

FCC CFR47 CERTIFICATION

PART 22H and 24E

TEST REPORT

FOR

DUAL-BAND TRI-MODE PCS/AMPS/CDMA CELLULAR CAMERA PHONE

MODEL NUMBER: VT-5D

FCC ID: GKRVT-5D

REPORT NUMBER: 04I2820-1

ISSUE DATE: July 19, 2004

Prepared for COMPAL ELECTRONICS, INC. 7F, NO. 500, JUIKUANG ROAD NEIHU, TAIPEI TAIWAN ROC 114

Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, ROUTE 2 MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

TABLE OF CONTENT

1.	TEST RESULT CERTIFICATION	3
2.	EUT DESCRIPTION	4
3.	TEST METHODOLOGY	4
4.	TEST FACILITY	4
5.	ACCREDITATION AND LISTING	4
6.	MEASURING INSTRUMENT CALIBRATION	4
7.	TEST SETUP, PROCEDURE AND RESULT	5
7	1. SECTION 2.1046: RF POWER OUTPUT	5
7	1. SECTION 2.1047: MODULATION CHARACTERISTICS	
7	2. SECTION 2.1049: OCCUPIED BANDWIDTH	
7	3. OCCUPIED BANDWIDTH FOR AMPS MODULATION:	27
	7.3.1. Un-modulated Signal	
	7.3.2. Voice	
	7.3.3. Signaling Tone (ST) + Supervisory Audio Tone (SAT)	
	7.3.4. Wide Band Data (WBD)	
	7.3.5. Voice + Supervisory Audio Tone (SAT)	
	7.3.6. DTMF + Supervisory Audio Tone (SAT)	
7	4. SECTION 2.1051: SPURIOUS EMISSION AT ANTENNA TERMINAL	
7	5. SECTION 2.1053: FIELD STRENGTH OF SPURIOUS RADIATION	54
7	6. SECTION 2.1055: FREQUENCY STABILITY	60
8.	EXTERNAL & INTERNAL PHOTOS	65
9.	APENDIX	72
9	1. SCHEMATICS	72
9	2. BLOCK DIAGRAM	72
9	3. USER MANUAL	72

Page 2 of 72

1. TEST RESULT CERTIFICATION

COMPANY NAME: COMPAL ELECTRONICS, INC.

EUT DESCRIPTION: DUAL-BAND TRI-MODE PCS/AMPS/CDMA CELLULAR CAMERA PHONE

MODEL NUMBER: VT-5D

DATE TESTED: 7/8/2004 –7/14/2004

TYPE OF EQUIPMENT	INTENTIONAL RADIATOR
EQUIPMENT TYPE	LICENSED TX MODULE IN MOBILE APPLICATION
MEASUREMENT PROCEDURE	ANSI 63.4 / 1992, TIA/EIA 603
PROCEDURE	CERTIFICATION
FCC RULE	CFR 47 PART 22 Subpart H and 24 Subpart E

Compliance Certification Services, Inc. tested the above equipment for compliance with the requirement set forth in CFR 47, PART 22 Subpart H-Cellular Radiotelephone Service and 24 Subpart E-Broadband PCS. The equipment in the configuration described in this report, shows the measured emission levels emanating from the equipment do not exceed the specified limit.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Tested By:

William Zhuay

WILLIAM ZHUANG EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Released For CCS By:

12.1

THU CHAN EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

2. EUT DESCRIPTION

This equipment is a Dual-band and tri-mode (PCS-CDMA/Cellular-CDMA/AMPS) portable mobile station of which frequency range are 1850 ~1990MHz and 824 ~ 894MHz. It has an antenna gain of 1.8dBi in Cell band and 0.4dBi in PCS band, which has an output power of 25.3dBm (AMPS, ERP), 27.5dBm (CDMA, ERP), and 29.4dBm (PCS, EIRP).

3. TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures documented on chapter 13 of ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057.

4. TEST FACILITY

The open area test sites and conducted measurement facilities used to collect the radiated data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5. ACCREDITATION AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200065-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (reference no: 31040/SIT (1300B3) and 31040/SIT (1300F2))

6. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

7. TEST SETUP, PROCEDURE AND RESULT

7.1. SECTION 2.1046: RF POWER OUTPUT

INSTRUMENTS LIST

TEST EQUIPMENT LIST									
Name of Equipment	Manufacturer	Model No.	Serial No.	Due Date					
Peak Power Meter	Agilent	E4416A	GB41291160	11/7/2004					
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	11/21/2004					
RF Filter Section	HP	85420E	3705A00256	11/21/2004					
Antenna, Tuned Dipole	CDI	Roberts	117	5/15/2005					
Spectrum Analyzer	Agilent	E4446A	MY43360112	1/13/2005					
Antenna, Horn 1 ~ 18 GHz	EMCO	3117	29310	12/26/2004					

Page 5 of 72

MEASUREMENT PROCEDURE

1). On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.

2). The test antenna shall be oriented initially for vertical polarization located 3m from the EUT to correspond to the frequency of the transmitter.

3). The output of the test antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.

4). The transmitter shall be placed 0.80 meter above the ground plane, the X, Y, and Z positions shall be tested and the worst case reported. The transmitter shall be switched on with typical modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.

5). The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.

6). The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.

7). The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.

8). The maximum signal level detected by the measuring receiver shall be noted.

9). The transmitter shall be replaced by a tuned dipole (substitution antenna).

10). The substitution antenna shall be oriented for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.

11). The substitution antenna shall be connected to a calibrated signal generator.

12). If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.

13). The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.

Page 6 of 72

14). The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.

15). The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.

16). The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.

17). The measure of the effective radiated power is the larger of the two levels recorded, at the input to the substitution antenna, corrected for the gain of the substitution antenna if necessary.

