

FCC CFR47 CERTIFICATION

PART 24E

TEST REPORT

FOR

SINGLE-BAND PCS PHONE

MODEL NUMBER: VP-5X

BRAND NAME: COMPAL

FCC ID: GKRVP-5X

REPORT NUMBER: 02I1511-1

ISSUE DATE: SEPTEMBER 20, 2002

Prepared for

COMPAL ELECTRONICS INC. 8F, NO. 500, JUI-KUANG RD. NEIHU, TAIPEI 114 TAIWAN

Prepared by

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, ROUTE 2 MORGAN HILL, CA 95037, USA

TEL: (408) 463-0885 FAX: (408) 463-0888

TECT DECLIET CEDTIFICATION

TABLE OF CONTENT

1. 11	EST RESULT CERTIFICATION	
2. EU	UT DESCRIPTION	4
3. FA	ACILITIES, LABORATORY AND ACCREDITATION	4
3.1.	FACILITIES	
3.2.	LABORATORY ACCREDITATION	
3.3.	LIST OF ACCREDITATIONS	5
4. C	ALIBRATION, METHODOLOGY AND UNCERTAINTY	6
4.1.	EQUIPMENT CALIBRATION	6
4.2.	TEST METHODOLOGY	6
4.3.	MEASUREMENT UNCERTAINTY	
4.4.	TEST AND MEASUREMENT EQUIPMENT	7
5. Al	PPLICABLE RULES	8
5.1.	RF POWER OUTPUT §2.1046	8
5.2.	MODULATION CHARACTERISTICS §2.1047	8
5.3.	OCCUPIED BANDWIDTH §2.1049	
5.4.	SPURIOUS EMISSIONS AT ANTENNA TERMINALS §2.1051	
5.5.	FIELD STRENGTH OF SPURIOUS RADIATION §2.1053	
5.6.	FREQUENCY STABILITY §2.1055	
5.7.	FREQUENCY RANGE TO BE INVESTIGATED §2.1057	
6. Tl	EST SETUP, PROCEDURE AND RESULT	11
6.1.	RF POWER OUTPUT	11
6.2.	OCCUPIED BANDWIDTH	
6.3.	SPURIOUS EMISSION AT ANTENNA TERMINAL	
6.4.	FIELD STRENGTH OF SPURIOUS RADIATION	
6.5.	FREQUENCY STABILITY	36
7 FI	UT SETUD PHOTOS	30

1. TEST RESULT CERTIFICATION

COMPANY NAME: COMPAL ELECTRONICS INC.

8F, NO. 500, JUI-KUANG RD.

DATE: SEP 20,2002

NEIHU, TAIPEI 114

TAIWAN

EUT DESCRIPTION: SINGLE-MODE PCS PHONE

MODEL NUMBER: VP-5X

DATE TESTED: SEPTEMBER 16, 2002 - SEPTEMBER 19, 2002

EQUIPMENT TYPE	INTENTIONAL RADIATOR 1850-1910 MHz paired with 1930-1990 MHz (part 24)
MEASUREMENT PROCEDURE	ANSI 63.4 / 1992, TIA/EIA 603
PROCEDURE	CERTIFICATION
FCC RULE	CFR 47 PART 24 Subpart E

Compliance Certification Services, Inc. tested the above equipment for compliance with the requirement set forth in CFR 47, PART 24 Subpart E-Broadband PCS. The equipment in the configuration described in this report, shows the measured emission levels emanating from the equipment do not exceed the specified limit.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Test By: Released For CCS By:

FRANK IBRAHIM

EMC ENGINEER
COMPLIANCE CERTIFICATION SERVICES

MIKE HECKROTTE SENIOR EMC ENGINEER

M. H

COMPLIANCE CERTIFICATION SERVICES

2. EUT DESCRIPTION

This equipment is a single mode portable mobile station of which the frequency range is 1850 – 1990 MHz. It uses 3G CDMA Multi Carrier 1x-RTT solution, the MSM5010 Mobile Chipset and software are designed to the IS-2000 Standard and enables up to a doubling of overall IS-95A/B voice capacity and production of cost-optimized voice only handset.

3. FACILITIES, LABORATORY AND ACCREDITATION

3.1. Facilities

The open area test sites and conducted measurement facilities used to collect the radiated data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 16.

