

Inter**Lab**

FCC Measurement/Technical Report on

GSM/UMTS module Siemens Cellular Engine HC25

Report Reference: MDE_Siem_0605_FCCc

Test Laboratory:

7 layers AG Borsigstrasse 11 40880 Ratingen Germany

email: info@7Layers.de

Note

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the testing laboratory.

Table of Contents

o Si	ımmary	3
0.1 0.2	Technical Report Summary Measurement Summary	3 4
1 Ac	lministrative Data	5
1.1 1.2 1.3 1.4	Testing Laboratory Project Data Applicant Data Manufacturer Data	5 5 5 5
2 Pr	oduct labeling	6
2.1 2.2	FCC ID label Location of the label on the EUT	6 6
3 Te	est object Data	7
3.1 3.2 3.3 3.4 3.5	General EUT Description EUT Main components Ancillary Equipment EUT Setups Operating Modes	7 8 8 8 9
4 Te	est Results	10
4.1 4.2	Conducted emissions (AC power line) Spurious radiated emissions	10 12
5 Te	est Equipment	16
6 Ph	noto Report	19
7 S e	etup Drawings	23
8 Ar	nnex measurement plots	24
8.1 8.2	AC Mains conducted Radiated emissions (f<30MHz)	24 25

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Periodic operation in the band above 70 MHZ)

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-06 Edition) and 15 (10-1-06 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart A - General

§ 15.33 Frequency range of radiated measurements

Part 15, Subpart B – Unintentional Radiators

§ 15.101 Equipment authorization of unintentional radiators

§ 15.107 Conducted limits

§ 15.109 Radiated emission limits

Note: none

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

FCC Part 15, Subpart B

§ 15.107

Conducted emissions (AC power line)

The measurement was performed according to ANSI C63.4

2003

passed

OP-Mode op-mode 1

Setup 201

PORT

Final Result

Setup_a01 AC Port (power line)

FCC Part 15, Subpart B
Spurious Radiated Emissions

The measurement was performed according to ANSI C63.4

OP-Mode

Setup

Port

2003

op-mode 1 / 2 Setup_a01 Enclo

Enclosure

§ 15.109

Final Result

passed

7 layers AG, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

Responsible for Accreditation Scope:

J. Xall

Responsible for Test Report:

a. Pek

1 Administrative Data

1.1 Testing Laboratory

Company Name:	7 Layers AG
Address	Borsigstr. 11 40880 Ratingen Germany
This facility has been fully described in a under the registration number 96716.	report submitted to the FCC and accepted
The test facility is also accredited by the - Deutscher Akkreditierungs Rat	following accreditation organisation: DAR-Registration no. DAT-P-192/99-01
Responsible for Accreditation Scope:	DiplIng. Bernhard Retka DiplIng. Robert Machulec DiplIng. Thomas Hoell
Report Template Version:	2006-12-18
1.2 Project Data	
Responsible for testing and report:	DiplIng. Andreas Petz
Date of Test(s): Date of Report:	2007-02-13 to 2007-02-15 2007-03-15
1.3 Applicant Data	
Company Name:	Siemens AG
Address:	Siemensdamm 50 13629 Berlin Germany
Contact Person:	Mr. Hussein Halawi
1.4 Manufacturer Data Company Name:	please see applicant data
Address:	
Contact Person:	

2 Product labeling

2.1 FCC ID label

At the time of the report there was no FCC label available.

2.2 Location of the label on the EUT

see above

3 Test object Data

3.1 General EUT Description

Equipment under Test GSM/UMTS module

Type Designation: Siemens Cellular Engine HC25

Kind of Device: GSM 850/900/1800/1900 + UMTS FDD I/II/V

(optional)moduleVoltage Type:DCVoltage level:4.2 V

General product description:

The Equipment Under Test (EUT) is a GSM 850/900/1800/1900 module and supports GSM and EDGE mode and 3G UMTS FDD in the bands I/II/V.