Page 7 of 72

Radiated Emission Measurement 30 to 1000 MHz

Radiated Emission Above 1000 MHz

Page 8 of 72

Radiated Emission - Substitution Method Set-up

Page 9 of 72

REPORT NO: 04I2820-1DATE: JULY 19, 2004FCC ID: GKRVT-5DEUT: DUAL-BAND TRI-MODE PCS/AMPS/CDMA CELLULAR CAMERA PHONE

X position:

Y position:

Z position:

Page 10 of 72

Test result:

AMPS Output Power (ERP):

f GHz	SA reading (dBuV/m)	Ant. Pol. (H/V)	SG reading (dBm)	CL (dB)	Gain (dBi)	Gain (dBd)	ERP (dBm)	Limit (dBm)	Margin (dB)	Notes
Worst cas	e at Y position									
0.824	93.8	V	21.0	0.6	0.6	-1.6	18.8	38.5	-19.6	Low Ch
0.824	97.0	Н	23.4	0.6	0.6	-1.6	21.2	38.5	-17.2	Low Ch
0.836	90.8	V	18.0	0.6	0.6	-1.6	15.8	38.5	-22.6	Mid Ch
0.836	101.1	Н	27.5	0.6	0.6	-1.6	25.3	38.5	-13.1	Mid Ch
0.849	92.4	V	19.6	0.6	0.6	-1.6	17.4	38.5	-21.0	High Ch
0.849	96.5	Н	22.9	0.6	0.6	-1.6	20.8	38.5	-17.7	High Ch

RBW = VBW = 1MHz

CDMA Output Power (ERP):

f CH7	SA reading	Ant. Pol. (H/V)	SG reading	CL (dB)	Gain (dBi)	Gain (dBd)	ERP (dBm)	Limit (dBm)	Margin (dB)	Notes
Wanst and		(11/*)	(ubiii)	(ub)	(uDI)	(ubu)	(uDill)	(ubiii)	(uD)	
worst cas	e at a position									
0.825	97.6	V	24.8	0.6	0.6	-1.6	22.7	38.5	-15.8	Low Ch
0.825	101.6	Н	28.0	0.6	0.6	-1.6	25.9	38.5	-12.6	Low Ch
0.836	97.8	V	25.0	0.6	0.6	-1.6	22.8	38.5	-15.6	Mid Ch
0.836	101.4	Н	28.0	0.6	0.6	-1.6	25.9	38.5	-12.6	Mid Ch
0.848	94.4	V	21.6	0.6	0.6	-1.6	19.5	38.5	-19.0	High Ch
0.848	103.3	Н	29.7	0.6	0.6	-1.6	27.5	38.5	-10.9	High Ch

RBW=VBW=3MHz

PCS Output Power (ERP):

f GHz	SA reading (dBuV/m)	Ant. Pol. (H/V)	SG reading (dBm)	CL (dB)	Gain (dBi)	Gain (dBd)	ERP (dBm)	Limit (dBm)	Margin (dB)	Notes
Worst cas	e at X position									
1.851	88.0	V	23.3	1.5	4.4	2.3	24.1	38.5	-14.3	Low Ch
1.851	90.6	Н	26.6	1.5	4.4	2.3	27.4	38.5	-11.0	Low Ch
1.880	88.4	V	23.8	1.5	4.4	2.2	24.6	38.5	-13.9	Mid Ch
1.880	92.4	Н	28.6	1.5	4.4	2.2	29.4	38.5	-9.1	Mid Ch
1.909	87.2	V	22.9	1.5	4.3	2.2	23.6	38.5	-14.9	High Ch
1.909	90.2	Н	26.6	1.5	4.3	2.2	27.3	38.5	-11.2	High Ch

RBW = VBW = 3MHz

Page 11 of 72

REPORT NO: 04I2820-1DATE: JULY 19, 2004FCC ID: GKRVT-5DEUT: DUAL-BAND TRI-MODE PCS/AMPS/CDMA CELLULAR CAMERA PHONE

Conducted Output Power:

AMPS								
	Ch.#	Freq. (MHz)	Peak Power Meter (dBm)	Avg. Power Meter (dBm)				
Low Ch.	991	824.04	26.3	26.10				
Mid Ch.	383	836.49	26.23	26.05				
High Ch.	799	848.97	26.15	26.06				
RF Cable Loss	0.5 dB							
CDMA								
	Ch.#	Freq. (MHz)	Peak Power Meter (dBm)	Avg. Power Meter (dBm)				
Low Ch.	1015	824.70	28.22	23.5				
Mid Ch.	363	835.89	28.38	23.7				
High Ch.	777	848.31	28.28	23.5				
RF Cable Loss	0.5 dB							
PCS								
	Ch.#	Freq. (MHz)	Peak Power Meter (dBm)	Avg. Power Meter (dBm)				
Low Ch.	25	1851.25	28.10	23.5				
Mid Ch.	600	1880.00	28.73	23.6				
High Ch.	High Ch. 1175 1908.75 28.32 23.7							
RF Cable Loss: <u>Note</u> : Antenna C	RF Cable Loss: 0.9 dB Note: Antenna Gain is dBi							

Page 12 of 72

7.1. SECTION 2.1047: MODULATION CHARACTERISTICS

PROVISIONS APPLICABLE

According to CFR 47 section 2.1047 (a), for Voice Modulated Communication Equipment, the frequency response of the audio modulation circuit over a range of 100 to 5000 Hz shall be measured.

According to CFR 47 section 22.915 (d) _ Audio Filter Characteristics

- (1) For mobile stations, these signals must be attenuated, relative to the level at 1KHz, as follows:
 - (i) In the frequency ranges of 3.0 to 5.9Khz and 6.1 to 15.0KHz, signals must be attenuated by at least 40 log (f/3) dB, where f is the frequency of the signal in KHz.
 - (ii) In the frequency ranges of 5.9 to 6.1KHz, signals must be attenuated at least 35dB.
 - (iii) In the frequency ranges above 15KHz, signals must be attenuated at least 28dB.

MEASUREMENT METHOD

Modulation Limit

1). Configure the EUT as shown below, adjust the audio input for 60% of rated system deviation at 1 KHz using this level as a reference (0 dB) and vary the input level from -20 to +20 dB. Record the frequency deviation obtained as a function of the input level.

2). Repeat step 1 with input frequency changing to 300, 1004, 1500Hz, and 2500 Hz in sequence.

Audio Frequency Response

1). Configure the EUT as shown below.

2). Adjust the audio input for 20% of rated system deviation at 1 KHz using this level as a reference (0 dB).

