

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

FOR

PCMCIA RFID READER CARD

MODEL NUMBER: MPR6000

FCC ID: NTTWJMPR6XXX

REPORT NUMBER: 04U2954-3

ISSUE DATE: NOVEMBER 22, 2004

Prepared for WJ COMUNICATIONS 401 RIVER OAKS PARKWAY SAN JOSE, CA 95134

Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

Revision History

Rev. Revisions

Revised By

Page 2 of 93

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS	5
2.	TEST METHODOLOGY	6
3.	FACILITIES AND ACCREDITATION	6
4.	CALIBRATION AND UNCERTAINTY	6
4.	1. MEASURING INSTRUMENT CALIBRATION	6
4.	2. MEASUREMENT UNCERTAINTY	6
5.	EQUIPMENT UNDER TEST	7
5.	1. DESCRIPTION OF EUT	7
5.	2. MAXIMUM OUTPUT POWER	7
5.	3. DESCRIPTION OF AVAILABLE ANTENNAS	
5.	4. SOFTWARE AND FIRMWARE	7
5.	5. WORST-CASE CONFIGURATION AND MODE	8
5.	.6. DESCRIPTION OF TEST SETUP	9
6.	TEST AND MEASUREMENT EQUIPMENT	11
7.	LIMITS AND RESULTS	12
7.	1. ANTENNA PORT CHANNEL TESTS FOR CLASS 0 MODUALTION	
	7.1.1. 20 dB BANDWIDTH	
	7.1.2. HOPPING FREQUENCY SEPARATION.	
	7.1.3. NUMBER OF HOPPING CHANNELS	
	7.1.4. AVERAGE TIME OF OCCUPANCY7.1.5. PEAK OUTPUT POWER	
	7.1.5. PEAK OUTPUT POWER7.1.6. MAXIMUM PERMISSIBLE EXPOSURE	
	7.1.7. CONDUCTED SPURIOUS EMISSIONS	
7		
7.	 2. ANTENNA PORT CHANNEL TESTS FOR CLASS 1 MODULATION	
	7.2.1. 20 dB BANDWIDTH	40 44
	7.2.3. NUMBER OF HOPPING CHANNELS	46
	7.2.4. AVERAGE TIME OF OCCUPANCY	
	7.2.5. PEAK OUTPUT POWER	
	7.2.6. MAXIMUM PERMISSIBLE EXPOSURE	
	7.2.7. CONDUCTED SPURIOUS EMISSIONS	59
7.	3. RADIATED EMISSIONS	68
	7.3.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS	68
	7.3.2. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ WITH 3 dBi MONOPOLE	
	ANTENNA AND CLASS 0 MODULATION	71

Page 3 of 93

8.

SETUP PHOTOS	87
7.4. POWERLINE CONDUCTED EMISSIONS	
1. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz	75
CIRCULARLY POLARIZED ANTENNA AND CLASS 1 MODULATION	74
7.3.5. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ WITH 9.2dBi	
ANTENNA AND CLASS 1 MODULATION	73
7.3.4. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ WITH 3 dBi M	IONOPOLE
CIRCULARLY POLARIZED ANTENNA AND CLASS 0 MODULATION	72
7.3.3. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ WITH 9.2dBi	

Page 4 of 93

1. ATTESTATION OF TEST RESULTS

FCC PART 15 SU	JBPART C	NO NON-COMPLIANCE NOTED
STANDA	RD	TEST RESULTS
	APPLICAB	LE STANDARDS
DATE TESTED:	NOVEMBER 10) - 12, 2004
SERIAL NUMBER:	50143040039	
MODEL:	MPR6000	
EUT DESCRIPTION:	PCMCIA RFID	READER CARD
	SAN JOSE, CA	
COMPANY NAME:	WJ COMMUNI 401 RIVER OA	

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

YAN ZHENG EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES Tested By:

HITESH H. SOLANKI EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 93

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a PCMCIA RFID Reader card with the external antennas. The antennas are the circularly polarized antenna with gain of 9.2 dBi and the monopole antenna with gain of 3 dBi.

The WJ RFID reader card is capable of producing two types of modulation that are standards in the RFID tag industry, Class 0 and Class 1. Passive RF ID tags are manufactured to respond to either Class 0 or Class 1 reader interrogation.

The radio module is manufactured by WJ Communications.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Channel	Frequency Power		Power
	(MHz)	(dBm)	(mW)
Low	903	26.77	475.3
Middle	914	26.62	459.2
High	927	26.51	447.7

CLASS 1

Channel	Frequency	Power	Power
	(MHz)	(dBm)	(mW)
Low	903	26.75	473.2
Middle	914	26.60	457.1
High	927	26.49	445.7

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes 2 different antennas; a circularly polarized antenna with gain of 9.2 dBi and a monopole antenna with gain of 3 dBi.

5.4. SOFTWARE AND FIRMWARE

Page 7 of 93

The firmware installed in the EUT during testing was MPR version 2.0.

5.5. WORST-CASE CONFIGURATION AND MODE

For antenna conducted emissions, both Class 0 and Class 1 modulations were investigated. Worst case emissions are reported.

There are four different test configurations for spurious and harmonic radiated emissions tests:

Class 0 modulation with Class 0 tag on the test table Class 0 modulation with Class 1 tag on the test table

Class 1 modulation with Class 1 tag on the test table Class 1 modulation with Class 0 tag on the test table

The Class 0 tag is a matrix type tag.

The Class 1 tag is an Alien Technologies type tag.

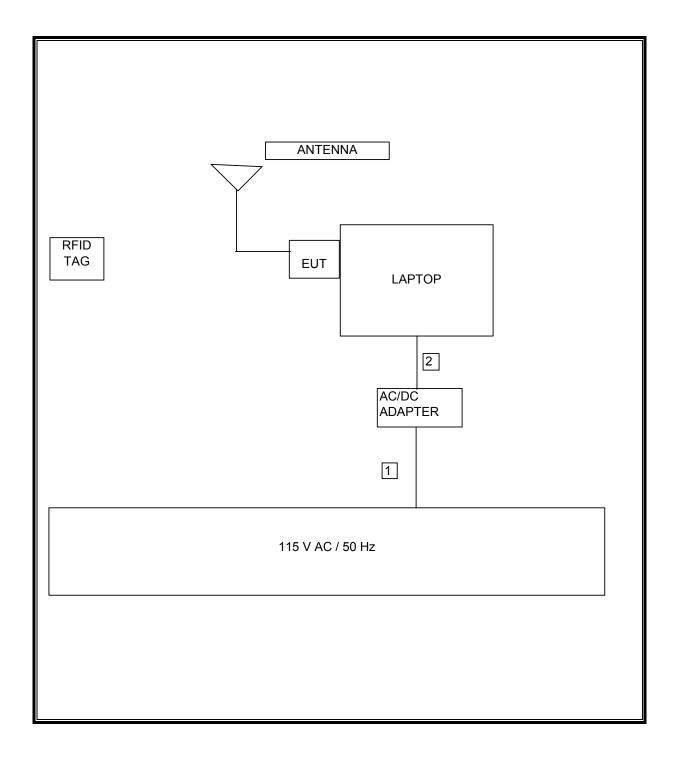
Page 8 of 93

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description Manufacturer Model Serial Number FCC ID							
LAPTOP	IBM	390E	AF - 1B8BD	N/A			
AC/DC ADAPTER	IBM	N/A	02K6555	N/A			

I/O CABLES


	I/O CABLE LIST								
Cable	Port	# of	Connector	Cable	Cable	Remarks			
No.		Identical	Туре	Туре	Length				
		Ports							
1	AC	2	AC	Un-shielded	0.5 m	N/A			
2	DC	1	DC	Un-shielded	1m	N/A			

TEST SETUP

The EUT is a PCMCIA card. It is inserted into the support Laptop and is operated by using the test software, which is capable of exercising the EUT on different channels as well as in hopping mode.

Page 9 of 93

SETUP DIAGRAM FOR TESTS

Page 10 of 93

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	Cal Due		
LISN, 10 kHz ~ 30 MHz	FCC	50/250-25-2	4/23/1900	10/13/2005		
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	8379443	10/13/05		
EMI Test Receiver	R & S	ESHS 20	827129/006	7/17/05		
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	11/21/04		
RF Filter Section	HP	85420E	3705A00256	11/21/04		
30MHz 2Ghz	Sunol Sciences	JB1 Antenna	A121003	12/22/04		
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	2238	2/4/05		
Amplifier 1-26GHz	MITEQ	NSP2600-SP	924342	4/25/05		
Spectrum Analyzer 20 Hz ~ 44 GHz	Agilent	E4446A	US42070220	4/1/05		
1.5 GHz High Pass Filter	Micro-Tronics	HPM13193	2	N/A		

Page 11 of 93

7. LIMITS AND RESULTS

7.1. ANTENNA PORT CHANNEL TESTS FOR CLASS 0 MODUALTION

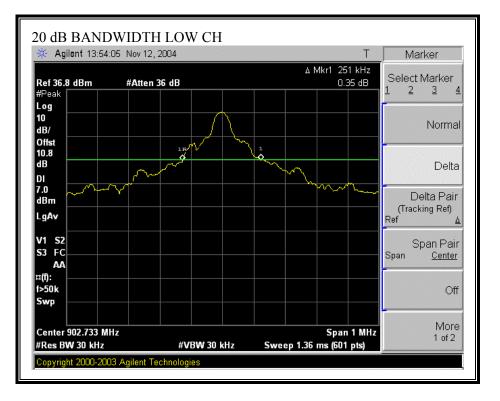
7.1.1. 20 dB BANDWIDTH

<u>LIMIT</u>

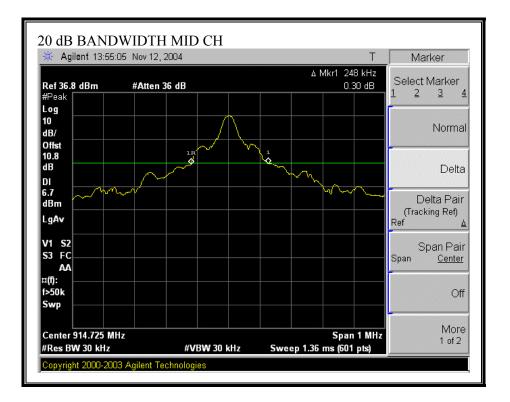
None: for reporting purposes only.

