

SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are:

averaged over 1 cm3 (1 g) of tissue:

42.0 mW/g \pm 16.8 % (k=2)²

averaged over 10 cm³ (10 g) of tissue: 22.0 mW/g \pm 16.2 % (k=2)²

Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 1900 MHz:

 $Re\{Z\} = 46.6 \Omega$

 $Im \{Z\} = 5.1 \Omega$

Return Loss at 1900 MHz

-24.0 dB

Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Section 1. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

² validation uncertainty

Page 1 of 1

Date/Time: 02/17/04 14:13:01

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d041

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL 1900 MHz;

Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 38.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

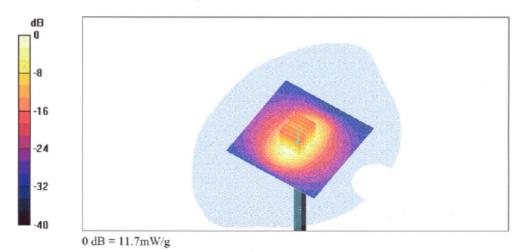
- Probe: ET3DV6 SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 1/23/2004
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 30; Postprocessing SW: SEMCAD, V1.8 Build 98

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 93.8 V/m

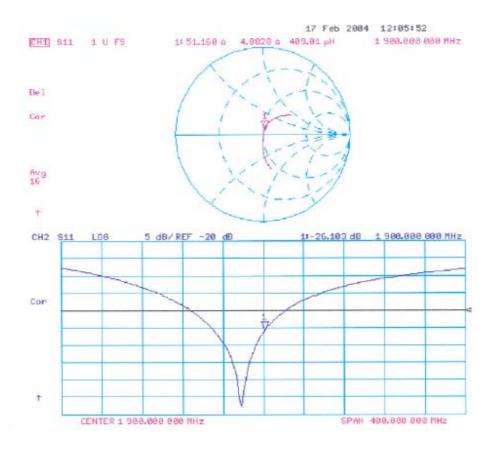
Power Drift = 0.002 dB

Maximum value of SAR = 11.8 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.39 mW/g


Reference Value = 93.8 V/m

Power Drift = 0.002 dB

Maximum value of SAR = 11.7 mW/g

Page 1 of 1

Date/Time: 02/09/04 15:58:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d041

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Muscle 1900 MHz;

Medium parameters used: f = 1900 MHz; $\sigma = 1.58 \text{ mho/m}$; $\varepsilon_s = 52.5$; $\rho = 1000 \text{ kg/m}^3$

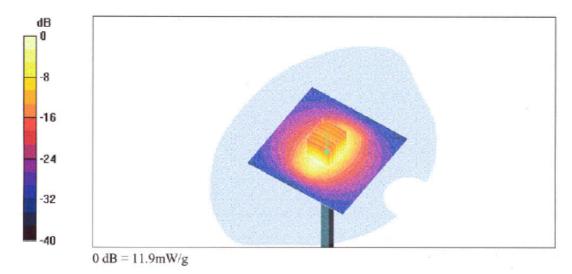
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

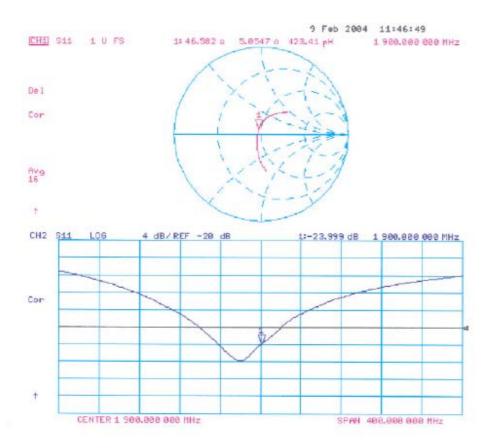
DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.57, 4.57, 4.57); Calibrated: 1/23/2004
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 25; Postprocessing SW: SEMCAD, V1.8 Build 101

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 92.6 V/m; Power Drift = 0.0 dB Maximum value of SAR (interpolated) = 11.8 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.6 V/m; Power Drift = 0.0 dB


Maximum value of SAR (measured) = 11.9 mW/g

Peak SAR (extrapolated) = 18.8 W/kg

SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.49 mW/g

Calibration Laboratory of Schmid & Partner Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton (Auden)