3). Vary the Audio frequency from 100 Hz to 10 KHz and record the frequency deviation.

4). Audio Frequency Response = $20 \log_{10}$ (Deviation of test frequency / Deviation of 1KHz reference).

Page 13 of 72

TETS SETUP

Modulation characteristic measurement configuration

Page 14 of 72

Audio Low Pass Filter Response

1). Configure the EUT as shown below.

2). Connect the audio frequency generator as close as possible the input of the post limiter low pass filter within the transmitter under test.

3). Connect the audio spectrum analyzer to the output of the post limiter low pass filter within the transmitter under test.

4). Apply 1000 Hz tone from the audio frequency generator and adjust the level per manufacturer's specifications.

5). Record the dB level of the 1000 Hz spectral line on the audio spectrum analyzer as LEV_{REF} .

6). Set the audio frequency generator to the desired test frequency between 3000 Hz and the upper low pass filter limit.

7). Record audio spectrum analyzer levels, at the frequency in step 6).

- 8). Record the dB level on the audio spectrum analyzer as LEV_{FREQ} .
- 9). Calculate the audio frequency response at the test frequency as: low pass filter response = LEV_{FREO} - LEV_{REF}

10). Repeat the 6) through 9) for all the desired test frequencies.

TEST SETUP

Audio low pass filter response measurement configuration

Page 15 of 72

MEASUREMENT INSTRUMENT

TEST EQUIPMENT LIST										
Name of Equipment	Manufacturer	Model No.	Serial No.	Due Date						
Spectrum Analyzer	HP	E4446A	US42510266	7/23/2004						
Function Generator	HP	3325A	2652A24749	5/8/2005						
Modulation Analyzer	HP	8901B	3438A05272	6/23/2005						

Page 16 of 72

REPORT NO: 04I2820-1 DATE: JULY 19, 2004 FCC ID: GKRVT-5D EUT: DUAL-BAND TRI-MODE PCS/AMPS/CDMA CELLULAR CAMERA PHONE

MEASUREMENT RESULT:

a). Modulation Limit:

Page 17 of 72

b). Audio Frequency Response:

Page 18 of 72

c). Audio low pass filter response:

Page 19 of 72

7.2. SECTION 2.1049: OCCUPIED BANDWIDTH

TEST SETUP

TEST PROCEDURE

The EUT's output RF connector (made solely for the purpose of the test) was connected with a short cable to the spectrum analyzer, RES BW was set to about 1% of emission BW, -26 dBc display line was placed on the screen (or 99% bandwidth), the occupied BW is the delta frequency between the two points where the display line intersects the signal trace.

<u>RESULT</u>

No non-compliance noted, reference only.

CDMA:			
Channel	Frequency	99% BW	-26dBc BW
	(MHz)	(MHz)	(MHz)
Low	824.70	1.2608	1.382
Middle	835.89	1.2583	1.405
High	848.31	1.2644	1.385

PCS:

Channel	Frequency (MHz)	99% BW	-26dBc BW
		(MHz)	(MHz)
Low	1851.25	1.2698	1.390
Middle	1880	1.2704	1.402
High	1908.75	1.2719	1.383

Page 20 of 72

OCCUPIED BANDWIDTH FOR CDMA MODULATION:

CDMA, Low Channel:

🔆 Agilent			L	В	W/Avg
Ch Freq 824.7 Occupied Bandwidth	MHz		Trig Free	30.00 Auto	Res BVV 100000 kHz <u>Man</u>
	,			300.0 Auto	Video BW 100000 kHz <u>Man</u>
Ref 30 dBm Atten 4 #Samp Log	0 dB	Marra No			VBW/RBW 10.00000
dB/ Offst 0.5	» / [*]		http://www.	<u>On</u>	Average 10 <u>Off</u>
dB A Center 824.700 MHz		S	ipan 4 MHz	Avg/V Log-P <u>Auto</u>	/BW Type wr (Video) ► <u>Man</u>
#Res BW 30 kHz	#VBW 300 kHz	Sweep 13 ms	(601 pts)		
Occupied Bandwic 1.260	th 8 MHz	Occ BW % Pwr xdB -3	99.00 % 26.00 dB		Snan/RRW
Transmit Freq Error 6 x dB Bandwidth 1	1.625 kHz .382 MHz*			Auto	106 <u>Man</u>
Copyright 2000-2003 Agilent Teo	hnologies				

Page 21 of 72

CDMA, Mid Channel:

Page 22 of 72

CDMA, High Channel:

Page 23 of 72

OCCUPIED BANDWIDTH FOR PCS MODULATION:

PCS, Low Channel:

Ch Freq 1.85125 GHz Trig Free Occupied Bandwidth Image: Constraint of the second	🔆 Agilent			L	S۱	veep
Ref 30 dBm #Atten 40 dB #Samp Auto Sweep Log Auto Sweep 10 Auto Sweep dB/	Ch Freq 1.4 Occupied Bandwidth	85125 GHz		Trig Free	Sw <u>Auto</u>	eep Time 13.00 ms <u>Man</u>
Ref 30 dBm #Atten 40 dB #Samp					<u>Single</u>	Sweep <u>Cont</u>
10 Image: Constraint of the second secon	Ref 30 dBm #Atte #Samp	n 40 dB			Auto	o Sweep Time
Offst Offst <th< td=""><td>10 dB/</td><td></td><td></td><td></td><td><u>Norm</u></td><td><u>Accy</u></td></th<>	10 dB/				<u>Norm</u>	<u>Accy</u>
Center 1.851 250 GHz Span 4 MHz #Res BW 30 kHz #VBW 300 kHz Sweep 13 ms (601 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % 1.2698 MHz x dB -26.00 dB Transmit Freq Error -7.100 kHz -7.100 kHz x dB Bandwidth 1.390 MHz* -7.100 kHz	0.5 dB	4444447 	human	Harring Parman		
Occupied Bandwidth Occ BW % Pwr 99.00 % Points 1.2698 MHz x dB -26.00 dB 601 Transmit Freq Error -7.100 kHz -7.100 kHz -7.100 kHz x dB Bandwidth 1.390 MHz* -7.100 kHz -7.100 kHz	Center 1.851 250 GHz #Res BW 30 kHz	#VBW 300 kHz	Sweep 13 r	Span 4 MHz ns (601 pts)		
Transmit Freq Error -7.100 kHz x dB Bandwidth 1.390 MHz*	Occupied Bandw 1.26	/idth \$98 MHz	Occ BW % Pwr x dB	99.00 % -26.00 dB		Points 601
	Transmit Freq Error x dB Bandwidth	-7.100 kHz 1.390 MHz*				