TEST PROCEDURE

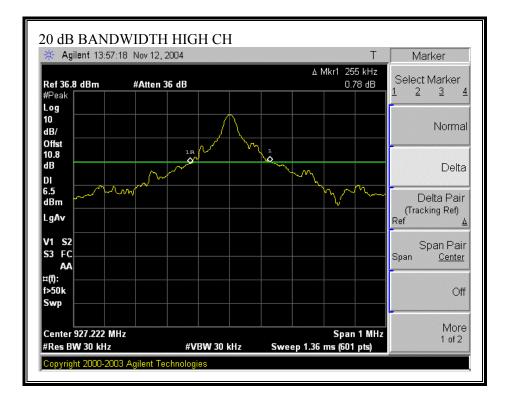
The transmitter output is connected to a spectrum analyzer. The RBW is set to 1% to 3% of the 20 dB bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.


RESULTS

No non-compliance noted:


Channel	Frequency	20 dB Bandwidth
	(MHz)	(kHz)
Low	903	251
Middle	914	248
High	927	255

Page 12 of 93


20 dB BANDWIDTH

Page 13 of 93

Page 14 of 93

Page 15 of 93

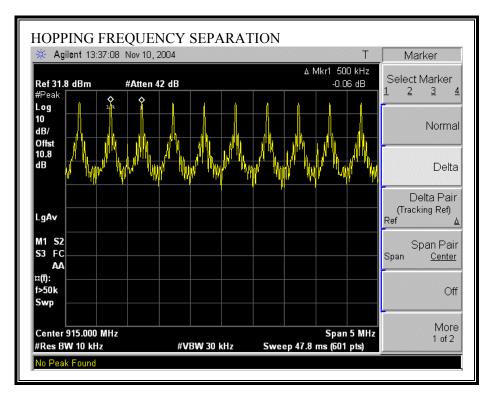
7.1.2. HOPPING FREQUENCY SEPARATION

<u>LIMIT</u>

§15.247 (a) (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 10 kHz and the VBW is set to 30 kHz. The sweep time is coupled.


RESULTS

No non-compliance noted:

The hopping frequency separation is 500KHz.

Page 16 of 93

HOPPING FREQUENCY SEPARATION

Page 17 of 93

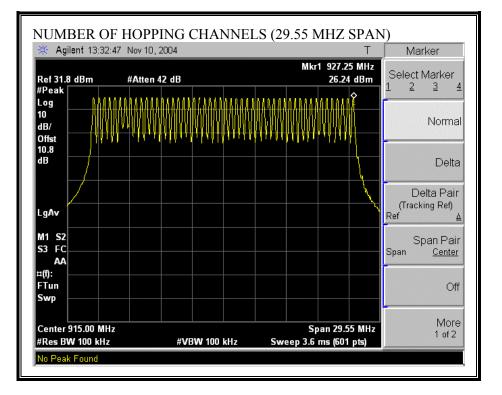
7.1.3. NUMBER OF HOPPING CHANNELS

<u>LIMIT</u>

§15.247 (a) (1) (i) For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to 1 % of the span. The analyzer is set to Max Hold.


RESULTS

No non-compliance noted:

50 Channels observed.

Page 18 of 93

NUMBER OF HOPPING CHANNELS

Page 19 of 93

7.1.4. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

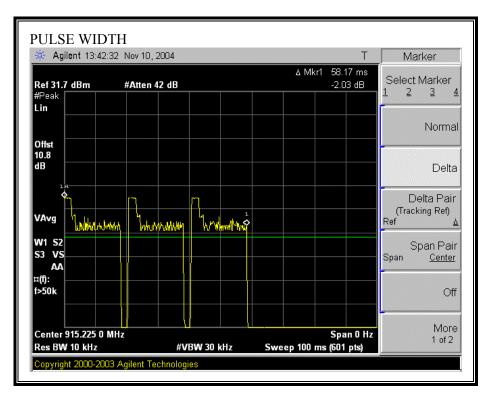
§15.247 (a) (1) (i) For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 20 second scan, to enable resolution of each occurrence.

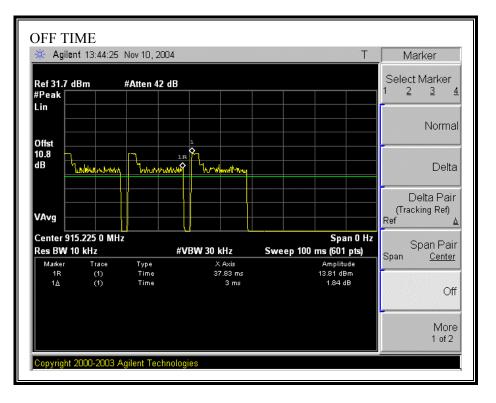
RESULTS

No non-compliance noted:

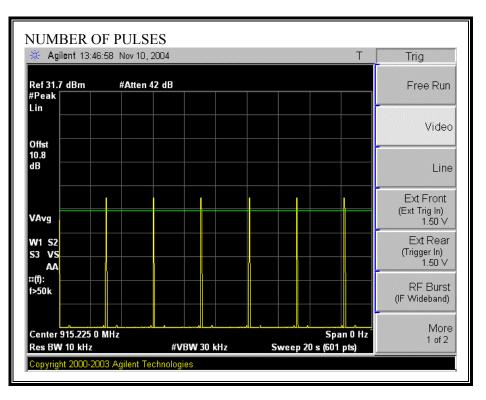

The system has 50 hopping frequencies. There are 7 pulses within the 20-second period. The on time for each pulse is 58.17ms – 2*3ms = 52.17ms.

Therefore, the average time of occupancy in the specified 20-second period is:

(58.17 ms - 2*3 ms) * 7 = 365.19 ms = 0.365 s


Page 20 of 93

PULSE WIDTH


Page 21 of 93

OFF TIME WITHIN THE PULSE

Page 22 of 93

NUMBER OF PULSES IN 20 SECOND OBSERVATION PERIOD

Page 23 of 93

7.1.5. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

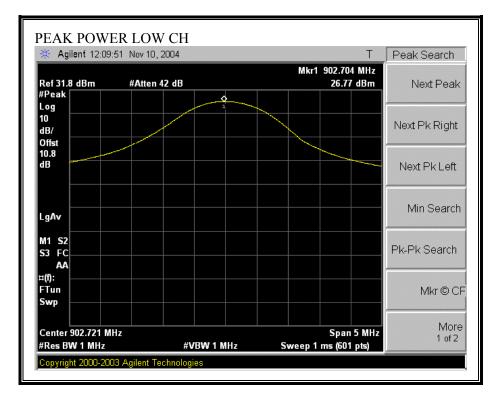
§15.247 (b) (2) For frequency hopping systems operating in the 902-928 MHz band, employing at least 50 hopping channels: 1 watt; and employing less than 50 hopping channels, but at least 25 hopping channels: 0.25 watt.

§15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

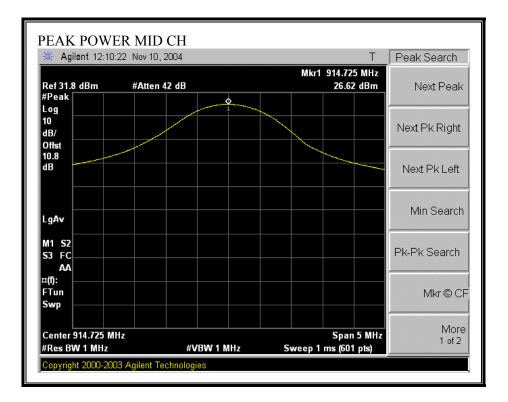
The maximum antenna gain is 9.2 dBi (worst case), therefore the limit is 26.8 dBm.

TEST PROCEDURE

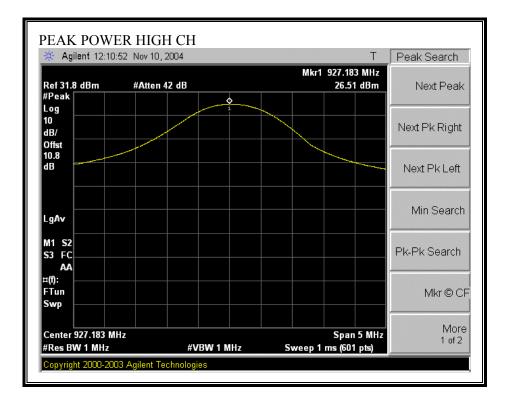
The transmitter output is connected to a spectrum analyzer and the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.


