.0000	4.450	4.450	×
В	Axial Isotropy	0.100	0.100	normal (k=2)	2.0000	1.0000	0.050	0.050	×
В	Hemispherical Isotropy	0.100	0.100	normal (k=2)	2.0000	1.0000	0.050	0.050	œ
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	œ
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	œ
В	Linearity	2.330	2.330	Rectangular	1.7321	1.0000	1.345	1.345	œ
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	œ
В	Readout Electronics	0.650	0.650	normal (k=2)	2.0000	1.0000	0.325	0.325	œ
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	œ
В	Integration Time	0.005	0.005	Rectangular	1.7321	1.0000	0.003	0.003	œ
В	RF Ambinet conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	œ
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	×
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	×
В	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	×
Α	Test Sample Positioning	0.584	0.584	normal (k=1)	1.0000	1.0000	0.584	0.584	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	œ
В	Drit of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	œ
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	œ
В	Liquid Conductivity (measured value)	2.440	2.440	Rectangular	1.7321	1.0000	1.409	1.409	œ
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	œ
В	Liquid Permittivity (measured value)	2.440	2.440	Rectangular	1.7321	1.0000	1.409	1.409	œ
	Combined standard uncertainty			t-distribution			8.74	8.74	>500
	Expanded uncertainty			k = 1.96			17.12	17.12	>500

TEST REPORT S.No. RFI/SARE1/RP47892JD03A Page: 29 of 52 Issue Date: 30 January 2006

Test Of:Psion Teklogix UK Ltd.
7535 + RA3020.To:OET Bulletin 65 Supplement C: (2001-01)

Measurement Uncertainty (Continued)

Specific Absorption Rate Uncertainty at 1900 MHz, GSM Modulation Scheme calculated in accordance with IEEE 1528-200X

Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	Ci	Standard Uncertainty		ບ _i or
							+ u (dBμV)	- u (dBµV)	υ _{eff}
В	Probe calibration	8.900	8.900	normal (k=2)	2.0000	1.0000	4.450	4.450	8
В	Axail Isotropy	0.100	0.100	normal (k=2)	2.0000	1.0000	0.050	0.050	×
В	Hemispherical Isotropy	0.100	0.100	normal (k=2)	2.0000	1.0000	0.050	0.050	8
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	8
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	8
В	Linearity	2.330	2.330	Rectangular	1.7321	1.0000	1.345	1.345	8
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	×
В	Readout Electronics	0.650	0.650	normal (k=2)	2.0000	1.0000	0.325	0.325	×
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	×
В	Integration Time	0.005	0.005	Rectangular	1.7321	1.0000	0.003	0.003	×
В	RF Ambinet conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	×
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	8
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	8
В	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	×
Α	Test Sample Positioning	0.584	0.584	normal (k=1)	1.0000	1.0000	0.584	0.584	10
А	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	×
В	Drit of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	8
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	8
В	Liquid Conductivity (measured value)	2.440	2.440	Rectangular	1.7321	1.0000	1.409	1.409	~
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	~
В	Liquid Permittivity (measured value)	2.440	2.440	Rectangular	1.7321	1.0000	1.409	1.409	×
	Combined standard uncertainty			t-distribution			8.74	8.74	>500
	Expanded uncertainty			k = 1.96			17.12	17.12	>500

TEST REPORT S.No. RFI/SARE1/RP47892JD03A Page: 30 of 52 Issue Date: 30 January 2006

Test Of:Psion Teklogix UK Ltd.
7535 + RA3020.To:OET Bulletin 65 Supplement C: (2001-01)

Appendix 1. Test Equipment Used

RFI No.	Instrument	Manufacturer	Туре No.	Serial No.
A034	Narda 20W Termination	Narda	374BNM	8706
A1094	Sony MVC FD-81	Sony	MVC - FD81	125805
A1097	SMA Directional Coupler	MiDISCO	MDC6223-30	None
A1174	Dielectric Probe Kit	Agilent Technologies	85070C	Us99360072
A1185	Probe	Schmid & Partner	ET3 DV6	1528
A1234	Data Acquisition Electronics	Schmid & Partner	DAE3	450
A1235	900MHz Validation Dipole	Schmid & Partner	D900V2	124
A1237	1900MHz Validation Dipole	Schmid & Partner	D1900V2	540
A1238	SAM Phantom	Schmid & Partner	001	001
A1410	DC -4 GHz 3 dB	Omni Spectra	FSC 16179	20510-3
A1497	Amplifier	Mini-Circuits	zhl-42w (sma)	e020105
A1566	SAM Phantom	SPEAG	002	002
A215	20 dB Attenuator	Narda	766-20	9402
C1092	Cable	RS	293-334	1087200-3 3402
C1144	Cable	Rosenberger MICRO- COAX	FA147AF001503030	41842-1
C1145	Cable	Rosenberger MICRO- COAX	FA147AF003003030	41843-1
C1146	Cable	Rosenberger MICRO- COAX	FA147AF030003030	41752-1
G051	Signal Generator	Gigatronics	7100/.01-20	749472
G058	Microphone Amplifier Kit	Bruel & Kjaer	2639	1677113
G087	PSU	Thurlby Thandar	CPX200	100701
M010	NRV Power Meter	Rohde & Schwarz	NRV	882 317/065
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406
M1047	Robot Arm	Staubli	RX908 L	F00/SD89A1/A/01
M1069	Diode Power Sensor	Rohde & Schwarz	NRV-Z2	838824/010
M1129	Insertion Unit	Rohde & Schwarz	URY-Z2	890242/16

TEST REPORT S.No. RFI/SARE1/RP47892JD03A Page: 31 of 52 Issue Date: 30 January 2006

Test Of:Psion Teklogix UK Ltd.7535 + RA3020.To:OET Bulletin 65 Supplement C: (2001-01)

Test Equipment Used (Continued)

RFI No.	Instrument	Manufacturer	Туре No.	Serial No.	
M1138	CMU 200	Rohde & Schwarz	CMU 200-1100.0008.02	836202/093	
M136	Temperature/Humidity/ Pressure Meter	RS Components	None	None	
M509	Thermometer	Testo	110	40378800433	
S256	Site 56	RFI	N/A	N/A	

NB In accordance with UKAS requirements, all the measurement equipment is on a calibration schedule.