Page 24 of 72

REPORT NO: 04I2820-1 DATE: JULY 19, 2004 FCC ID: GKRVT-5D EUT: DUAL-BAND TRI-MODE PCS/AMPS/CDMA CELLULAR CAMERA PHONE

PCS, Mid Channel:

Page 25 of 72

REPORT NO: 04I2820-1 DATE: JULY 19, 2004 FCC ID: GKRVT-5D EUT: DUAL-BAND TRI-MODE PCS/AMPS/CDMA CELLULAR CAMERA PHONE

PCS, High Channel:

Page 26 of 72

7.3. OCCUPIED BANDWIDTH FOR AMPS MODULATION:

PROVISIONS APPLICABLE

According to CFR 47 section 22.917, the authorized bandwidth for emission type of F3E unit is 20 KHz.

Page 27 of 72

7.3.1. Un-modulated Signal

INSTRUMENT SETTING: Resolution Bandwidth = 300Hz Video Bandwidth = 300Hz

Limit: N/A

Test Result:

Page 28 of 72

7.3.2. Voice

INSTRUMENT SETTING: Resolution Bandwidth = 300Hz Video Bandwidth = 300Hz Audio Tone = 2.5KHz Audio Level = 16dB greater than level required to produce ±6KHz

Limit (22.917b):

- a. On any frequency removed from the assigned carrier frequency by more than 20KHz, up to and including 45KHz, the sideband is at least 26dB below the carrier.
- b. On any frequency removed from the assigned carrier frequency by more than 45Khz, up to the first multiple of the carrier frequency, the sideband is at least 60dB below the carrier or 43 $+10 \log_{10}$ (mean output power in W) dB, whichever is the smaller attenuation

Test Result:

REPORT NO: 04I2820-1 DATE: JULY 19, 2004 FCC ID: GKRVT-5D EUT: DUAL-BAND TRI-MODE PCS/AMPS/CDMA CELLULAR CAMERA PHONE

Signaling Tone (ST)

Page 30 of 72

Supervisory Audio Tone (SAT)

Page 31 of 72

7.3.3. Signaling Tone (ST) + Supervisory Audio Tone (SAT)

INSTRUMENT SETTING: Resolution Bandwidth = 300Hz Video Bandwidth = 300Hz Signal Tone = 10KHz

Limit (22.917d):

- a. On any frequency removed from the assigned carrier frequency by more than 20KHz, up to and including 45KHz, the sideband is at least 26dB below the carrier.
- b. On any frequency removed from the assigned carrier frequency by more than 45Khz, up to and including 90KHz, the sideband is at least 45dB below the carrier.
- c. On any frequency removed from the assigned carrier frequency by more than 90KHz, up to the first multiple of the carrier frequency, the sideband is at least 60dB below the carrier or 43 +10 log₁₀ (mean output power in W) dB, whichever is the smaller attenuation.

Test Result:

7.3.4. Wide Band Data (WBD)

INSTRUMENT SETTING: Resolution Bandwidth = 300Hz Video Bandwidth = 300Hz

Limit (22.917d):

- a. On any frequency removed from the assigned carrier frequency by more than 20KHz, up to and including 45KHz, the sideband is at least 26dB below the carrier.
- b. On any frequency removed from the assigned carrier frequency by more than 45Khz, up to and including 90KHz, the sideband is at least 45dB below the carrier.
- c. On any frequency removed from the assigned carrier frequency by more than 90KHz, up to the first multiple of the carrier frequency, the sideband is at least 60dB below the carrier or 43 +10 log₁₀ (mean output power in W) dB, whichever is the smaller attenuation.

L Agilent Trace AMPS, Wide Band Data (WBD) Trace Ref 26.99 dBm Atten 30 dB 2 #Peak Log 10 Clear Write dB Offst 10.5dB Max Hold Min Hold LgAv View FC AA £(f): f<50k Blank awS Center 836.496 7 MHz Span 100 kHzí #Res BW 300 Hz VBW 300 Hz Sweep 1.34 s (601 pts) Copyright 2000–2003 Agilent Technologies

Test Result:

7.3.5. Voice + Supervisory Audio Tone (SAT)

INSTRUMENT SETTING: Resolution Bandwidth = 300Hz Video Bandwidth = 300Hz Audio Tone = 2.5KHz Audio Level = 16dB greater than level required to produce ±8KHz (Minimum level from technical specifications)

Limit (22.917b):

- b. On any frequency removed from the assigned carrier frequency by more than 20KHz, up to and including 45KHz, the sideband is at least 26dB below the carrier.
- c. On any frequency removed from the assigned carrier frequency by more than 45Khz, up to the first multiple of the carrier frequency, the sideband is at least 60dB below the carrier or 43 +10 log₁₀ (mean output power in W) dB, whichever is the smaller attenuation

Test Result:

7.3.6. DTMF + Supervisory Audio Tone (SAT)

INSTRUMENT SETTING: Resolution Bandwidth = 300Hz Video Bandwidth = 300Hz

Limit (22.917d):

- a. On any frequency removed from the assigned carrier frequency by more than 20KHz, up to and including 45KHz, the sideband is at least 26dB below the carrier.
- b. On any frequency removed from the assigned carrier frequency by more than 45Khz, up to and including 90KHz, the sideband is at least 45dB below the carrier.
- c. On any frequency removed from the assigned carrier frequency by more than 90KHz, up to the first multiple of the carrier frequency, the sideband is at least 60dB below the carrier or 43 +10 log₁₀ (mean output power in W) dB, whichever is the smaller attenuation.