RESULTS

No non-compliance noted:


Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	903	26.77	26.8	-0.03
Middle	914	26.62	26.8	-0.18
High	927	26.51	26.8	-0.29

Page 24 of 93


OUTPUT POWER

Page 25 of 93

Page 26 of 93

Page 27 of 93

7.1.6. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)			
(A) Limits for Occupational/Controlled Exposures							
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 8			
(B) Limits	for General Populati	ion/Uncontrolled Exp	posure				
0.3–1.34 1.34–30	614 824 <i>/</i> f	1.63 2.19/f	*(100) *(180/f ²)	30 30			

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100.000		0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

t = trequency in MHz
 * = Plane-wave equivalent power density
 NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled is potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 28 of 93

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

where

and

E = Field Strength in Volts/meter

P = Power in Watts

 $S = E^{2}/3770$

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

P (mW) = 10 ^ (P (dBm) / 10) and G (numeric) = 10 ^ (G (dBi) / 10) yields $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$ Equation (1) where d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

Page 29 of 93

LIMITS

From §1.1310 Table 1 (B), S = 1.0 mW/cm^2

RESULTS

No non-compliance noted:

Power Density	Output	Antenna	MPE
Limit	Power	Gain	Distance
(mW/cm^2)	(dBm)	(dBi)	(cm)
1.0	26.77	9.20	17.73

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 30 of 93

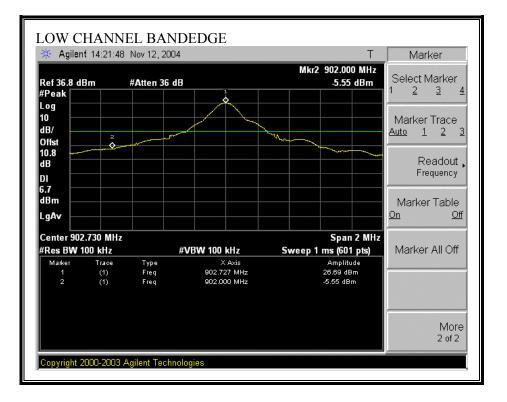
7.1.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

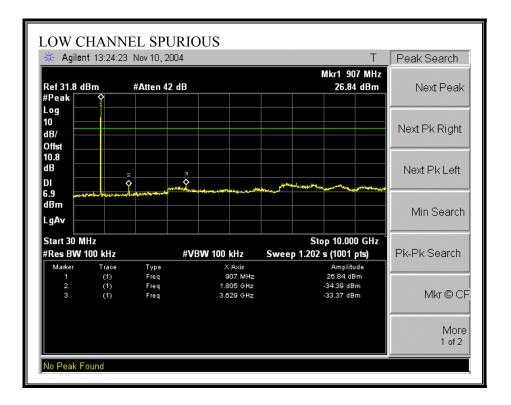
§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.205(a).

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

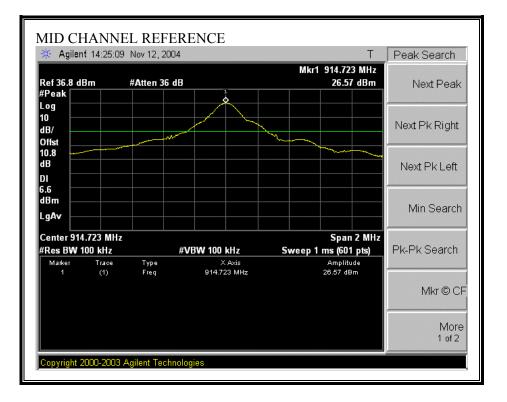

The spectrum from 30 MHz to 10 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

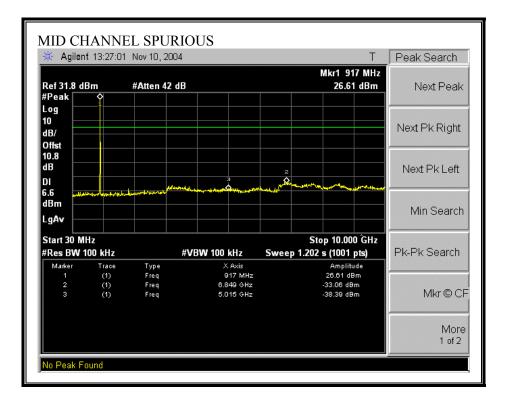

No non-compliance noted:

Page 31 of 93

SPURIOUS EMISSIONS, LOW CHANNEL

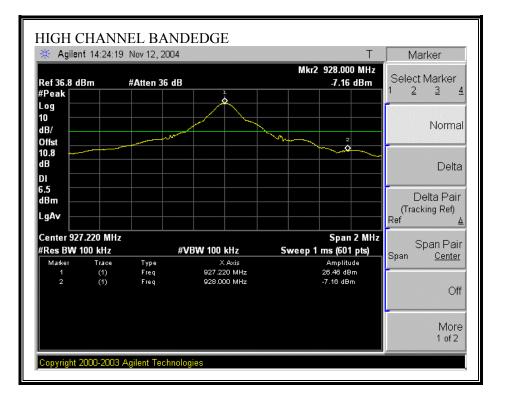


Page 32 of 93

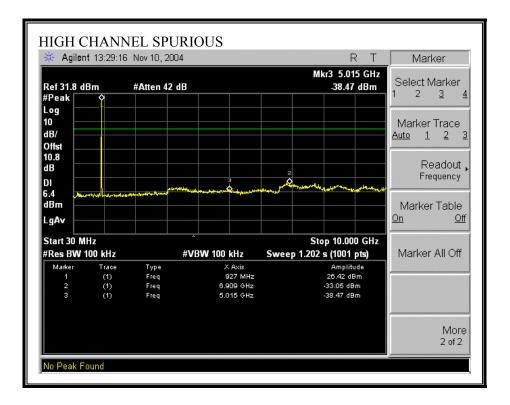


Page 33 of 93

SPURIOUS EMISSIONS, MID CHANNEL

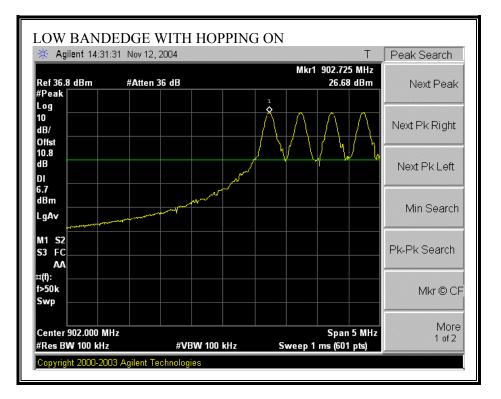


Page 34 of 93

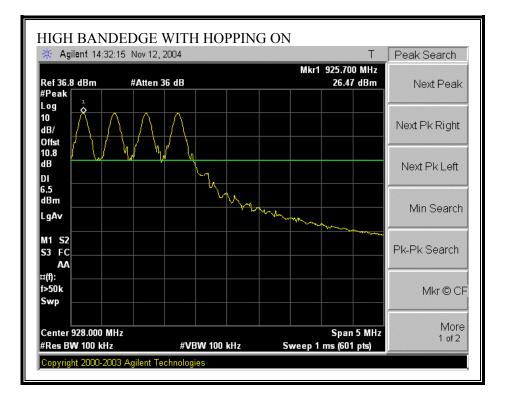


Page 35 of 93

SPURIOUS EMISSIONS, HIGH CHANNEL



Page 36 of 93



Page 37 of 93

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 38 of 93

Page 39 of 93

7.2. ANTENNA PORT CHANNEL TESTS FOR CLASS 1 MODULATION

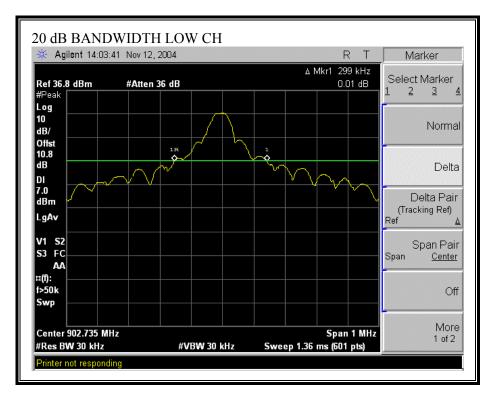
7.2.1. 20 dB BANDWIDTH

<u>LIMIT</u>

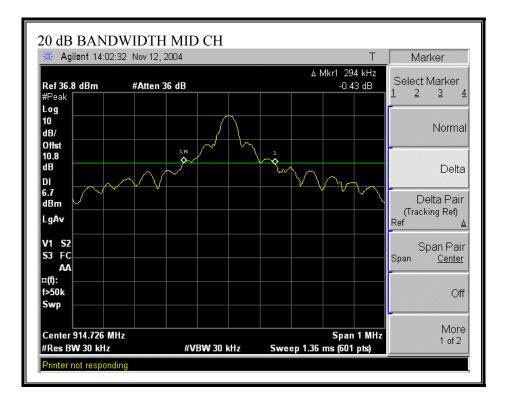
None: for reporting purposes only.