Certificate No: ET3-1788_Sep04

Accreditation No.: SCS 108

C

			Certificate No: E13-1788_Sep04			
CALIBRATION C	ERTIFICAT	E				
Object	ET3DV6 - SN:1	ET3DV6 - SN:1788				
Calibration procedure(s)	QA CAL-01.v5 Calibration procedure for dosimetric E-field probes					
Calibration date:	September 30,	2004				
Condition of the calibrated item	In Tolerance					
	cted in the closed laborat	probability are given on the following pages and an ory facility: environment temperature (22 \pm 3) $^{\circ}$ C and				
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration			
Power meter E4419B	GB41293874	5-May-04 (METAS, No. 251-00388)				
Power sensor F4412A	MY41495277		May-05			
OHOI SCHOOL ETTIET	N1741495277	5-May-04 (METAS, No. 251-00388)	May-05 May-05			
Reference 3 dB Attenuator	SN: S5054 (3c)	3-Apr-03 (METAS, No. 251-00403)	May-05 Aug-05			
Reference 3 dB Attenuator Reference 20 dB Attenuator	SN: S5054 (3c) SN: S5086 (20b)	3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389)	May-05 Aug-05 May-05			
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00404)	May-05 Aug-05 May-05 Aug-05			
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	SN: S5054 (3c) SN: S5086 (20b)	3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389)	May-05 Aug-05 May-05			
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN:3013 SN: 617	3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00404) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 26-May-04 (SPEAG, No. DAE4-617_May04)	May-05 Aug-05 May-05 Aug-05 Jan-05 May-05			
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN:3013 SN: 617	3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00404) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 26-May-04 (SPEAG, No. DAE4-617_May04) Check Date (in house)	May-05 Aug-05 May-05 Aug-05 Jan-05			
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A	SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN:3013 SN: 617	3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00404) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 26-May-04 (SPEAG, No. DAE4-617_May04) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03)	May-05 Aug-05 May-05 Aug-05 Aug-05 Jan-05 May-05 Scheduled Check			
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C	SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN:3013 SN: 617	3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00404) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 26-May-04 (SPEAG, No. DAE4-617_May04) Check Date (in house)	May-05 Aug-05 May-05 Aug-05 Aug-05 Jan-05 May-05 Scheduled Check In house check: Oct 05			
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C Network Analyzer HP 8753E	SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN:3013 SN: 617 ID # MY41092180 US3642U01700 US37390585 Name	3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00404) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 26-May-04 (SPEAG, No. DAE4-617_May04) Check Date (in house) 18-Sop-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Dec-03) 18-Oct-01 (SPEAG, in house check Nov-03) Function	May-05 Aug-05 May-05 Aug-05 Jan-05 May-05 Scheduled Check In house check: Oct 05 In house check: Dec-05 In house check: Nov 04 Signature			
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN:3013 SN: 617 ID # MY41092180 US3642U01700 US37390585	3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00404) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 26-May-04 (SPEAG, No. DAE4-617_May04) Check Date (in house) 18-Sop-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Nov-03)	May-05 Aug-05 May-05 Aug-05 Jan-05 May-05 Scheduled Check In house check: Oct 05 In house check: Dec-05 In house check: Nov 04 Signature			
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C Network Analyzer HP 8753E	SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN:3013 SN: 617 ID # MY41092180 US3642U01700 US37390585 Name	3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00404) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 26-May-04 (SPEAG, No. DAE4-617_May04) Check Date (in house) 18-Sop-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Dec-03) 18-Oct-01 (SPEAG, in house check Nov-03) Function	May-05 Aug-05 May-05 Aug-05 Jan-05 May-05 Scheduled Check In house check: Oct 05 In house check: Dec-05 In house check: Nov 04			

Certificate No: ET3-1788_Sep04

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

ConF

TSL NORMx,y,z tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z

DCP Polarization φ diode compression point φ rotation around probe axis

Polarization 9 9 rotation

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY 4.3 B17 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1788_Sep04

ET3DV6 SN:1788

September 30, 2004

Probe ET3DV6

SN:1788

Manufactured:

May 28, 2003

Last calibrated: Recalibrated:

August 29, 2003 September 30, 2004

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1788_Sep04

Page 3 of 9

ET3DV6 SN:1788

September 30, 2004

DASY - Parameters of Probe: ET3DV6 SN:1788

0		_	A
Sensitivity	ın	Free	Space

Diode Compression^B

NormX	$1.68 \pm 9.9\%$	$\mu V/(V/m)^2$	DCP X	94 mV
NormY	1.70 ± 9.9%	$\mu V/(V/m)^2$	DCP Y	94 mV
NormZ	1.74 ± 9.9%	$\mu V/(V/m)^2$	DCP Z	94 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance		3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	8.1	4.4	
SAR _{be} [%]	With Correction Algorithm	0.7	0.1	