3.2. Laboratory Accreditation

The laboratory and associated test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200065-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. In addition, the test facilities are listed with Federal Communications Commission (reference no: 31040/SIT (1300B3) and 31040/SIT (1300F2)).

No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

3.3. List of Accreditations

Country	Agency	Scope of Accreditation	Logo				
USA	NVLAP*	FCC Part 15, CISPR 22, AS/NZS 3548,IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC 61000-4-11, CNS 13438					
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 1300				
Japan	VCCI	CISPR 22 Two OATS and one conducted Site	VCCI R-1014, R-619, C-640				
Norway	NEMKO	EN50081-1, EN50081-2, EN50082-1, EN50082-2, IEC61000-6-1, IEC61000-6-2, EN50083-2, EN50091-2, EN50130-4, EN55011, EN55013, EN55014-1, EN55104, EN55015, EN61547, EN55022, EN55024, EN61000-3-2, EN61000-3-3, EN60945, EN61326-1	N _{ELA 117}				
Norway	NEMKO	EN60601-1-2 and IEC 60601-1-2, the Collateral Standards for Electro-Medical Products. MDD, 93/42/EEC, AIMD 90/385/EEC	N _{ELA-171}				
Taiwan	BSMI	CNS 13438	為 SL2-IN-E-1012				
Canada	Industry Canada	RSS210 Low Power Transmitter and Receiver	Canada IC2324 A,B,C, and F				

DATE: SEP 20,2002

^{*}No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

4. CALIBRATION, METHODOLOGY AND UNCERTAINTY

4.1. Equipment Calibration

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

4.2. Test Methodology

Conducted and radiated testing were performed according to the procedures documented on chapter 13 of ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057.

Receiving equipment (i.e., receiver, analyzer, quasi-peak adapter, pre-selector) and LISNs conform to CISPR specifications for "Radio Interference Measuring Apparatus and Measurement Methods," Publication 16.

4.3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Radiated Emission						
30MHz – 200 MHz	+/- 3.3dB					
200MHz – 1000MHz	+4.5/-2.9dB					
1000MHz – 2000MHz	+4.6/-2.2dB					
Power Line Conducted Emission						
150kHz – 30MHz	+/-2.9					

Any results falling within the above values are deemed to be marginal.

4.4. Test and Measurement Equipment

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENTS LIST							
Name of Equipment	Manufacturer	Model No.	Serial No.	Due Date			
Spectrum Display	HP	85662A	2152A03066	6/1/03			
Spectrum Analyzer	HP100Hz - 22GHz	8566B	3014A06685	6/1/03			
Quasi-Peak Detector	HP9K - 1GHz	85650A	3145A01654	6/1/03			
Horn Antenna	EMCO	3115	6739	1/31/03			
Horn Antenna(1 - 18GHz)	EMCO	3115	2238	N/A			
Signal Generator	HP	83732B	US34490599	3/9/03			
Pre-amplifier,35.5 dB (1 - 26.5GHz)	HP	8449B	3008A00369	6/30/03			
DC Power Supply	HP	6235	2450A-08312	N/A			
Multimeter	Fluke	26III	74380619	N/A			
Environmental Chamber	Thermotron	SE-600-10-10	29800	4/26/03			

5. APPLICABLE RULES

5.1. RF POWER OUTPUT §2.1046

§ 24.232- POWER LIMIT

§24.232(a) Maximum Peak output power for base station transmitters should not exceed 100 Watts EIRP (equivalent isotropically radiated power).

§24.232(b) Mobile stations are limited to 2 Watts EIRP.

5.2. MODULATION CHARACTERISTICS §2.1047

Not applicable.

5.3. OCCUPIED BANDWIDTH §2.1049

§2.1049(i) Transmitters designed for other types of modulation – when modulated by an appropriate signal of sufficient amplitude to be representative of the type of service in which used. A description of the input signal should be supplied.

5.4. SPURIOUS EMISSIONS AT ANTENNA TERMINALS §2.1051

<u>§ 24.238- EMISSION LIMITS</u>

§24.238(a) The magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under conditions specified in the instruction manual and/or alignment procedure, shall not be less than 43+10 log (mean output power in watts) dBc below the mean power output outside a licensee's frequency block (-13dBm).