The EUT provides the following ports:

Ports

Enclosure Antenna connector

The main components of the EUT are listed and described in Chapter 3.2

3.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short	Equipment	Type	Serial No.	HW Status	SW Status	Date of		
Description	under Test	Designation				Receipt		
EUT A	GSM/UMTS	Siemens	008970	B1.4	rev. 00.152	2007-01-15		
(Code:	module	Cellular	Cellular					
01900AP13)	01900AP13) Engine HC25							
Remark: EUT	A is equipped w	ith an antenna c	onnector.					

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial no.	FCC ID
AE_1	External antenna Allgon- MiniMAG	Dualband Antenna Ordering number: 1140.26	-	-	-	-
AE_2	Develop- ment Board DSB3	DSB75	DSB75_B1.1	-	GBI: ICM- 100012-03	_
AE_3	Adapter Board	Quinn DSB75 Adapter A1	-	-	Q_DSB75_A 1_344	-
AE_4	Housing for DSB75	_	_	_	DSB75_B1 0009	_
AE_5	Laptop	Fujitsu Siemens Lifebook S7020D	Product-No: FPC04240B Z	Microsoft Windows XP Professional	YBBC01773 1; Part-No: CP234412	-
AE_6	Fujitsu AC adaper for Laptop	Part-No: CA01007- 0920	-	-	05319026F	-
AE_7	Keyboard	Cherry RS6000 USB	-	-	G0000273	-
AE_8	Monitor	LG Flatron L1740BQ	_	_	509WANF1 W607	-
AE_9	Printer	Epson Stylus C84	-	-	FBPT048906	_

3.4 EUT Setups

This chapter describes the combination of EUTs and ancillary equipment used for testing.

Setup No.	Combination of EUT's	Description	
Setup_a01	EUT A +	setup for measurements	
	$AE_1 + AE_2 + AE_3 +$		
	$AE_4 + AE_5 + AE_6 +$		
	$AE_7 + AE_8 + AE_9$		

3.5 Operating Modes

This chapter describes the operating modes of the EUT's used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	Call established on Traffic Channel (TCH)	661 is a mid channel
	661, Carrier Frequency 1880 MHz	PCS data call
op-mode 2	GSM Idle mode	The EUT is powered and booked into the network, a call can be initiated or accepted

4 Test Results

4.1 Conducted emissions (AC power line)

Standard FCC Part 15, 10-1-06

Subpart B

The test was performed according to: ANSI C 63.4, 2003

4.1.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2003. The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from $50\mu\text{H}$ || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

The measurement procedure consists of two steps. It is implemented into the EMI test software ES-K1 from R&S.

Step 1: Preliminary scan

Preliminary test to identify the highest amplitudes relative to the limit.

EMI receiver settings:

- Detector: Peak - Maxhold

- Frequency range: 150 kHz - 30 MHz

Frequency steps: 5 kHzIF–Bandwidth: 10 kHz

- Measuring time / Frequency step: 1 ms

- Measurement on phase + neutral lines of the power cords

Intention of this step is, to determine the conducted EMI-profile of the EUT. With this data, the test system performs (to reduce the number of final measurements) a data reduction with the following parameters:

- Offset for acceptance analysis: Limit line 6 dB
- Maximum number of final measurements: 6

Step 2: Final measurement

With the frequencies determined in step 1, the final measurement will be performed. EMI receiver settings:

Detector: Quasi-PeakIF - Bandwidth: 9 kHz

- Measuring time: 1s / frequency

4.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.107

Frequency Range (MHz) QP Limit (dB μ V) AV Limit (dB μ V) 0.15 - 0.5 66 to 56 56 to 46 0.5 - 5 56 46 5 - 30 60 50

Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).

4.1.3 Test Protocol

Temperature: 23 °C Air Pressure: 1024 hPa Humidity: 33 %

Op. ModeSetupPortop-mode 1Setup_a01AC Port (power line)

Power line	Frequency MHz	Measured value dBµV	Delta to limit dBµV	Remarks
N	0.205	46.3	7.1	AV
N	0.180	58.1	6.4	QP
N	0.430	46.1	11.2	QP
N	0.435	45.3	11.8	QP

Remark: No final measurement was performed because no frequencies (peaks) were found within the offset for acceptance analysis during the preliminary scan. Please see annex for the measurement plot.