TSL

1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance		3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	12.0	8.2
SAR _{be} [%]	With Correction Algorithm	0.9	0.1

Sensor Offset

Probe Tip to Sensor Center

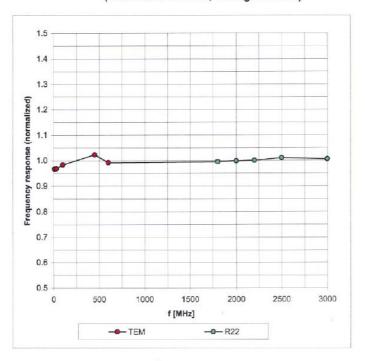
2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1788_Sep04

Page 4 of 9

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).


⁸ Numerical linearization parameter: uncertainty not required.

ET3DV6 SN:1788

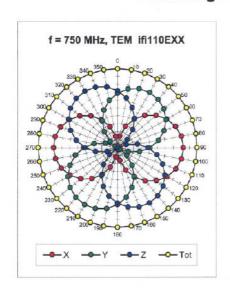
September 30, 2004

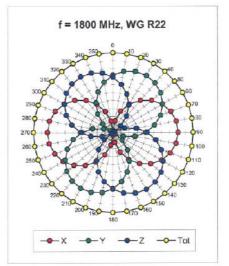
Frequency Response of E-Field

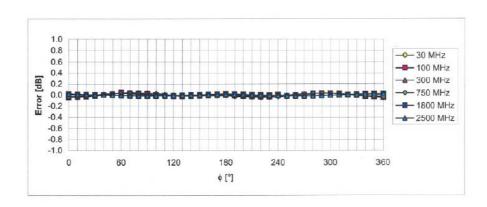
(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1788_Sep04


Page 5 of 9



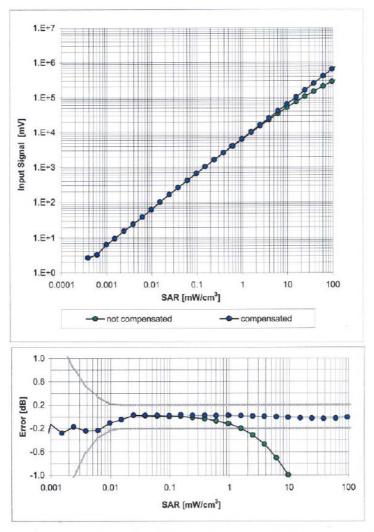

ET3DV6 SN:1788

September 30, 2004

Receiving Pattern (ϕ), $9 = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1788_Sep04