5.5. FIELD STRENGTH OF SPURIOUS RADIATION §2.1053

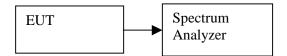
<u>§ 24.238- EMISSION LIMITS</u>

§24.238(a) The magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under conditions specified in the instruction manual and/or alignment procedure, shall not be less than 43+10 log (mean output power in watts) dBc below the mean power output outside a licensee's frequency block (-13dBm).

5.6. FREQUENCY STABILITY §2.1055

§24.235 The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

5.7. FREQUENCY RANGE TO BE INVESTIGATED §2.1057

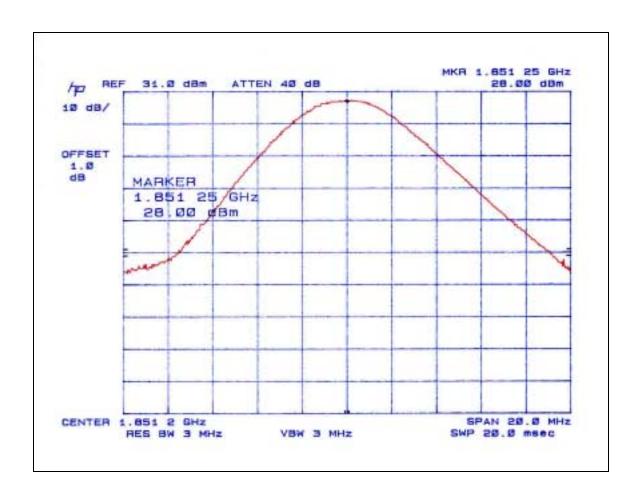

- §2.1057(a) In all of the measurements set forth in §2.1051 and §2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below:
- (1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- (2) If the equipment operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.
- (3) If the equipment operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower.
- §2.1057(b) Particular attention should be paid to harmonics and sub-harmonics of the carrier frequency as well as to those frequencies removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages should also be checked.
- §2.1057(c) The amplitude of spurious emissions, which are attenuated more than 20 dB below the permissible value, need not be reported.
- §2.1057(d) Unless otherwise specified, measurements above 40 GHz shall be performed using a minimum resolution bandwidth of 1 MHz.

Spec limit: Frequency investigation range from 10 MHz to 20 GHz.