TEST PROCEDURE

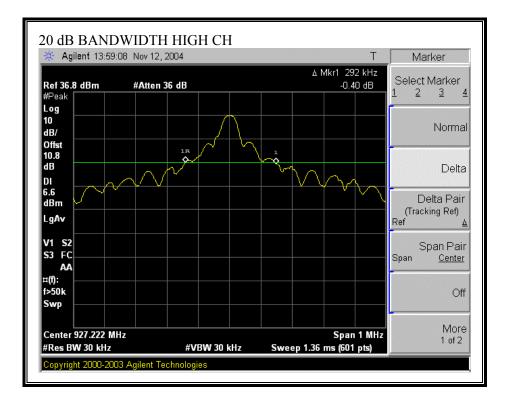
The transmitter output is connected to a spectrum analyzer. The RBW is set to 1% to 3% of the 20 dB bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.


RESULTS

No non-compliance noted:


Channel	Frequency	20 dB Bandwidth
	(MHz)	(kHz)
Low	903	299
Middle	914	294
High	927	294

Page 40 of 93


20 dB BANDWIDTH

Page 41 of 93

Page 42 of 93

Page 43 of 93

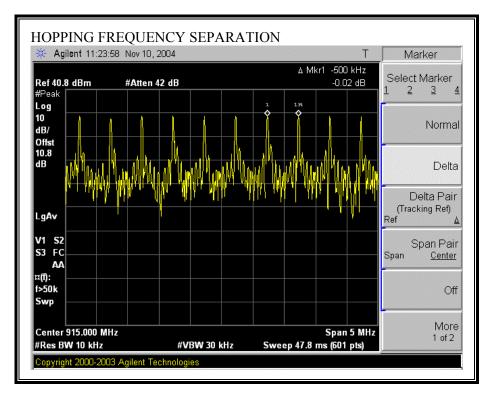
7.2.2. HOPPING FREQUENCY SEPARATION

<u>LIMIT</u>

§15.247 (a) (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 10 kHz and the VBW is set to 30 kHz. The sweep time is coupled.


RESULTS

No non-compliance noted:

The hopping frequency separation is 500KHz.

Page 44 of 93

HOPPING FREQUENCY SEPARATION

Page 45 of 93

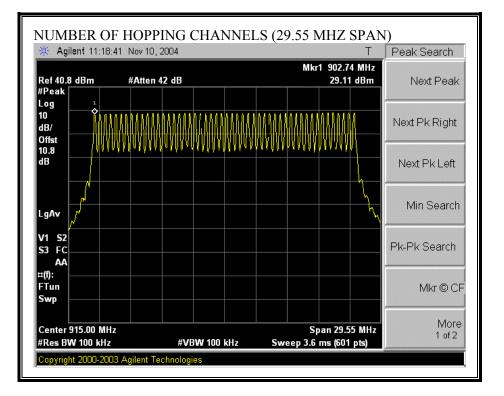
7.2.3. NUMBER OF HOPPING CHANNELS

<u>LIMIT</u>

§15.247 (a) (1) (i) For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to 1 % of the span. The analyzer is set to Max Hold.


RESULTS

No non-compliance noted:

50 Channels observed.

Page 46 of 93

NUMBER OF HOPPING CHANNELS

Page 47 of 93

7.2.4. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

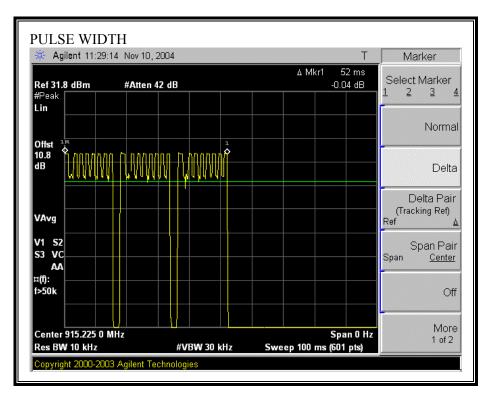
§15.247 (a) (1) (i) For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 20 second scan, to enable resolution of each occurrence.

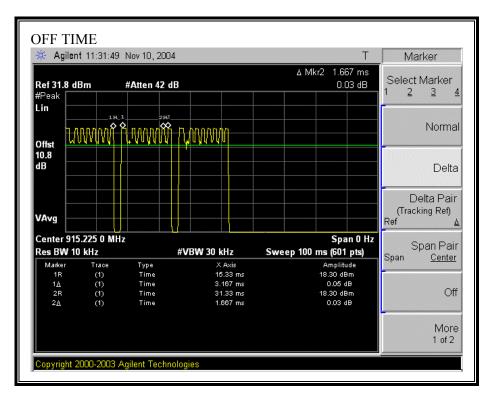
RESULTS

No non-compliance noted:

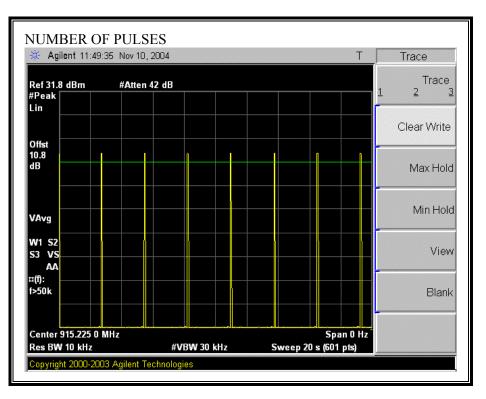

The system has 50 hopping frequencies. There are 8 pulses within the 20-second period. The on time for each pulse is 52 ms - 2*3.167 ms = 45.67 ms.

Therefore, the average time of occupancy in the specified 20-second period is:

(52ms - 2*3.167ms) * 8 = 365.32ms = 0.365s


Page 48 of 93

PULSE WIDTH


Page 49 of 93

OFF TIME WITHIN A PULSE

Page 50 of 93

NUMBER OF PULSES IN 20 SECOND OBSERVATION PERIOD

Page 51 of 93

7.2.5. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

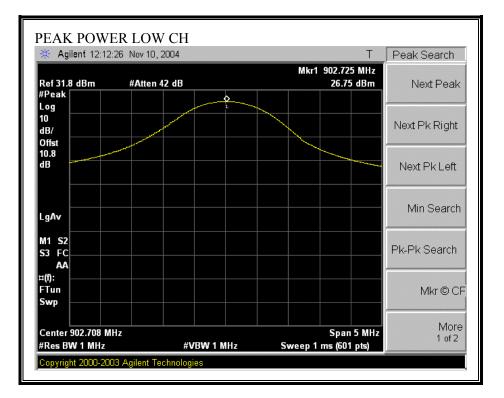
§15.247 (b) (2) For frequency hopping systems operating in the 902-928 MHz band, employing at least 50 hopping channels: 1 watt; and employing less than 50 hopping channels, but at least 25 hopping channels: 0.25 watt.

\$15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

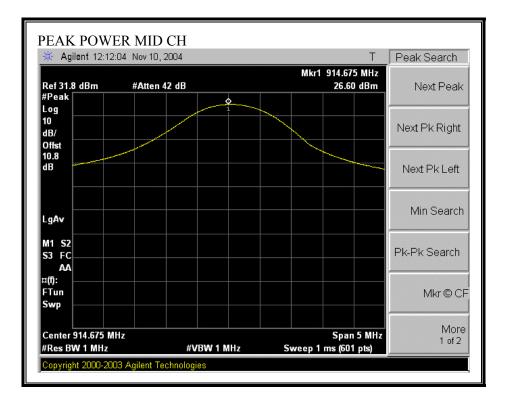
The maximum antenna gain is 9.2 dBi (worst case), therefore the limit is 26.8 dBm.

TEST PROCEDURE

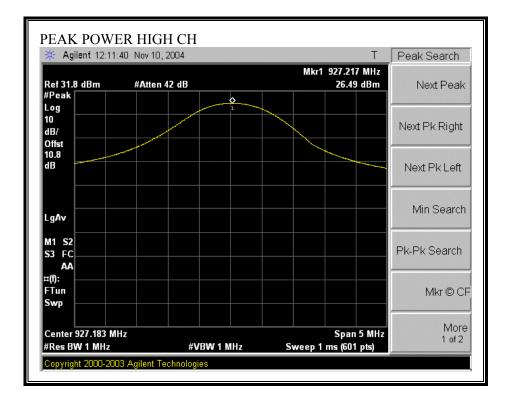
The transmitter output is connected to a spectrum analyzer and the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.