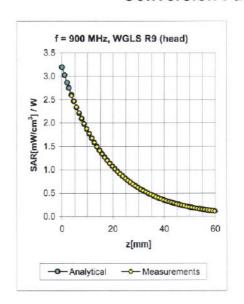

Page 6 of 9

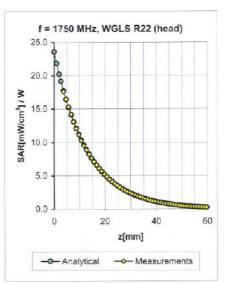
ET3DV6 SN:1788

September 30, 2004

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ET3-1788_Sep04

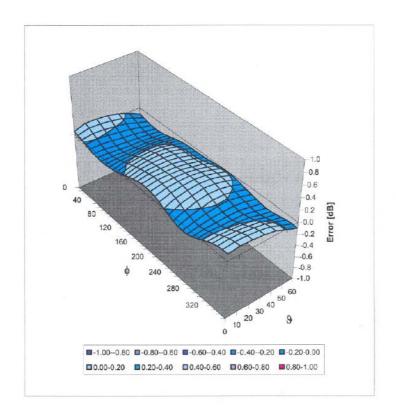
ET3DV6 SN:1788

September 30, 2004

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	±50/±100	Head	41.5 ± 5%	0.90 ± 5%	1.12	1.42	6.74 ± 11.0% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	1.07	1.44	6.63 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	$40.0 \pm 5\%$	1.40 ± 5%	0.56	2.31	5.37 ± 11.0% (k=2)
1900	± 50 / ± 100	Head	$40.0\pm5\%$	1.40 ± 5%	0.55	2.42	5.16 ± 11.0% (k=2)
2000	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.54	2.59	4.88 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.65	2.22	4.56 ± 11.8% (k=2)
222							0.50 - 41.00/ (1-0)
835	± 50 / ± 100	Body	55.2 ± 5%	$0.97 \pm 5\%$	1.04	1.52	6.53 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.99	1.56	6.17 ± 11.0% (k=2)
1750	$\pm 50 / \pm 100$	Body	$53.3 \pm 5\%$	$1.52 \pm 5\%$	0.53	2.74	4.73 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.55	2.82	4.56 ± 11.0% (k=2)
2000	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.54	2.98	4.43 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.72	2.00	4.26 ± 11.8% (k=2)

^c The validity of \pm 100 MHz only applies for DASY 4.3 B17 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


Certificate No: ET3-1788_Sep04

ET3DV6 SN:1788

September 30, 2004

Deviation from Isotropy in HSL

Error (4, 3), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1788_Sep04

Page 9 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Auden

Object(s)	DAE3 - SD 000 D03	AA - SN: 541	
Calibration procedure(s)	QA CAL-06.v7 Calibration procedur	e for the data acquisi	tion unit (DAE)
Calibration date:	26.04.2004		
Condition of the calibrated item	In Tolerance (accord	ling to the specific ca	libration document)
7025 international standard. Il calibrations have been conduct Calibration Equipment used (M&TI		r: environment temperature 22	+/- 2 degrees Celsius and humidity < 75%.
Model Type	ID#	Cal Date	Scheduled Calibration
fluke Process Calibrator Type 702	2 SN: 8295803	8-Sep-03	Sep-04
fluke Process Calibrator Type 70%	2 SN: 8295803 Name	8-Sep-03 Function	Sep-04 Signature
Pluke Process Calibrator Type 702			Signature P-M-
	Name	Function	
Calibrated by:	Name Phillipp Storchenegger	Function Technician	Signature P-M-

1. DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1\mu V$, full range = -100...+300 mVLow Range: 1LSB = 61nV, full range = -1......+3mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec $6.1 \mu V$,

Calibration Factors	X	Υ	Z
High Range	404.738	404.586	404.348
Low Range	3.95132	3.93433	3.97979
Connector Angle to be used	in DASY System	296 °	-Ur

High Range		Input (μV)	Reading (μV)	Error (%)
Channel X	+ Input	200000	200000.3	0.00
Channel X	+ Input	20000	19997.5	-0.01
Channel X	- Input	20000	-19993.7	-0.03
Channel Y	+ Input	200000	199999.5	0.00
Channel Y	+ Input	20000	19995.5	-0.02
Channel Y	- Input	20000	-19998.2	-0.01
Channel Z	+ Input	200000	200000	0.00
Channel Z	+ Input	20000	19996.6	-0.02
Channel Z	- Input	20000	-19995.1	-0.02

Low Range		Input (μV)	Reading (μV)	Error (%)
Channel X	+ Input	2000	1999.95	0.00
Channel X	+ Input	200	200.08	0.04
Channel X	- Input	200	-200.46	0.23
Channel Y	+ Input	2000	2000.07	0.00
Channel Y	+ Input	200	200.15	0.07
Channel Y	- Input	200	-199.84	-0.08
Channel Z	+ Input	2000	2000.04	0.00
Channel Z	+ Input	200	199.12	-0.44
Channel Z	- Input	200	-201.33	0.67

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Reading (μV)	Low Range Reading (μV)
Channel X	200	10.14	8.76
	- 200	-7.92	-9.44
Channel Y	200	-0.13	-0.13
	- 200	-0.64	-1.48
Channel Z	200	-0.33	0.30
	- 200	-1.32	-2.05

Certificate No.: 680-SD000D03AA-541-040426

3. Channel separation
DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	1.57	0.38
Channel Y	200	1.15	-	3.56
Channel Z	200	-1.23	-0.99	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15913	16186
Channel Y	15730	15569
Channel Z	15932	17108

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MQ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.24	-0.44	0.87	0.24
Channel Y	-2.29	-3.41	-1.33	0.33
Channel Z	-0.82	-1.95	0.03	0.33

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	199.8
Channel Y	0.2001	202.7
Channel Z	0.2000	203.0

8. Low Battery Alarm Voltage

typical values	Alarm Level (VDC)		
Supply (+ Vcc)	+7.9		
Supply (- Vcc)	-7.6		

9. Power Consumption

typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9