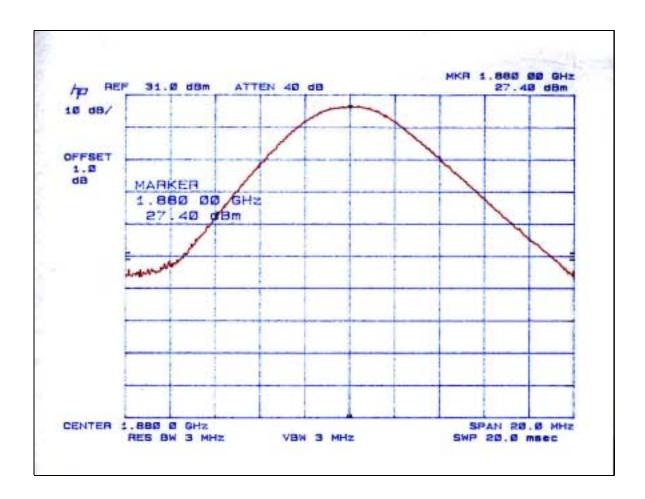
6. TEST SETUP, PROCEDURE AND RESULT

6.1.1 RF CONDUCTED POWER OUTPUT

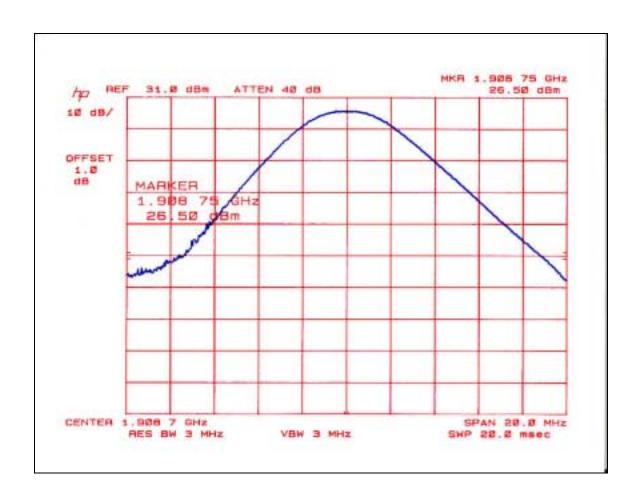
TEST SETUP



TEST PROCEDURE


The EUT was set to a value of output power based on the target average power required by the client. RF output peak power was measured with Spectrum Analyzer, RBW and VBW were set to 3MHz.

RESULT


No non-compliance noted, see plots below.

Conducted Output Power, Low Channel

Conducted Output Power, Middle Channel

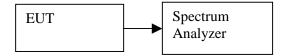
Conducted Output Power, High Channel

6.1.2 RF RADIATED POWER OUTPUT

TEST PROCEDURE:

- 1). On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.
- 2). The test antenna shall be oriented initially for vertical polarization located 1m from the EUT to correspond to the frequency of the transmitter.
- 3). The output of the test antenna shall be connected to the measuring receiver and either a peak or average detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.
- 4). The transmitter shall be switched on, if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.
- 5). The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 6). The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 7). The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 8). The maximum signal level detected by the measuring receiver shall be noted, use 1MHz setting for RBW and VBW.
- 9). The transmitter shall be replaced by a substitution antenna.
- 10). The substitution antenna shall be oriented for vertical polarization.
- 11). The substitution antenna shall be connected to a calibrated signal generator.
- 12). If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 13). The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.
- 14). The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.
- 15). The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- 16). The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.
- 17). The measure of the effective radiated power is the larger of the two levels recorded, at the input to the substitution antenna, corrected for the gain of the substitution antenna if necessary.

REPORT NO: 02I1511-1 DATE: SEP 20,2002 FCC ID: GKRVP-5X EUT: SINGLE-BAND PCS PHONE

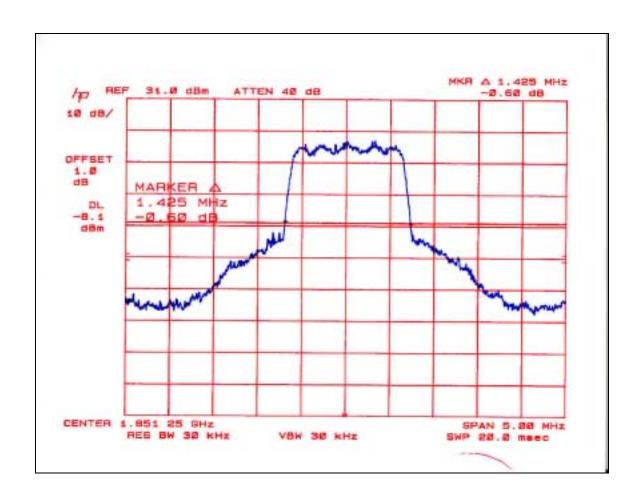

RESULT

No non-compliance noted.

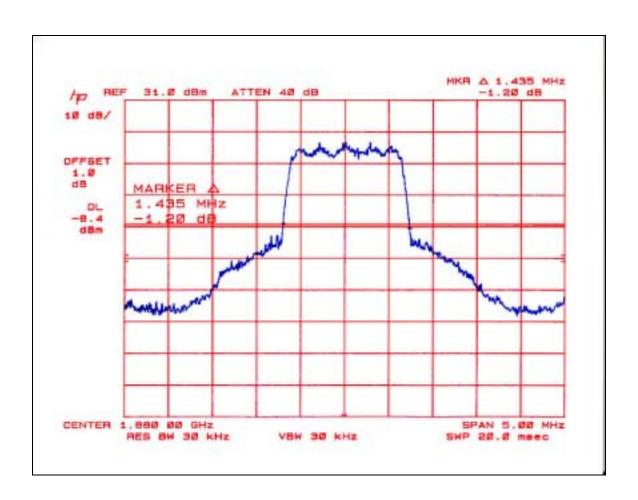
	Fund	Spec Analyzer	SG reading	Cable Loss	Antenna	EIRP (dBm)	Limit (dBm)
	Frequency	Reading	(dBm)	(dB)	Gain (dBi)		
Channel	(MHz)	(dBuV/m)					
Low	1851.25	101.82	22.7	1.2	8.35	29.85	33
Middle	1880.00	99.80	19.7	1.2	8.35	26.85	33
High	1908.75	100.10	20.1	1.2	8.35	27.25	33