RESULTS

No non-compliance noted:


Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
Low	903	26.75	26.8	-0.05
Middle	914	26.60	26.8	-0.20
High	927	26.49	26.8	-0.31

Page 52 of 93


OUTPUT POWER

Page 53 of 93

Page 54 of 93

Page 55 of 93

7.2.6. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lin	nits for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6 6
(B) Limits	for General Populati	ion/Uncontrolled Exp	posure	
0.3–1.34 1.34–30	614 824 <i>/</i> f	1.63 2.19/f	*(100) *(180/f ²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100.000		0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

t = trequency in MHz
 * = Plane-wave equivalent power density
 NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled is potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 56 of 93

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

 $S = E^{2}/3770$

where

and

E = Field Strength in Volts/meter P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

P (mW) = 10 ^ (P (dBm) / 10) and G (numeric) = 10 ^ (G (dBi) / 10) yields $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$ Equation (1) where d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

Page 57 of 93

LIMITS

From §1.1310 Table 1 (B), S = 1.0 mW/cm^2

RESULTS

No non-compliance noted:

Power Density	Output	Antenna	MPE
Limit	Power	Gain	Distance
(mW/cm^2)	(dBm)	(dBi)	(cm)
1.0	26.75	9.20	17.69

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 58 of 93

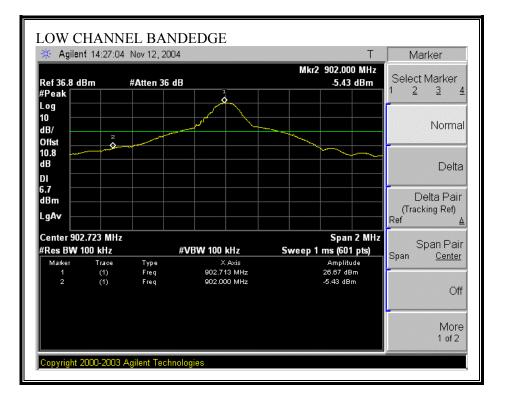
7.2.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

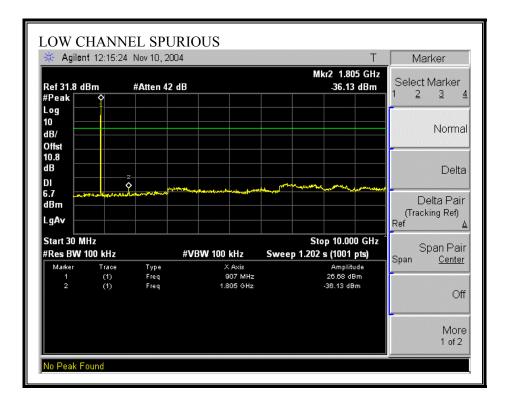
§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

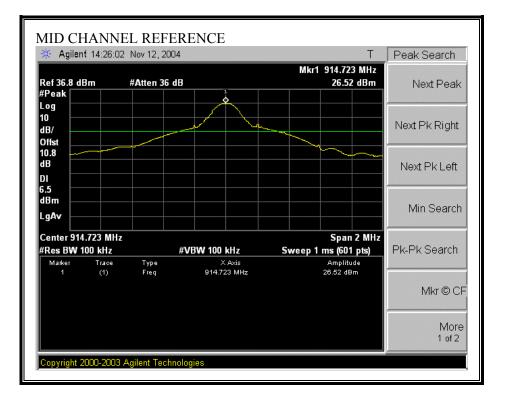

The spectrum from 30 MHz to 10 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

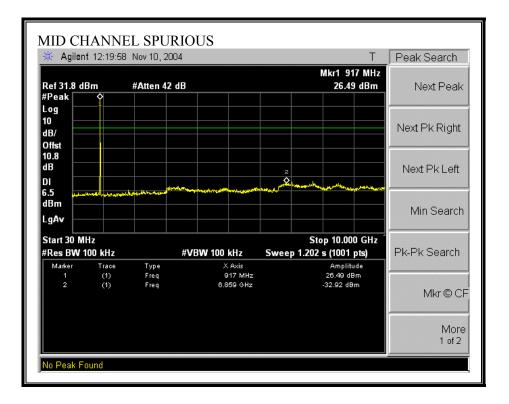

No non-compliance noted:

Page 59 of 93

SPURIOUS EMISSIONS, LOW CHANNEL

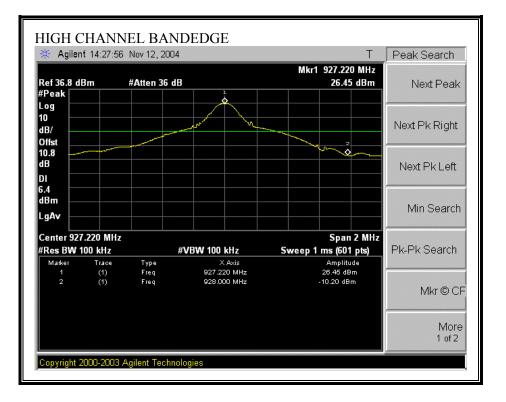


Page 60 of 93

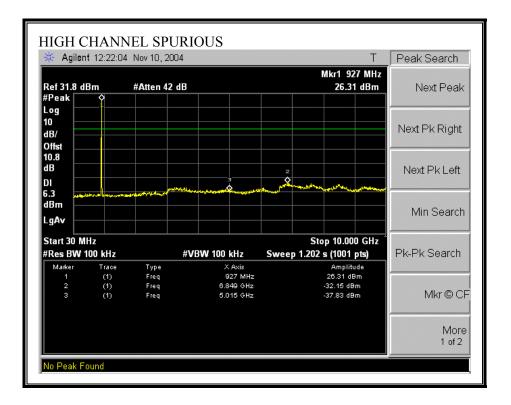


Page 61 of 93

SPURIOUS EMISSIONS, MID CHANNEL

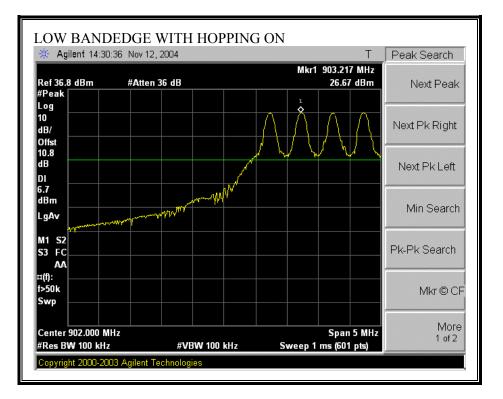


Page 62 of 93

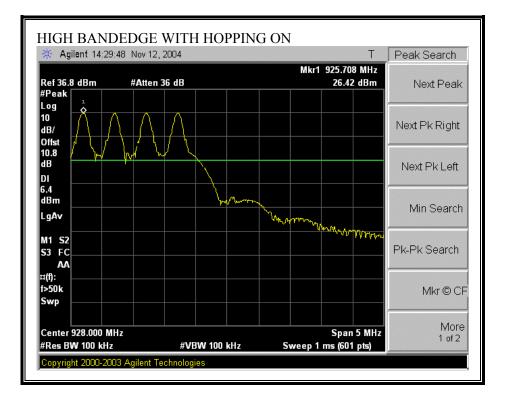


Page 63 of 93

SPURIOUS EMISSIONS, HIGH CHANNEL



Page 64 of 93



Page 65 of 93

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 66 of 93

Page 67 of 93

7.3. RADIATED EMISSIONS

7.3.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Page 68 of 93

\$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 69 of 93

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each 5 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 70 of 93

7.3.2. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ WITH 3 dBi MONOPOLE ANTENNA AND CLASS 0 MODULATION

HARMONICS AND SPURIOUS EMISSIONS

			/ Measuremo Services, Mo		ill Ope	en Field	Site									
Test Eng Project # Company EUT Des EUT M/N Test Targ Mode Op	: /: crip.: \: get:	PCMCIA RF MPR60xx FCC CLASS	JNICATIONS		N (CLA	SS 1), RE.	ADER MOI	DE : CL	ASS 0, ANT	ENNA : MA	XRAD OMN	I (3 dBi) (W	ORST CAS	E)		
<u>Test Equi</u> EMCO	ipment: Horn 1-		Pre-amp	difer 1-20	6GHz	I	Pre-amplifer	· 26-400	GHz		Horn >	18GHz				
	N: 6717	-	T34 HP	8449B	-				•				-			
	2 foot cable 3 foot cable 4 foot cable 12 foot cable HPF Reject Filter RB											<u>Peak Meas</u> RBW=VBV	V=1MHz			
		•	-	4_Hites	h 🔻	12	Hitesh	•		•		•		<u>Average Measurements</u> RBW=1MHz ; VBW=10Hz		
f GHz	Dist (m)	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes (V/H)	
LOW CH/ 1.805 2.708	3.0	49.1	41.3	26.4	2.4	-37.1	0.0	0.0	40.9	33.1	74	54	-33.1	-20.9	V	
2.708 MIDDLE			31.4	29.2	3.0	-35.9	0.0	0.0	38.7	27.7	74	54	-35.3	-26.3	V	
1.829 2.744	3.0 3.0	51.3 44.5	42.0 30.6	26.5 29.4	2.4 3.1	-37.0 -35.9	0.0 0.0	0.0 0.0	43.2 41.0	33.9 27.1	74 74	54 54	-30.8 -33.0	-20.1 -26.9	V V	
HIGH CH 1.854	ANNEL 3.0	45.3	36.8	26.6	2.4	-37.0	0.0	0.0	37.3	28.8	74	54	-36.7	-25.2	v	
2.781	3.0	42.1	31.0	29.5	3.1	-35.9	0.0	0.0	38.8	27.7	74	54	-35.2	-26.3	V	
LOW CH	ANNEL															
1.805 2.708	3.0 3.0	50.6 44.7	40.2 31.9	26.4 29.2	2.4 3.0	-37.1 -35.9	0.0	0.0 0.0	42.4 41.0	32.0 28.2	74 74	54 54	-31.6 -33.0	-22.0 -25.8	H H	
MIDDLE 1.829			44.7	26.5	2.4	-37.0	0.0	0.0	42.9	36.6	74	54	-31.1	-17.4	Н	
2.744 HIGH CH	3.0	38.9	29.9	29.4	3.1	-35.9	0.0	0.0	35.4	26.4	74	54	-38.6	-27.6	H	
1.854 2.781	3.0 3.0	46.9 42.3	40.2 31.5	26.6 29.5	2.4 3.1	-37.0 -35.9	0.0 0.0	0.0 0.0	38.9 39.0	32.2 28.2	74 74	54 54	-35.1 -35.0	-21.8 -25.8	H H	
	f Dist Read AF CL	Measurem Distance to Analyzer F Antenna Fa Cable Loss	Reading actor	у		Amp D Corr Avg Peak HPF	Average	Correc Field S ed Peal	ct to 3 mete Strength @ k Field Stre r	3 m		Pk Lim Avg Mar	Peak Fiel Margin v	Field Streng d Strength L s. Average L s. Peak Limi	.imit .imit	