Test Result:

7.4. SECTION 2.1051: SPURIOUS EMISSION AT ANTENNA TERMINAL

INSTRUMENTS LIST

TEST EQUIPMENT LIST				
Name of Equipment	Manufacturer	Model No.	Serial No.	Due Date
Peak Power Meter	Agilent	E4416A	GB41291160	11/7/2004
Spectrum Analyzer	HP	E4446A	US42510266	7/23/2004
Function Generator	HP	3325A	2652A24749	5/8/2005
Modulation Analyzer	HP	8901B	3438A05272	6/23/2005

TEST SETUP

TEST PROCEDURE

- RF signal or three balanced signals (intermodulation measurement) were applied to the RF input. One set as close as possible to the bottom of the block edge and one set as close as possible to the top of the block edge. Set the RES BW to 1% of the emission bandwidth to show compliance with the -13dBm limit, in the 1 MHz bands immediately outside and adjacent to the top and bottom edges of the frequency block.
- 2) For the Out-of-Band measurements a 1 MHz RES BW was used to scan from 15 MHz to 10xfo of the fundamental carrier for all frequency block. A display line was placed at -13dBm to show compliance for spurious, harmonics, and intermodulation emissions.
- 3) 22.917(f); Mobile emissions in base frequency range. The mean power of any emissions appearing in the base station frequency range from cellular mobile transmitter operated must be attenuated to a level not to exceed -80dBm at the transmit antenna connector.

Page 36 of 72
RESULT:

CDMA Modulation: Low / Mid / High, Band Edge, Out-Of-Band Emissions, Mobile Emissions in Base Frequency Range:

Low Channel Band Edge

Page 37 of 72

High Channel Band Edge

Page 38 of 72

Low Channel, Out-Of-Band Emissions

Page 39 of 72

Page 40 of 72

High Channel, Out-Of-Band Emissions

Page 41 of 72

🔆 Ag	ilent							F	R L	Peak Search
Ref -20 #Peak	dBm	#Atten 1	l0 dB				Mkr	1 892.8 -86.55	3 MHz dBm	Next Peak
Log 10 dB/ Offet										Next Pk Right
0.5 dB DI										Next Pk Left
-80.0 dBm LgAv										Min Search
M1 S2 S3 FC	mhyture	910.1fe 10-491-414-6-1	and the second	har-statestands	vumulyda-	an a	urstulante	mulu		Pk-Pk Search
AA ¤(f): FTun Swp										Mkr © CF
Start 86 #Res B	59.00 MHz W 30 kHz		#V	BW 30 I	(Hz	Swee	Sto 0 33.5 <u>2</u> (p 894.0 ms (601	0 MHz pts)	More 1 of 2
Copyrig	ht 2000-2003 /	Agilent Te	chnologi	es						

CDMA Mobile Emissions in Base Frequency Range:

Page 42 of 72

AMPS Modulation: Low / Mid / High, Out-Of-Band Emissions, Mobile Emissions in Base Frequency Range:

Low Channel Out-Of-Band Emissions

Page 43 of 72

Mid Channel Out-Of-Band Emissions

Page 44 of 72

High Channel Out-Of-Band Emissions

Page 45 of 72

AMPS Mobile Emissions in Base Frequency Range:

🔆 Agilent				L	Peak Search
Ref -20 dBm #Peak	#Atten 10 dB		Mkr1 8	890.83 MHz 87.23 dBm	Next Peak
Log 10 dB/					Next Pk Right
0.5 dB DI					Next Pk Left
-80.0 dBm LgAv					Min Search
M1 S2 S3 FC	sapatanpanan Popularana Jan Maraka	y-storytorest thereaf on the property sector	mmanakananakan	n and the second	Pk-Pk Search
⊭(f): FTun Swp					Mkr © CF
Start 869.00 MH #Res BW 30 kHz	Z	¥VBW 30 kHz	Stop 8 Sween 33,52 ms	894.00 MHz (601 pts)	More 1 of 2
#Res BW 30 kHz Copyright 2000-2	2 003 Agilent Technol	¥VBW 30 kHz ogies	Sweep 33.52 ms	(601 pts)	

Page 46 of 72

PCS Modulation: Low / Mid / High, Band Edge, Out-Of-Band Emissions:

쐈 Agilent L Marker Mkr1 1.850 000 GHz Select Marker Ref 30 dBm #Atten 40 dB -30.522 dBm 1 2 3 4 #Peak Log 10 Normal dB/ Offst 0.5 dB Delta. DI -13.0 Delta Pair dBm (Tracking Ref) LgAv Ref ≙ 100 W1 S2 Span Pair S3 FC Span Center AA ¤(f): f>50k Off. Swp More Center 1.850 000 GHz Span 5 MHz 1 of 2 #Res BW 30 kHz Sweep 6.72 ms (601 pts) #VBW 30 kHz Copyright 2000-2003 Agilent Technologies

Low Channel Band Edge

Page 47 of 72

High Channel Band Edge

Page 48 of 72

Low Channel Out-Of-Band Emissions

Page 49 of 72

Mid Channel Out-Of-Band Emissions

Page 50 of 72

High Channel Out-Of-Band Emissions

Page 51 of 72

Low Channel Band Edge

🔆 Agilent						L	Marker	
Ref 30 dBm	#Atten 40	dB		Mkr1 1	.850 000 -30.522	GHz dBm	Select Marker	4
#Peak Log								
10 dB/							Norm	al
Offst 0.5 dB			{	~~~~	\sim		Delt	a
DI -13.0 dBm							Delta Pai	ir
LgAv 100 W1 S2		:	see.			-	(Tracking Ret) Ref	<u>∆</u>
S3 FC							Span <u>Cente</u>	er
rtin: f>50k Swp							0	ff
Center 1.850 000	l GHz				Span	5 MHz	Mor	e
#Res BW 30 kHz		#VBW 30 I	kHz S	weep 6.72	ms (601	pts)	1 of 2	<u> </u>
Copyright 2000-20	003 Agilent Tech	nologies						

Page 52 of 72

High Channel Band Edge

Page 53 of 72

7.5. SECTION 2.1053: FIELD STRENGTH OF SPURIOUS RADIATION

INSTRUMENTS LIST

TEST EQUIPMENT LIST									
Name of Equipment	Manufacturer	Model No.	Serial No.	Due Date					
Spectrum Analyzer	Agilent	E4446A	MY43360112	1/13/2005					
Amplifier 1-26GHz	MITEQ	NSP2600-SP	924342	4/25/2005					
Antenna, Horn 1 ~ 18 GHz	ЕМСО	3117	29310	12/26/2004					
		1							

Detector Function Setting of Test Receiver

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
Above 1000	⊠ Peak	⊠ 1 MHz	⊠ 1 MHz
	□ Average	□ 1 MHz	□ 10 Hz

Page 54 of 72

TEST SETUP

Fig 1: Radiated Emission Measurement

Fig 2: Radiated Emission - Substitution Method set-up

Page 55 of 72

TEST PROCEDURE

1). On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.