6.1. OCCUPIED BANDWIDTH

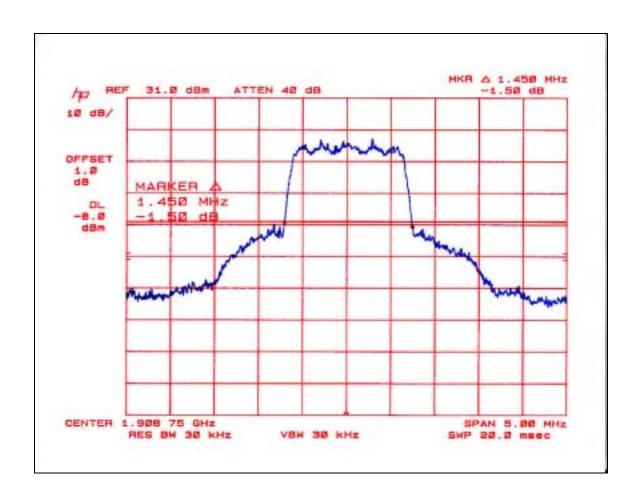
TEST SETUP



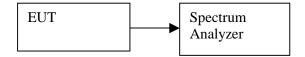
TEST PROCEDURE


The EUT's output RF connector (made solely for the purpose of the test) was connected with a short cable to the spectrum analyzer, RES BW was set to about 1% of emission BW , -26 dBc display line was placed on the screen, the occupied BW is the delta frequency between the two points where the display line intersects the signal trace.

RESULT


Reporting requirement only.