Page 71 of 93

7.3.3. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ WITH 9.2dBi CIRCULARLY POLARIZED ANTENNA AND CLASS 0 MODULATION

HARMONICS AND SPURIOUS EMISSIONS

Test Engr: Project #: Company: EUT Descr EUT M/N: Test Targe Mode Oper Test Equip	rip.: et: r:	PCMCIA RF MPR60xx FCC CLASS TX CONTIN	INICATIONS ID CARD REA B		LL MAT	'RIX (CL4	ASS 0), RE4	ADER M	ИОDE : CLA	SS 0, ANTE	NNA : MAX	RAD PANEL	. (7dBd/ 9.2	e dBi GAIN) (W	ORST CASE)
EMCO F T73; S/N	Horn 1-	18GHz	Pre-amp T34 HP	lifer 1-26 8449B	5GHz	P	re-amplifer	26-400	GHz		Horn >1	18GHz			
Hi Frequer	cable		t cable	4 foot c 4 Hites	able	_	foot cable Hites h			HPF	Rejec	et Filter		<u>Peak Measur</u> RBW=VBW= <u>Average Mea</u>	=1MHz
f GHz	Dist (m)	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	RBW=1MHz Avg Mar dB	; VBW=10Hz Notes (V/H)
LOW CHAN 1.805 2.708 MIDDLE C	NNEL 3.0 3.0	47.7 43.2	39.8 28.9	26.4 29.2	2.4 3.0	-37.1 -35.9	0.0 0.0	0.0 0.0	39.5 39.5	31.6 25.2	74 74	54 54	-34.5 -34.5	-22.4 -28.8	V V V
MIDDLE C 1.829 2.744 HIGH CHA 1.854	3.0 3.0	46.0 39.0 50.2	40.0 31.2 45.6	26.5 29.4 26.6	2.4 3.1 2.4	-37.0 -35.9 -37.0	0.0 0.0 0.0	0.0	37.9 35.5 42.2	31.9 27.7 37.6	74 74 74	54 54 54	-36.1 -38.5 -31.8	-22.1 -26.3 -16.4	V V V
2.781	3.0	44.6	31.2	29.5	3.1	-35.9	0.0	0.0	41.3	27.9	74	54	-32.7	-26.1	v
LOW CHAI															
1.805 2.708 MIDDLE C 1.829	3.0 3.0 HANN 3.0	50.0 43.2 EL 43.4	43.4 30.1 36.5	26.4 29.2 26.5	2.4 3.0 2.4	-37.1 -35.9 -37.0	0.0 0.0 0.0	0.0 0.0 0.0	41.8 39.5 35.3	35.2 26.4 28.4	74 74 74	54 54 54	-32.2 -34.5 -38.7	-18.8 -27.6 -25.6	<u>Н</u> Н Н
2.744 HIGH CHA 1.854 2.781	3.0	44.0 56.7 44.3	31.2 52.3 31.1	29.4 29.4 26.6 29.5	3.1 2.4 3.1	-35.9 -37.0 -35.9	0.0	0.0	40.5 48.7 41.0	27.7 44.3 27.8	74 74 74 74	54 54 54 54	-33.5 -25.3 -33.0	-26.3 -9.7 -26.2	н Н Н Н
															**
F A	Dist Read AF	Measureme Distance to Analyzer R Antenna Fa Cable Loss	eading actor	y		Amp D Corr Avg Peak HPF	Average	Corre Field S ed Peal	ct to 3 mete Strength @ k Field Stre r	3 m		Pk Lim Avg Mar	Peak Fiel Margin v	Field Strength d Strength Lin s. Average Lin s. Peak Limit	mit mit

Page 72 of 93

COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO: CCSUP4031A561F MONTEREY ROAD, MORGAN HILL, CA 95037 USATEL: (408) 463-0885 FAX: (408) 463-0888This report shall not be reproduced except in full, without the written approval of CCS.CCSUP4031A

7.3.4. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ WITH 3 dBi MONOPOLE ANTENNA AND CLASS 1 MODULATION

HARMONICS AND SPURIOUS EMISSIONS

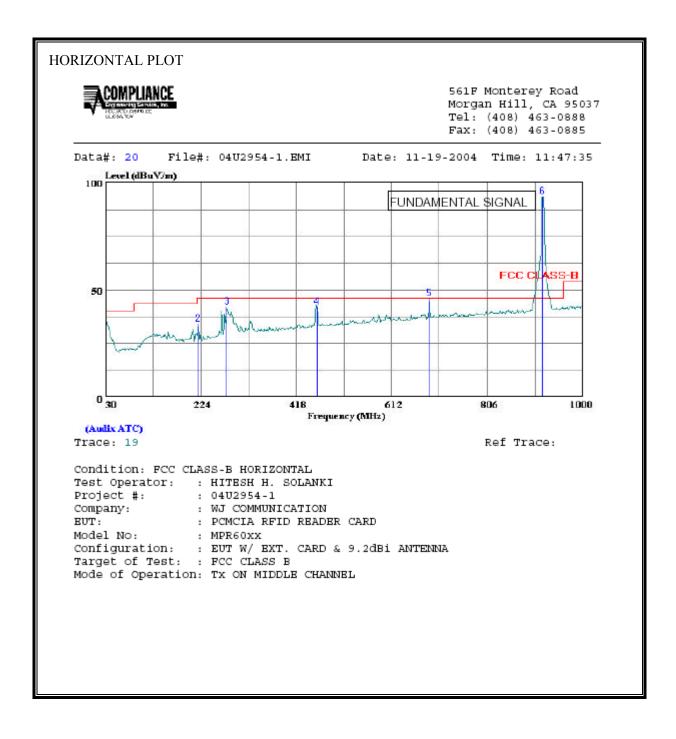
r	er:	-18GHz	UOUSLY, TA	lifer 1-26	6GHz		ADER MOE			ENNA : MA	XRAD OMN Horn > 1		ORST CAS	E)	
Hi Frequ	uency Cable	es	cable	4 foot c 4_Hites		_	foot cable Hitesh			iPF	Rejec	et Filter		<u>Peak Measu</u> RBW=VBW <u>Average Me</u>	=1MHz asurements
f GHz	Dist (m)	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB		v; VBW=10Hz Notes (V/H)
LOW CH 1.805 2.708 MIDDLE	ANNEL 3.0 3.0	50.5 43.9	43.1 32.4	26.4 29.2	2.4 3.0	-37.1 -35.9	0.0	0.0 0.0	42.3 40.2	34.9 28.7	74 74	54 54	-31.7 -33.8	-19.1 -25.3	V V V
1.829 2.744 HIGH CH	3.0 3.0 (ANNEL	52.0 43.4	45.8 31.7	26.5 29.4	2.4	-37.0 -35.9	0.0	0.0	43.9 39.9	37.7 28.2	74 74	54 54	-30.1 -34.1	-16.3 -25.8	V V
1.854 2.781	3.0 3.0	46.8 43.5	36.3 31.9	26.6 29.5	2.4 3.1	-37.0 -35.9	0.0	0.0	38.8 40.2	28.3 28.6	74 74	54 54	-35.2 -33.8	-25.7 -25.4	V V
LOW CH	ANNET														
1.805 2.708 MIDDLE 1.829	3.0 3.0	50.1 45.4 EL 52.0	41.5 32.4 45.6	26.4 29.2 26.5	2.4 3.0 2.4	-37.1 -35.9 -37.0	0.0 0.0 0.0	0.0	41.9 41.7 43.9	33.3 28.7 37.5	74 74 74	54 54 54	-32.1 -32.3 -30.1	-20.7 -25.3 -16.5	H H H
1.829 2.744 HIGH CH 1.854 2.781	3.0	48.9 43.7	45.6 31.8 42.0 32.0	26.5 29.4 26.6 29.5	2.4 3.1 2.4 3.1	-37.0 -35.9 -37.0 -35.9	0.0 0.0 0.0	0.0	43.9 38.9 40.9 40.4	37.5 28.3 34.0 28.7	74 74 74 74	54 54 54 54 54	-30.1 -35.1 -33.1 -33.6	-10.5 -25.7 -20.0 -25.3	н Н Н Н
									T-0.1						
f Measurement Frequency Dist Distance to Antenna Read Analyzer Reading AF Antenna Factor CL Cable Loss						Avg Average Field Strength @ 3 m Avg Mar Margin v						d Strength Li	mit mit		

Page 73 of 93

COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO: CCSUP4031A561F MONTEREY ROAD, MORGAN HILL, CA 95037 USATEL: (408) 463-0885 FAX: (408) 463-0888This report shall not be reproduced except in full, without the written approval of CCS.CCSUP4031A