2). The test antenna shall be oriented initially for vertical polarization located 1m from the EUT to correspond to the frequency of the transmitter.

3). The output of the test antenna shall be connected to the measuring receiver and either a peak or average detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.

4). The transmitter shall be switched on, if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.

5). The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.

6). The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.

7). The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.

8). The maximum signal level detected by the measuring receiver shall be noted.

9). The transmitter shall be replaced by a substitution antenna.

10). The substitution antenna shall be oriented for vertical polarization.

11). The substitution antenna shall be connected to a calibrated signal generator.

12). If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.

13). The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.

14). The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.

15). The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.

16). The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.

17). The measure of the effective radiated power is the larger of the two levels recorded, at the input to the substitution antenna, corrected for the gain of the substitution antenna if necessary.

<u>RESULT</u>

No non-compliance noted, as shown below

Page 56 of 72

CDMA: Low, Mid, & High Channels:

C C	D'. (D I DI	DIA	AE	CI		DC	UDE	D I		DI I.	A . T .	DI M	A . M.	NT . A
I	Dist	Read PK	Read Avg.	AF	CL	Amp	D Corr	HPF	Реак	Avg	PK LIM	Avg Lim	PK Mar	Avg Mar	Notes
GHz	feet	dBuV	dBuV	dB/m	dB	dB	dB		dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	
CDMA,	Low Cl	h. 824.70M	Hz, Y positi	on											
1.649	9.8	52.1	41.8	29.8	1.7	-43.3	0.0	1.0	41.3	31.0	74.0	54.0	-32.7	-23.0	V
1.649	9.8	49.8	37.7	29.8	1.7	-43.3	0.0	1.0	38.9	26.8	74.0	54.0	-35.1	-27.2	Н
2.474	9.8	60.8	51.2	32.7	2.2	-43.2	0.0	1.0	53.4	43.8	74.0	54.0	-20.6	-10.2	V
2.474	9.8	56.3	52.7	32.7	2.2	-43.2	0.0	1.0	49.0	45.3	74.0	54.0	-25.0	-8.7	н
3.299	9.8	44.2	32.4	33.5	2.5	-43.4	0.0	1.0	37.7	26.0	74.0	54.0	-36.3	-28.0	V, Noise Floor
3.299	9.8	43.6	31.8	33.5	2.5	-43.4	0.0	1.0	37.2	25.3	74.0	54.0	-36.8	-28.7	H, Noise Floor
CDMA,	Mid Ch	n. 835.89M	Hz, Y positic	on											
1.672	9.8	50.4	39.8	30.0	1.7	-43.3	0.0	1.0	39.7	29.1	74.0	54.0	-34.3	-24.9	V
1.672	9.8	49.1	38.6	30.0	1.7	-43.3	0.0	1.0	38.4	27.9	74.0	54.0	-35.6	-26.1	Н
2.508	9.8	62.4	41.5	32.7	2.2	-43.2	0.0	1.0	55.1	34.2	74.0	54.0	-18.9	-19.8	V
2.508	9.8	56.6	37.4	32.7	2.2	-43.2	0.0	1.0	49.3	30.0	74.0	54.0	-24.7	-24.0	Н
3.344	9.8	45.5	33.3	33.5	2.5	-43.4	0.0	1.0	39.0	26.9	74.0	54.0	-35.0	-27.1	V, Noise Floor
3.344	9.8	45.2	32.9	33.5	2.5	-43.4	0.0	1.0	38.7	26.5	74.0	54.0	-35.3	-27.5	H, Noise Floor
CDMA,	High C	h. 848.31M	Hz, Y positi	ion											
1.697	9.8	50.2	39.0	30.1	1.7	-43.3	0.0	1.0	39.7	28.5	74.0	54.0	-34.3	-25.5	V
1.697	9.8	53.8	43.1	30.1	1.7	-43.3	0.0	1.0	43.3	32.6	74.0	54.0	-30.7	-21.4	Н
2.545	9.8	60.9	52.1	32.8	2.2	-43.2	0.0	1.0	53.7	44.8	74.0	54.0	-20.3	-9.2	V
2.545	9.8	63.1	52.5	32.8	2.2	-43.2	0.0	1.0	55.9	45.3	74.0	54.0	-18.1	-8.7	Н
3.393	9.8	46.3	34.2	33.5	2.5	-43.5	0.0	1.0	39.8	27.8	74.0	54.0	-34.2	-26.2	V, Noise Floor
3.393	9.8	45.0	33.1	33.5	2.5	-43.5	0.0	1.0	38.5	26.7	74.0	54.0	-35.5	-27.3	H, Noise Floor