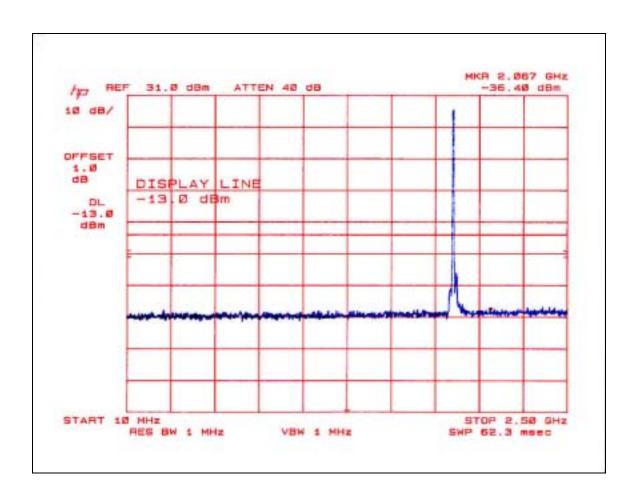
26 dB Bandwidth, Low Channel


26 dB Bandwidth, Middle Channel

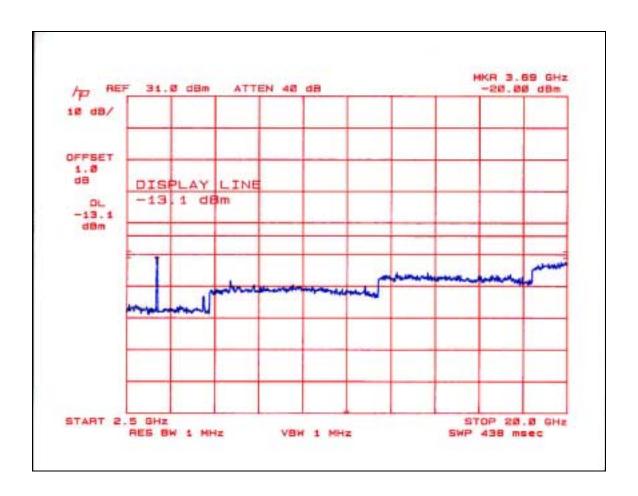
26 dB Bandwidth, High Channel

6.2. SPURIOUS EMISSION AT ANTENNA TERMINAL

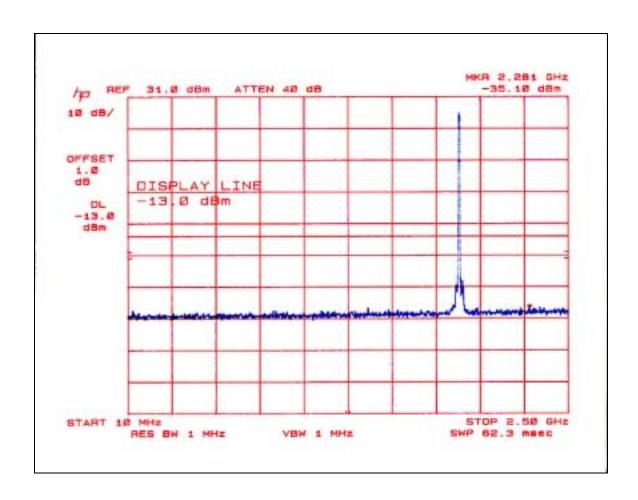
TEST SETUP

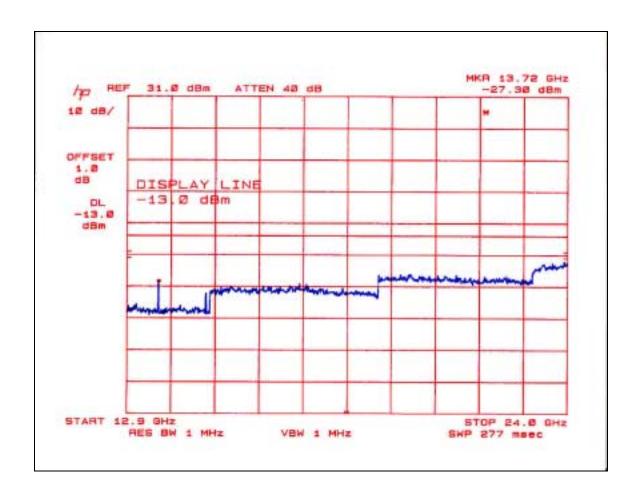


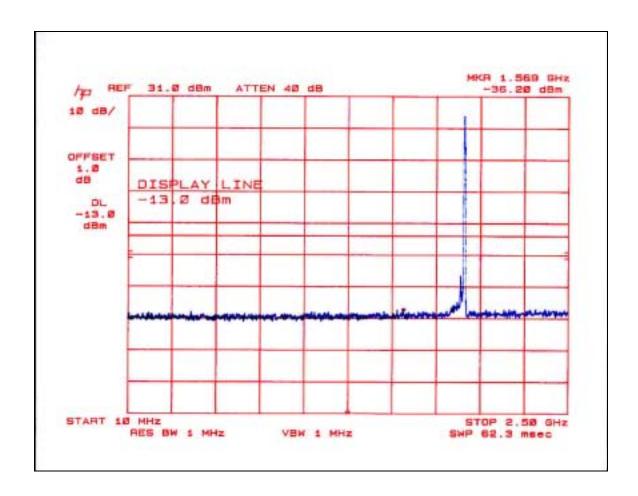
TEST PROCEDURE

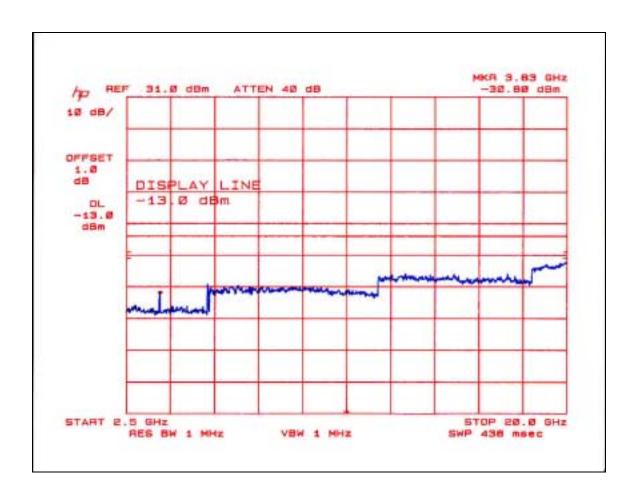

1) EUT's RF output connector (made solely for the purpose of the test) is connected to the spectrum analyzer, RBW was set to 1MHz and VBW to 1MHz, the spectrum of 10MHz to 20GHz was investigated for any spurious emissions, a close up investigation for band edges for the low and high channels was also investigated with RBW and VBW of 30kHz.