4.1.4 Test result: Conducted emissions (AC power line)

FCC Part 15, Subpart B	Op. Mode	Result
	op-mode 1	passed

4.2 Spurious radiated emissions

Standard FCC Part 15, 10-1-06 Subpart B

The test was performed according to: ANSI C 63.4, 2003

4.2.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2003. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}$ in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S.

1. Measurement up to 30 MHz

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2003. The Equipment Under Test (EUT) was set up on a non-conductive table in the anechoic chamber.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S. The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 10m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 and 0.15 30 MHz
- Frequency steps: 0.1 kHz and 5 kHz
- IF-Bandwidth: 0.2 kHz and 10 kHz
- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 200 Hz 10 kHz
- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz

Measurement up to 1 GHz

Step 1: Preliminary scan

Preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Detector: Peak-Maxhold
- Frequency range: 30 1000 MHz
- Frequency steps: 60 kHzIF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 µs
- Turntable angle range: -180 to 180 °

- Turntable step size: 90°

Height variation range: 1 – 3m
Height variation step size: 2m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100ms

- Turntable angle range: -180 to 180 °

- Turntable step size: 45°

Height variation range: 1 – 4mHeight variation step size: 0.5m

- Polarisation: horizontal + vertical

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency

- Azimuth value (of turntable)

- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°

- Antenna height: 0.5m **Step 3:** final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency the turntable azimuth and antenna height, which was determined in step 3, will be adjusted. The turntable azimuth will be slowly varied by +/- 22.5° around this value. During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/- 25 cm around the antenna height determined in step 3. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100ms

- Turntable angle range: -22.5° to + 22.5° around the value determined in step 2

- Height variation range: -0.25m to + 0.25m around the value determined in step 2

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

Detector: Quasi-Peak(< 1GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1s

Measurement above 1GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The measurement distance was reduced to 1m. The results were extrapolated by the

extrapolation factor of 20 dB/decade (inverse linear distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18-25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only. EMI receiver settings:

- Detector: Peak, Average
- RBW = VBW = 100 kHz

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

4.2.2 Test Requirements / Limits

FCC Part 15, Subpart A, §15.33 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.109 (and Section 15.209).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance	Limit(dBµV/m @10m)
		(m)	
0.009 - 0.49	2400/F(kHz)	300	Limit (dBµV/m)+30dB
0.49 - 1.705	24000/F(kHz)	30	Limit (dBµV/m)+10dB
1.705 - 30	30	30	Limit (dBµV/m)+10dB

Frequency Range (MHz)	Class B Limit (dBµV/m)
30 – 88	40.0
88 – 216	43.5
216 – 960	46.0
above 960	54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

4.2.3 Test Protocol

Temperature: 22 °C Air Pressure: 1001 hPa Humidity: 40 %

4.2.3.1 Measurement up to 30 MHz

Op. Mode	Setup	Port
op-mode 2	Setup_a01	Enclosure

Polari-	Frequency	Corrected value		Limit	Limit	Limit	Delta to	Delta to	
sation	MHz	dBμV/m		dBµV/	dBμV/	dBμV/	limit	limit	
		-		m	m	m	dB	dB	
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
0°	_								
90°	_								

Remark: No (further) spurious emissions in the range 20 dB below the limit found therefore step 2 was not performed.

The peak at 91.2kHz is emitted by the loop antenna's power supply.