Page 57 of 72

AMPS: Low, Mid, & High Channels:

f	Dist	Read Pk	Read Avg.	AF	CL	Amp	D Corr	HPF	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz	feet	dBuV	dBuV	dB/m	dB	dB	dB		dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	
AMP, L	ow Ch.	824.04MH	z, Y position												
1.648	9.8	47.4	37.9	29.8	1.7	-43.3	0.0	1.0	36.6	27.1	74.0	54.0	-37.4	-26.9	V
1.648	9.8	49.1	42.6	29.8	1.7	-43.3	0.0	1.0	38.3	31.8	74.0	54.0	-35.7	-22.2	Н
2.472	9.8	58.1	56.8	32.7	2.2	-43.2	0.0	1.0	50.8	49.4	74.0	54.0	-23.2	-4.6	V
2.472	9.8	56.3	54.4	32.7	2.2	-43.2	0.0	1.0	49.0	47.0	74.0	54.0	-25.0	-7.0	н
3.296	9.8	45.4	36.2	33.5	2.5	-43.4	0.0	1.0	38.9	29.7	74.0	54.0	-35.1	-24.3	V, Noise Floor
3.296	9.8	44.2	33.2	33.5	2.5	-43.4	0.0	1.0	37.7	26.7	74.0	54.0	-36.3	-27.3	H, Noise Floor
AMP, M	id Ch.	836.49MHz	z, Y position												
1.673	9.8	50.3	46.4	30.0	1.7	-43.3	0.0	1.0	39.6	35.8	74.0	54.0	-34.4	-18.2	V
1.673	9.8	50.7	46.4	30.0	1.7	-43.3	0.0	1.0	40.0	35.7	74.0	54.0	-34.0	-18.3	н
2.509	9.8	50.2	45.8	32.7	2.2	-43.2	0.0	1.0	42.9	38.5	74.0	54.0	-31.1	-15.5	V
2.509	9.8	48.1	40.7	32.7	2.2	-43.2	0.0	1.0	40.8	33.4	74.0	54.0	-33.2	-20.6	н
3.346	9.8	45.4	33.6	33.5	2.5	-43.4	0.0	1.0	38.9	27.1	74.0	54.0	-35.1	-26.9	V, Noise Floor
3.346	9.8	45.4	32.8	33.5	2.5	-43.4	0.0	1.0	39.0	26.4	74.0	54.0	-35.0	-27.6	H, Noise Floor
AMP, H	igh Ch.	848.97MH	z, Y positior	1											
1.698	9.8	47.9	38.4	30.1	1.7	-43.3	0.0	1.0	37.4	27.9	74.0	54.0	-36.6	-26.1	V
1.698	9.8	47.8	40.4	30.1	1.7	-43.3	0.0	1.0	37.3	29.9	74.0	54.0	-36.7	-24.1	Н
2.547	9.8	62.1	60.9	32.8	2.2	-43.2	0.0	1.0	54.8	53.7	74.0	54.0	-19.2	-0.3	V
2.547	9.8	62.6	61.0	32.8	2.2	-43.2	0.0	1.0	55.3	53.8	74.0	54.0	-18.7	-0.2	н
3.396	9.8	46.0	34.2	33.5	2.5	-43.5	0.0	1.0	39.6	27.8	74.0	54.0	-34.4	-26.2	V, Noise Floor
3.396	9.8	45.5	33.4	33.5	2.5	-43.5	0.0	1.0	39.0	26.9	74.0	54.0	-35.0	-27.1	H, Noise Floor

Page 58 of 72

PCS: Low, Mid, & High Channels:

f	Dist	Dond Plz	Dood Avg	AF	CI	Amn	D Corr	HDE	Pool	Ava	Plz I im	Avg Lim	Pl Mar	Avg Mor	Notos
	frat	JDV	JD-V	JD/m	JD	лпр		111 F	JD-V/	dD-W/-	I K Liin	Avg Lim			rotes
GHZ	Teet	авил	авил	ab/m	aв	aв	ав		abuv/m	abuv/m	abuv/m	abuv/m	aв	ав	
PCS, Lo	w Ch. 1	851.25MH	z, X position	I I											
3.702	9.8	60.7	52.2	33.6	2.6	-43.7	0.0	1.0	54.1	45.6	74.0	54.0	-19.9	-8.4	v
3.702	9.8	62.9	54.5	33.6	2.6	-43.7	0.0	1.0	56.4	48.0	74.0	54.0	-17.6	-6.0	н
5.554	9.8	66.8	57.4	35.4	3.2	-44.8	0.0	1.0	61.6	52.2	74.0	54.0	-12.4	-1.8	v
5.554	9.8	64.5	54.8	35.4	3.2	-44.8	0.0	1.0	59.3	49.6	74.0	54.0	-14.7	-4.4	Н
7.405	9.8	46.8	35.2	36.5	3.9	-44.5	0.0	1.0	43.8	32.1	74.0	54.0	-30.2	-21.9	V, Noise Floor
7.405	9.8	47.1	34.9	36.5	3.9	-44.5	0.0	1.0	44.0	31.9	74.0	54.0	-30.0	-22.1	H, Noise Floor
PCS, Mi	d Ch. 1	880.00MH	z, X position												
3.760	9.8	55.0	46.2	33.6	2.6	-43.8	0.0	1.0	48.5	39.6	74.0	54.0	-25.5	-14.4	V
3.760	9.8	58.8	49.7	33.6	2.6	-43.8	0.0	1.0	52.2	43.2	74.0	54.0	-21.8	-10.8	Н
5.640	9.8	65.2	56.5	35.5	3.3	-44.8	0.0	1.0	60.2	51.4	74.0	54.0	-13.8	-2.6	V
5.640	9.8	69.5	58.8	35.5	3.3	-44.8	0.0	1.0	64.4	53.7	74.0	54.0	-9.6	-0.3	Н
7.520	9.8	47.5	34.2	36.6	4.0	-44.4	0.0	1.0	44.6	31.3	74.0	54.0	-29.4	-22.7	V, Noise Floor
7.520	9.8	46.6	34.4	36.6	4.0	-44.4	0.0	1.0	43.8	31.5	74.0	54.0	-30.2	-22.5	H, Noise Floor
PCS, Hig	gh Ch.	1908.75ME	Iz, X positio	n											
3.818	9.8	70.3	59.3	33.6	2.7	-43.8	0.0	1.0	63.7	52.8	74.0	54.0	-10.3	-1.2	V
3.818	9.8	70.9	60.1	33.6	2.7	-43.8	0.0	1.0	64.3	53.5	74.0	54.0	-9.7	-0.5	Н
5.726	9.8	70.2	58.8	35.6	3.3	-44.8	0.0	1.0	65.3	53.9	74.0	54.0	-8.7	-0.1	V
5.726	9.8	70.9	58.8	35.6	3.3	-44.8	0.0	1.0	66.0	53.9	74.0	54.0	-8.0	-0.1	Н
7.635	9.8	47.0	35.7	36.6	4.0	-44.3	0.0	1.0	44.2	33.0	74.0	54.0	-29.8	-21.0	V, Noise Floor
7.635	9.8	46.6	35.0	36.6	4.0	-44.3	0.0	1.0	43.9	32.3	74.0	54.0	-30.1	-21.7	H, Noise Floor