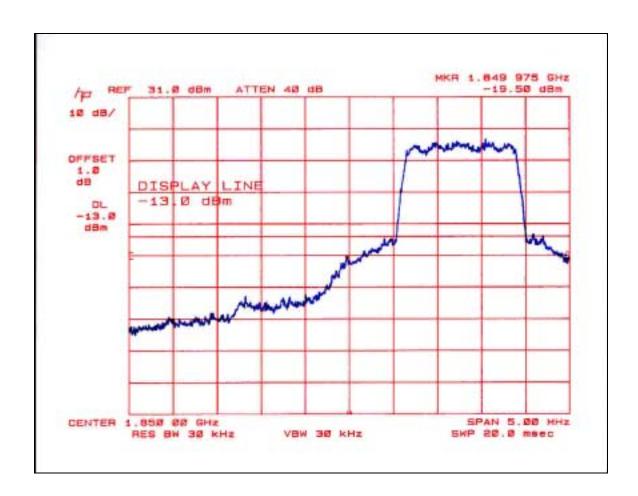
RESULT

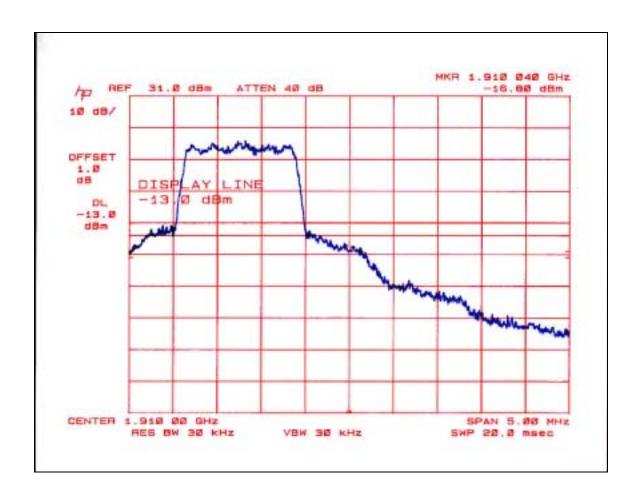

No non-compliance noted.


RF Conducted Spurious (10 MHz- 2.5 GHz), Low Channel


RF Conducted Spurious (2.5 GHz- 20 GHz), Low Channel


RF Conducted Spurious (10 MHz- 2.5 GHz), Middle Channel


RF Conducted Spurious (2.5 GHz- 20 GHz), Middle Channel


RF Conducted Spurious (10 MHz- 2.5 GHz), High Channel

RF Conducted Spurious (2.5 GHz- 20 GHz), High Channel

Bandedge at 1850 MHz, Conducted, Low Channel

Bandedge at 1910 MHz, Conducted, High Channel

6.3. FIELD STRENGTH OF SPURIOUS RADIATION

Detector Function Setting of Test Receiver

Frequency Range (MHz) Detector Function		Resolution Bandwidth	Video Bandwidth
Above 1000	Peak Average	∑ 1 MHz ☐ 1 MHz	∑ 1 MHz □ 10 Hz