4.2.3.2 Measurement above 30 MHz

Op. Mode	Setup	Port
op-mode 1	Setup_a01	Enclosure

Polari- sation	Frequency MHz	Cor	rected va dBµV/m	lue	Limit dBµV/ m	Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	30.0	28.0			40.0			12.0	
Vertical + horizontal	45.72	26.8			40.0			13.2	
Vertical + horizontal	46.26	27.2			40.0			12.8	
Vertical + horizontal	166.62	33.7			43.5			9.8	
Vertical + horizontal	433.32	46.0			46.0			0.0	
Vertical + horizontal	566.70	36.0			46.0			10.0	
Vertical + horizontal	700.02	37.0			46.0			9.0	
Vertical + horizontal	766.68	36.1			46.0			9.9	
Vertical + horizontal	799.98	43.1			46.0			2.9	

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

4.2.4 Test result: Spurious radiated emissions

FCC Part 15, Subpart B	Op. Mode	Result
	op-mode 1 / 2	passed

5 Test Equipment

EUT Digital Signalling System

Equipment	Туре	Serial No.	Manufacturer
Digital Radio	CMD 55	831050/020	Rohde & Schwarz
Communication Tester			
Signalling Unit for	PTW60	100004	Rohde & Schwarz
Bluetooth Spurious			
Emissions			
Universal Radio	CMU 200	102366	Rohde & Schwarz
Communication Tester			

EMI Test System

Equipment	Туре	Serial No.	Manufacturer
Comparison Noise	CNE III	99/016	York
Emitter			
EMI Analyzer	ESI 26	830482/004	Rohde & Schwarz
Signal Generator	SMR 20	846834/008	Rohde & Schwarz

EMI Radiated Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer
Antenna mast 4m	MA 240	240/492	HD GmbH H. Deisel
Biconical dipole	VUBA 9117	9117108	Schwarzbeck
Broadband Amplifier	JS4-18002600-32	849785	Miteq
18MHz-26GHz			
Broadband Amplifier	JS4-00101800-35	896037	Miteq
30MHz-18GHz			
Broadband Amplifier	JS4-00102600-42	619368	Miteq
45MHz-27GHz			
Cable "ESI to EMI	EcoFlex10	W18.01-2 + W38.01-2	Kabel Kusch
Antenna"			
Cable "ESI to Horn	UFB311A + UFB293C	W18.02-2 + W38.02-2	Rosenberger-Microcoax
Antenna"			
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz
High Pass Filter	5HC3500/12750-1.2-KK	200035008	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
KUEP pre amplifier	Kuep 00304000	001	7layers
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz
Pyramidal Horn Antenna 26.5 GHz	Model 3160-09	9910-1184	EMCO
20.5 GHZ			

Test report Reference: MDE_Siem_0605_FCCc

EMI Conducted Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer
Cable "LISN to ESI"	RG214	W18.03+W48.03	Huber+Suhner
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz

Auxiliary Test Equipment

Equipment	Туре	Serial No.	Manufacturer
Broadband Resist.	1506A / 93459	LM390	Weinschel
Power Divider N			
Broadband Resist.	1515 / 93459	LN673	Weinschel
Power Divider SMA			
Digital Multimeter 01	Voltcraft M-3860M	IJ096055	Conrad
Digital Multimeter 02	Voltcraft M-3860M	IJ095955	Conrad
Digital Oscilloscope	TDS 784C	B021311	Tektronix
Fibre optic link Satellite	FO RS232 Link	181-018	Pontis
Fibre optic link	FO RS232 Link	182-018	Pontis
Transceiver			
I/Q Modulation	AMIQ-B1	832085/018	Rohde & Schwarz
Generator			
Notch Filter ultra stable	WRCA800/960-6E	24	Wainwright
Spectrum Analyzer 9	FSP3	838164/004	Rohde & Schwarz
kHz to 3 GHz			
Temperature Chamber	VT 4002	58566002150010	Vötsch
Temperature Chamber	KWP 120/70	59226012190010	Weiss
ThermoHygro	Opus10 THI (8152.00)	7482	Lufft Mess- und
Datalogger 03			Regeltechnik GmbH