7.3.5. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ WITH 9.2dBi CIRCULARLY POLARIZED ANTENNA AND CLASS 1 MODULATION

HARMONICS AND SPURIOUS EMISSIONS

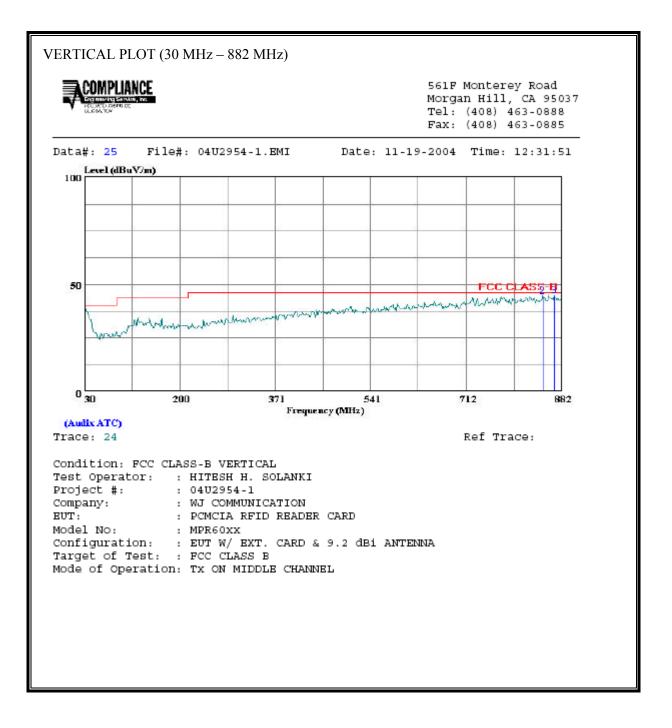

INCO line 1-16Xic Pre-amplifier 2-64/01 Ister > 184.01 173: SN: 6171 (g3m) 13 11P 84499 Image: 12 line 1	Compli Test En Project Compar EUT De EUT M Test Ta Mode O	ance Če gr: #: 1y: sscrip.: /N: rget:	rtification 3 HITESH H S 04U2954-1 WJ COMMU PCMCIA RF MPR60xx FCC CLASS TX CONTIN	JNICATIONS TD CARD REA B	organ H				ADER N	10DE : CLA	SS 1, ANTE	NNA : MAX	RAD PANEI	. (7dBd/ 9.2	dBi GAIN) ((WORST CASE)	
T31: SN: 6117 @Jm T34 HP 8449B HP Frequency Coles Park Measurements 2 foot cole 4 foot cole 12 foot cole 10 foot cole Arrage Measurements MIPF Reject Filter Narrage Measurements RBW=1MHz Narrage Measurements GHz (m) dBav dB dB dB dB dB Arrage Measurements GHz (m) dBav dBav/m		EMCO Horn 1-18GHz Pre-amplifer 1-26GHz Pre-amplifer 26-40GHz Horn > 18GHz															
2 foot cable 3 foot cable 4 foot cable 12 foot cable 12 foot cable 10 for cabl	T73; 5	T73; S/N: 6717 @3m - T34 HP 8449B															
Image: Constraint of the second sec				t cable						I	HPF	Reje	ct Filter		RBW=VBW	/=1MHz	
GHz (m) dBaV dB/m dB dB dB dB dB dB dB dB/m dBuV/m dBuV/m dBuV/m dB/m dB dB (V/H) LOW CHANNEL 1 26.4 2.4 3.0 48.3 41.0 26.4 2.4 3.1 0.0 0.0 40.3 27.5 74 54 -3.3.9 -21.2 V 2708 3.0 44.0 31.2 29.2 3.0 -35.9 0.0 0.0 39.9 32.9 74 54 -34.1 -21.1 V 1829 3.0 48.0 41.0 26.5 2.4 -37.0 0.0 0.0 37.9 28.6 74 54 -36.5 -26.4 V 1824 3.0 45.7 32.4 29.5 3.1 -35.9 0.0 0.0 42.4 29.1 74 54 -31.6 -24.9 V 184 3.0 45.7 32.4			▼	_	4_Hites	h 💌	12	Hitesh	-		•		•				
DW CHANNEL Image: Constraint of the state state of the state of the state state of the state of									-								
NUDDLE CHANNEL -	1.805	IANNEL 3.0		41.0						40.1	32.8	74	54			V	
2744 3.0 41.0 32.1 29.4 3.1 35.9 0.0 0.0 37.5 28.6 74 54 -36.5 -25.4 V HIGH CHANNEL	MIDDL	E CHANN	EL														
1.854 3.0 52.8 47.3 26.6 2.4 -37.0 0.0 0.0 44.8 39.3 74 54 -29.2 -14.7 V 2.781 3.0 45.7 32.4 29.5 3.1 -35.9 0.0 0.0 42.4 29.1 74 54 -31.6 -24.9 V -	2.744	3.0	41.0														
Image: Second	1.854	3.0	52.8														
1.805 3.0 50.1 44.7 26.4 2.4 -37.1 0.0 0.0 41.9 36.5 74 54 -32.1 -17.5 H 2.708 3.0 44.2 31.3 29.2 3.0 -35.9 0.0 0.0 40.5 27.6 74 54 -33.5 -26.4 H MIDDLE CHANNEL																	
2.708 3.0 44.2 31.3 29.2 3.0 -35.9 0.0 0.0 40.5 27.6 74 54 -33.5 -26.4 H MIDDLE CHANNEL																	
1.829 3.0 46.5 37.2 26.5 2.4 -37.0 0.0 0.0 38.4 29.1 74 54 -35.6 -24.9 H 2.744 3.0 44.6 32.0 29.4 3.1 -35.9 0.0 0.0 41.1 28.5 74 54 -35.6 -24.9 H ILGU CHANNEL	2.708	3.0	44.2														
HICH CHANNEL	1.829	3.0	46.5														
2.781 3.0 45.3 32.3 29.5 3.1 -35.9 0.0 0.0 42.0 29.0 74 54 -32.0 -25.0 H Image: Second Sec	HIGH C	HANNEL															
DistDistance to AntennaD CorrDistance Correct to 3 metersPk LimPeak Field Strength LimitReadAnalyzer ReadingAvgAverage Field Strength @ 3 mAvg MarMargin vs. Average LimitAFAntenna FactorPeakCalculated Peak Field StrengthPk MarMargin vs. Peak Limit																	
DistDistance to AntennaD CorrDistance Correct to 3 metersPk LimPeak Field Strength LimitReadAnalyzer ReadingAvgAverage Field Strength @ 3 mAvg MarMargin vs. Average LimitAFAntenna FactorPeakCalculated Peak Field StrengthPk MarMargin vs. Peak Limit																	
		Dist Distance to Antenna D Corr Distance Corr Read Analyzer Reading Avg Average Field AF Antenna Factor Peak Calculated Pe								ect to 3 metersPk LimPeak FielStrength @ 3 mAvg MarMargin vak Field StrengthPk MarMargin v					d Strength Limit s. Average Limit		

Page 74 of 93

COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO: CCSUP4031A561F MONTEREY ROAD, MORGAN HILL, CA 95037 USATEL: (408) 463-0885 FAX: (408) 463-0888This report shall not be reproduced except in full, without the written approval of CCS.CCS.

1. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz

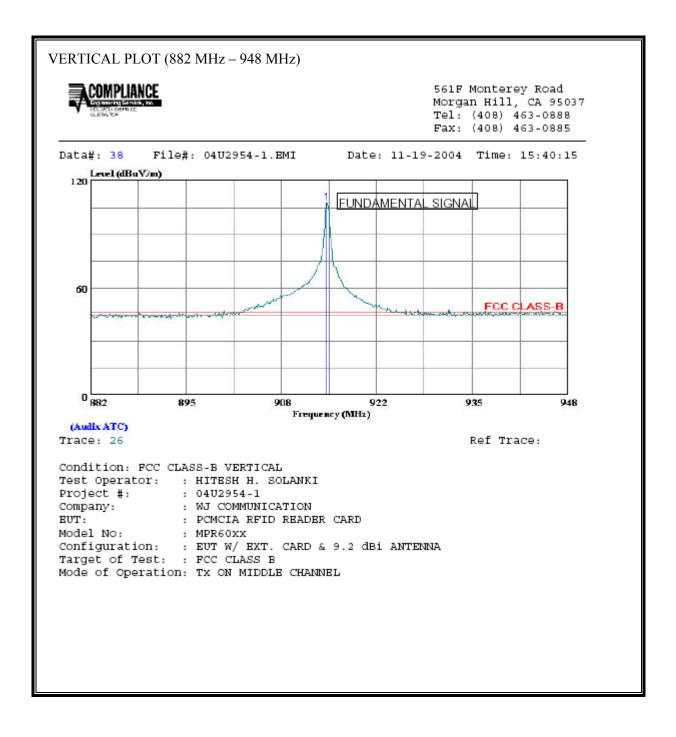
SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)