Page 59 of 72

7.6. SECTION 2.1055: FREQUENCY STABILITY

INSTRUMENTS LIST

TEST EQUIPMENT LIST									
Name of Equipment	Manufacturer	Model No.	Serial No.	Due Date					
Spectrum Analyzer	Agilent	E4446A	MY43360112	1/13/2005					
Spectrum Analyzer, 26.5 GHz	НР	8593EM	3710A00205	10/1/2004					
Temperature / Humidity Chamber	Thermotron	SE 600-10-10	29800	4/26/2004					

Detector Function Setting of Test Receiver

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
800-1000	Peak	300 Hz	300 Hz

TEST SETUP

Page 60 of 72

Test Setup Photos

Page 61 of 72

TEST PROCEDURE

• Frequency stability versus environmental temperature

 Setup the configuration per figure 6 for frequencies measurement inside the environmental chamber. Set the temperature of the chamber to 25°C. Set SA Resolution Bandwidth low enough to obtain the desired frequency resolution and measure the EUT 25°C operating frequency as reference frequency.
Turn EUT off and set Chamber temperature to -30°C.

3). Allow sufficient time (approximately 20 to 30 minus after chamber reach the assigned temperature) for EUT to stabilize. Turn on EUT and measure the EUT operating frequency. Turn off EUT after the measurement.

4). Repeat step 3 with a 10°C increased per stage until the highest temperature of +50°C reached, record all measured frequencies on each temperature step.

• Frequency stability versus AC input voltage

1). Setup the configuration per figure 6 and set chamber temperature to 25°C. Use a variable AC power supply to power the EUT and set AC output voltage to EUT nominal input AC voltage. Set SA Resolution Bandwidth low enough to obtain the desired frequency resolution and measure the EUT 25°C operating frequency as reference frequency.

2). Slowly reduce the EUT input voltage to specified extreme voltage variation ($\pm 15\%$) and record the maximum frequency change.

RESULT

No non-compliance noted, as shown below because the EUT uses the same OSC in both receiver and transmitter LO circuit. As a result, the frequency does not shift in Frequency Stability Test.

Frequency stability versus environmental temperature

Page 62 of 72

Ref	erence Frequency: A	MPS Mid Channel	l 836.490000MHz @ 2	570
	Limit: to	stay ± 2.5 ppm =	2091.244	Hz
Power Supply	Environment	Frequency Dev	viation Measureed wi	ith Time Elapse
(Vdc)	Temperature (2C)	(MHz)	Delta (ppm)	Limit (ppm)
3.70	50	836.49790	-0.194	± 2.5
3.70	40	836.49749	0.299	± 2.5
3.70	30	836.49705	0.822	± 2.5
3.70	25	836.49774	0	± 2.5
3.70	20	836.49763	0.135	± 2.5
3.70	10	836.49743	0.374	± 2.5
3.70	0	836.49714	0.717	± 2.5
3.70	-10	836.49700	0.882	± 2.5
3.70	-20	836.49684	1.076	± 2.5
3.70	-30	836.49659	1.375	± 2.5
3.00 (end point)	25	836.49666	1.292	± 2.5
3.15	25	836.49725	0.580	± 2.5
4.26	25	836.49798	-0.289	± 2.5

Ref	erence Frequency: C	DMA Mid Channe	l 835.89000MHz @ 2	570								
	Limit: to stay ± 2.5 ppm = 2091.449 Hz											
Power Supply	Power Supply Environment Frequency Deviation Measureed with Tim											
(Vdc)	Temperature (2C)	(MHz)	Delta (ppm)	Limit (ppm)								
3.70	50	836.58160	-2.301	± 2.5								
3.70	40	836.57942	0.312	± 2.5								
3.70	30	836.57906	0.742	± 2.5								
3.70	25	836.57968	0.000	± 2.5								
3.70	20	836.57977	-0.110	± 2.5								
3.70	10	836.57977	-0.106	± 2.5								
3.70	0	836.57892	0.910	± 2.5								
3.70	-10	836.57862	1.263	± 2.5								
3.70	-20	836.57838	1.546	± 2.5								
3.70	-30	836.57853	1.375	± 2.5								
3.14 (end point)	25	836.58173	-2.448	± 2.5								
3.15	25	836.58173	-2.448	± 2.5								
4.26	25	836.58000	-0.386	± 2.5								

Page 63 of 72

Reference Frequency: PCS Mid Channel 1880.00000MHz @ 25?C				
Power Supply	Environment	Frequency Deviation Measureed with Time Elapse		
(Vdc)	Temperature (?C)	(MHz)	Delta (ppm)	Limit (ppm)
3.70	50	1880.69281	0.179	± 2.5
3.70	40	1880.68929	2.050	± 2.5
3.70	30	1880.69582	-1.421	± 2.5
3.70	25	1880.69314	0	± 2.5
3.70	20	1880.69060	1.351	± 2.5
3.70	10	1880.68955	1.910	± 2.5
3.70	0	1880.68936	2.010	± 2.5
3.70	-10	1880.68947	1.951	± 2.5
3.70	-20	1880.68896	2.223	± 2.5
3.70	-30	1880.68863	2.399	± 2.5
3.15 (end point)	25	1880.69769	-2.416	± 2.5
3.15	25	1880.69769	-2.416	± 2.5
4.26	25	1880.69276	0.202	± 2.5

Page 64 of 72

8. EXTERNAL & INTERNAL PHOTOS

Page 65 of 72

Page 66 of 72

Page 67 of 72

Page 68 of 72

Page 69 of 72

Page 70 of 72

Page 71 of 72

9. APENDIX

9.1. SCHEMATICS

Please refer to attached sheets.

9.2. BLOCK DIAGRAM

Please refer to attached sheets.

9.3. USER MANUAL

Please refer to attached sheets.

END OF REPORT

Page 72 of 72