Anechoic Chamber

Equipment	Туре	Serial No.	Manufacturer
Air Compressor			Atlas Copco
(pneumatic)			
Controller	CO 2000	CO2000/328/12470406	Innco innovative
		/L	constructions GmbH
EMC Camera	CE-CAM/1		CE-SYS
EMC Camera for	CCD-400E	0005033	Mitsubishi
observation of EUT			
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter telephone systems	B84312-C40-B1		Siemens&Matsushita
/ modem			
Filter Universal 1A	B84312-C30-H3		Siemens&Matsushita
Fully/Semi AE Chamber	10.58x6.38x6		Frankonia
Turntable	DS 420S	420/573/99	HD GmbH, H. Deisel
Valve Control Unit (pneum.)	VE 615P	615/348/99	HD GmbH, H. Deisel

7 layers Bluetooth Full RF Test Solution

Bluetooth RF Conformance Test System TS8960

Equipment	Туре	Serial No.	Manufacturer
10 MHz Reference	MFS	5489/001	Efratom
Power Meter 832025/059	NRVD	832025/059	Rohde & Schwarz
Power Sensor A 832279/013	NRV-Z1	832279/013	Rohde & Schwarz
Power Sensor B 832279/015	NRV-Z1	832279/015	Rohde & Schwarz
Power Supply	E3632A	MY40003776	Agilent
Power Supply	PS-2403D	-	Conrad
RF Step Attenuator 833695/001	RSP	833695/001	Rohde & Schwarz
Rubidium Frequency Normal	MFS	002	Efratom
Signal Analyzer FSIQ26 832695/007	FSIQ26	832695/007	Rohde & Schwarz
Signal Generator 833680/003	SMP 03	833680/003	Rohde & Schwarz
Signal Generator A 834344/002	SMIQ03B	834344/002	Rohde & Schwarz
Signal Generator B 832870/017	SMIQ03B	832870/017	Rohde & Schwarz
Signal Switching and Conditioning Unit	SSCU	338826/005	Rohde & Schwarz
Signalling Unit PTW60 838312/014	PTW60 for TS8960	838312/014	Rohde & Schwarz
System Controller 829323/008	PSM12	829323/008	Rohde & Schwarz

6 Photo Report

Photo 1: Test setup for radiated measurements

Photo 2: Test setup for conducted measurements

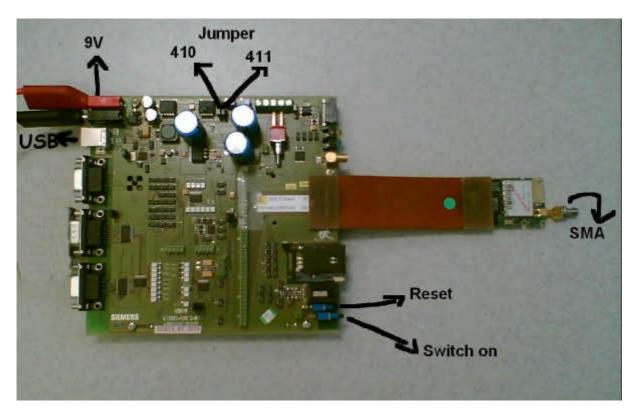


Photo 3: EUT (front side) (Photo is provided by customer and may not show the tested sample)

Photo 4: EUT (rear side)
(Photo is provided by customer and may not show the tested sample)