Page 75 of 93

F

Freq Remark Read Level Level Factor Limit Line Over Line MHz dBuV dBuV/m dB dBuV/m dB dBuV/m dB 30.970 Peak 40.27 36.05 -4.22 40.00 -3.95 218.180 Peak 47.34 33.84 -13.50 46.00 -12.16 276.380 Peak 52.70 41.88 -10.83 46.00 -4.13 459.710 Peak 49.61 42.03 -7.58 46.00 -3.97 688.630 Peak 50.06 45.99 -4.07 46.00 -0.01 * 917.550 Peak 94.21 93.86 -0.35 46.00 47.86
MHz dBuV dBuV/m dB dBuV/m dB 30.970 Peak 40.27 36.05 -4.22 40.00 -3.95 218.180 Peak 47.34 33.84 -13.50 46.00 -12.16 276.380 Peak 52.70 41.88 -10.83 46.00 -4.13 459.710 Peak 49.61 42.03 -7.58 46.00 -3.97 688.630 Peak 50.06 45.99 -4.07 46.00 -0.01
30.970Peak40.2736.05-4.2240.00-3.95218.180Peak47.3433.84-13.5046.00-12.16276.380Peak52.7041.88-10.8346.00-4.13459.710Peak49.6142.03-7.5846.00-3.97688.630Peak50.0645.99-4.0746.00-0.01
218.180 Peak 47.34 33.84 -13.50 46.00 -12.16 276.380 Peak 52.70 41.88 -10.83 46.00 -4.13 459.710 Peak 49.61 42.03 -7.58 46.00 -3.97 688.630 Peak 50.06 45.99 -4.07 46.00 -0.01
276.380 Peak 52.70 41.88 -10.83 46.00 -4.13 459.710 Peak 49.61 42.03 -7.58 46.00 -3.97 688.630 Peak 50.06 45.99 -4.07 46.00 -0.01
459.710 Peak 49.61 42.03 -7.58 46.00 -3.97 688.630 Peak 50.06 45.99 -4.07 46.00 -0.01
688.630 Peak 50.06 45.99 -4.07 46.00 -0.01
- 517.550 Peak 54.21 55.88 -0.55 48.88 47.88

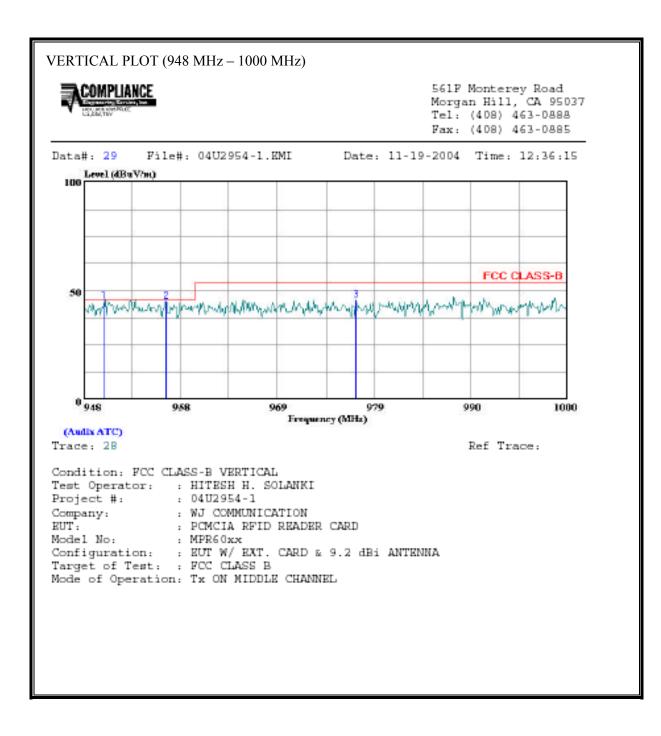
Page 76 of 93


SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 77 of 93

VERT	TICAL DA	ГА(30 М	Hz – 882	MHz)					
	Freq	Remark	Read Level	Level	Factor	Limit Line	Over Limit		
-	MHz		dBuV	iBuV/m	dB	dbuv/m	dB		
1	31.704					40.00			
2 3	847.920 868.368					46.00 46.00			

Page 78 of 93


Page 79 of 93

REPORT NO: 04U2954-3 EUT: HALF WATT PCMCIA RFID READER CARD: MPR6000

<u>dBuv dBuv/m</u> <u>dB</u> k 108.22 107.85 -0.37 46.00 61.85
ak 108.22 107.85 -0.37 46.00 61.85

Page 80 of 93

REPORT NO: 04U2954-3 EUT: HALF WATT PCMCIA RFID READER CARD: MPR6000

Page 81 of 93

VER	TICAL DA	TA(948 N	MHz – 100	00 MHz)			
	Freq	Remark	Read Level	Level F		Limit Line	Over Limit
	MHz		dBuV d		वेष्ठ व	BuV∕m	dB
1 2 3	950.236 956.892 977.224	Peak	44.80 44.72 45.18	44.85 44.91 45.69	0.05 0.18 0.51	46.00 46.00 54.00	-1.15 -1.09 -8.31

Page 82 of 93

7.4. POWERLINE CONDUCTED EMISSIONS

<u>LIMIT</u>

\$15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted I	Limit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

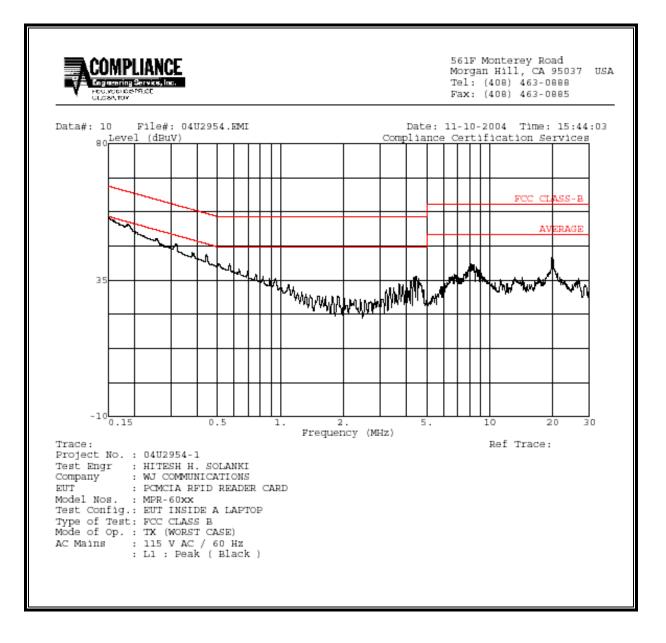
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

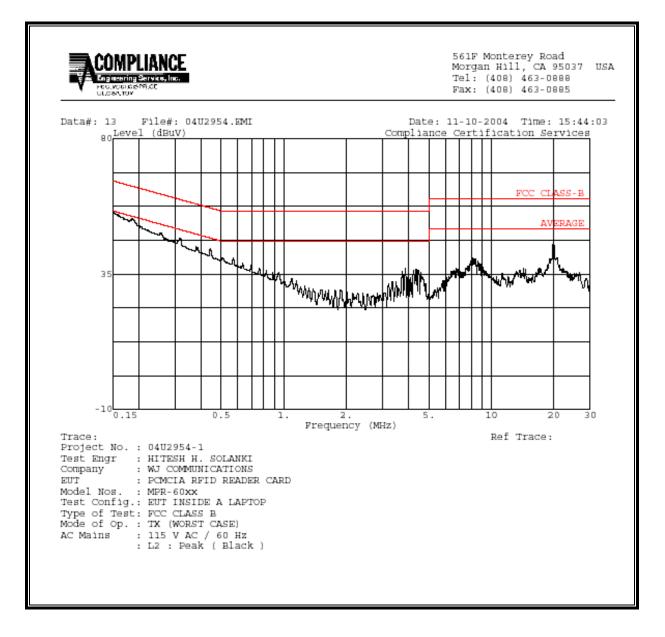
RESULTS

No non-compliance noted:


Page 83 of 93

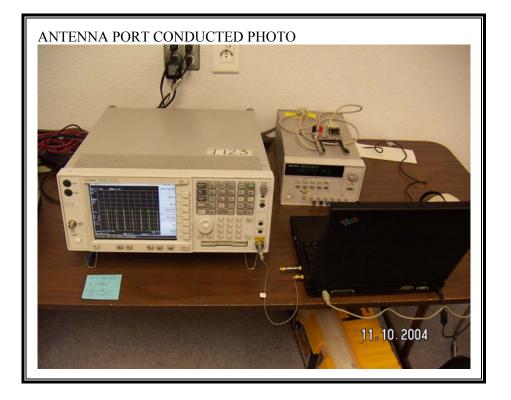
6 WORST EMISSIONS

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)											
Freq.		Closs	Limit	FCC B	Mar	Remark						
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2			
0.15	55.88			0.00	66.00	56.00	-10.12	-0.12	L1			
0.57	40.48			0.00	56.00	46.00	-15.52	-5.52	L1			
19.84	42.38			0.00	60.00	50.00	-17.62	-7.62	L1			
0.15	55.62			0.00	65.94	55.94	-10.32	-0.32	L2			
0.57	40.48			0.00	56.00	46.00	-15.52	-5.52	L2			
19.84	44.80			0.00	60.00	50.00	-15.20	-5.20	L2			
6 Worst I	Data											


Page 84 of 93

LINE 1 RESULTS

Page 85 of 93


LINE 2 RESULTS

Page 86 of 93

8. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

Page 87 of 93


RADIATED RF MEASUREMENT SETUP

Page 88 of 93

Page 89 of 93

Page 90 of 93

Page 91 of 93

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

Page 92 of 93

END OF REPORT

Page 93 of 93