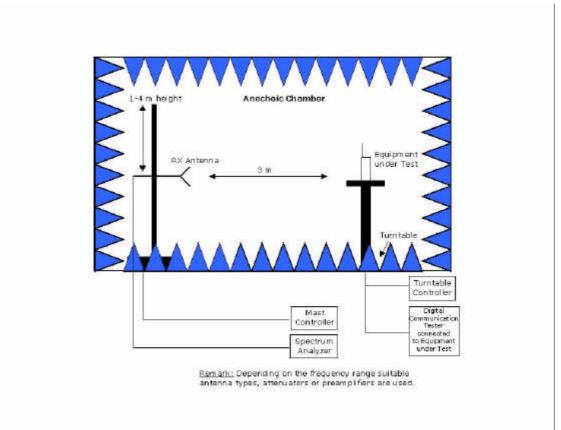
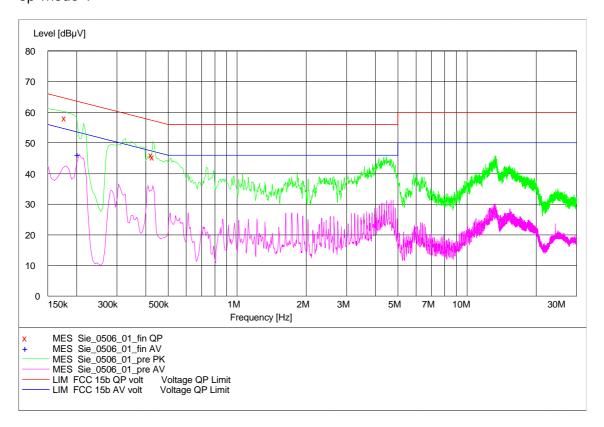


Photo 5: Development Board DSB75 (without housing), with EUT (Photo is provided by customer and may not show the tested sample)

7 Setup Drawings

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting ground plane.

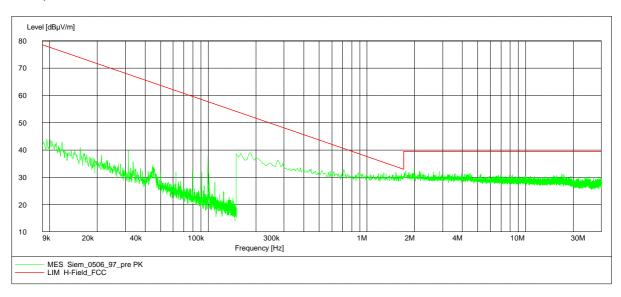


8 Annex measurement plots

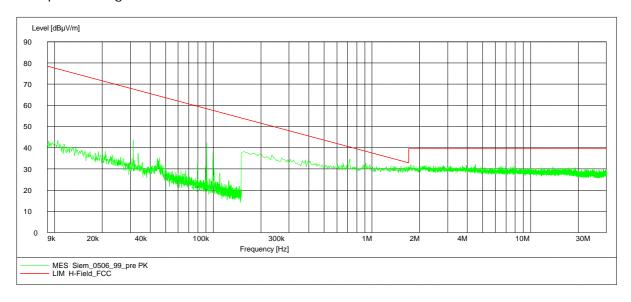
8.1 AC Mains conducted

Op. Mode

op-mode 1

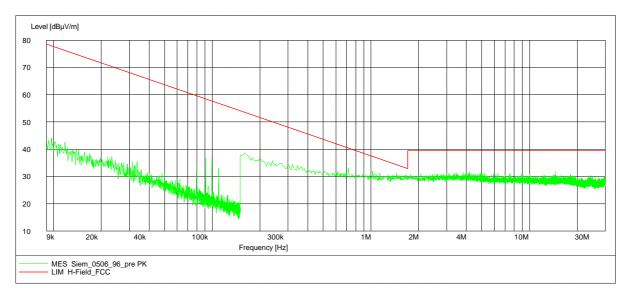


8.2 Radiated emissions (f<30MHz)

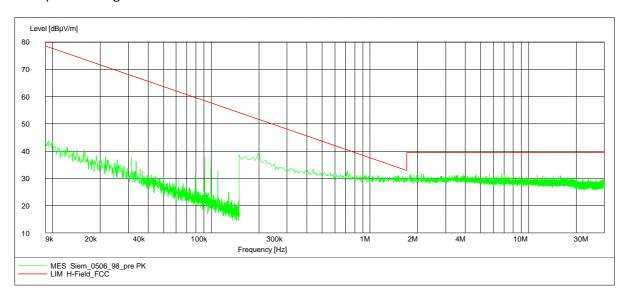

Op. Mode

op-mode 2

Antenna position 90° EUT position front side



Antenna position 90° EUT position right side



Antenna position 0° EUT position front side

Antenna position 0° EUT position right side