TEST SETUP

REPORT NO: 02I1511-1

EUT: SINGLE-BAND PCS PHONE

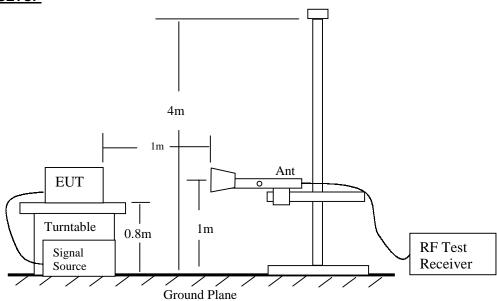


Fig 1: Radiated Emission Measurement

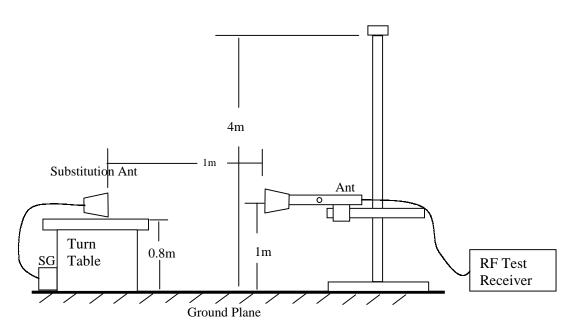


Fig 2: Radiated Emission – Substitution Method set-up

Page 31 of 39

TEST PROCEDURE

- 1). On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.
- 2). The test antenna shall be oriented initially for vertical polarization located 1m from the EUT to correspond to the frequency of the transmitter.
- 3). The output of the test antenna shall be connected to the measuring receiver and either a peak or average detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.
- 4). The transmitter shall be switched on, if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.
- 5). The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 6). The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 7). The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 8). The maximum signal level detected by the measuring receiver shall be noted, set RBW and VBW to 1MHz.
- 9). The transmitter shall be replaced by a substitution antenna.
- 10). The substitution antenna shall be oriented for vertical polarization.
- 11). The substitution antenna shall be connected to a calibrated signal generator.
- 12). If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 13). The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.
- 14). The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.
- 15). The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- 16). The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.
- 17). The measure of the effective radiated power is the larger of the two levels recorded, at the input to the substitution antenna, corrected for the gain of the substitution antenna if necessary.

RESULT

No non-compliance noted:

09/19/02 FCC Measurement

Compliance Certification Services, Morgan Hill Open Field Site

Test Engr: Frank Ibrahim
Project #: 02I1511-1
Company: Vacom Wireless

EUT Descrip.: CDMA 1900MHz Single Band Single Mode PCS Phone w/ Fixed Antenna

EUT M/N: VP-5X
Test Target: FCC PART 24

Equipment for 1-22 GHz: Equipment for 22 - 58 GHz:

HP8566B Analyzer
HP 8449B Preamp
HP 11975A Amplifier (LO)
EMCO 3115 Antenna
Cable:
5.0 feet
HP8566B Analyzer
HP 11975A Amplifier (LO)
HP 11970K External mixer/antenna
Cable: IF Only (321 MHz)

Peak Measurements: Average Measurements:

1 MHz Resolution Bandwidth1MHz Resolution Bandwidth1 MHz Video Bandwidth10Hz Video Bandwidth

Low Channel

f GHz	Dist feet	SA Reading dBuV	SG reading dBm	A-Gain dBi	CL dB	EIRP dBm	Limit dBm	Margin dB	Notes
GHZ	reet	иди у	иын	ubi	uь	ubili	ubili	иь	
3.702	3.3	41.9	-65.0	8.9	1.6	-57.7	-13.0	-44.7	V, Noise Floor
5.555	3.3	60.5	-49.0	9.7	2.1	-41.4	-13.0	-28.4	V
7.405	3.3	44.5	-64.0	10.2	2.4	-56.3	-13.0	-43.3	V, Noise Floor
9.256	3.3	44.1	-63.0	11.3	2.8	-54.5	-13.0	-41.5	V, Noise Floor
11.107	3.3	43.3	-59.0	12.1	3.0	-50.0	-13.0	-37.0	V, Noise Floor
12.959	3.3	46.8	-56.0	12.1	3.3	-47.3	-13.0	-34.3	V, Noise Floor
14.810	3.3	48.7	-53.0	13.5	3.7	-43.3	-13.0	-30.3	V, Noise Floor
16.610	3.3	47.5	-50.0	15.0	4.0	-39.1	-13.0	-26.1	V, Noise Floor
18.512	3.3	49.0	-50.0	8.4	4.4	-46.1	-13.0	-33.1	V, Noise Floor
3.702	3.3	41.9	-65.0	8.9	1.6	-57.7	-13.0	-44.7	H, Noise Floor
5.555	3.3	65.0	-45.0	9.7	2.1	-37.4	-13.0	-24.4	Н
7.405	3.3	46.2	-66.0	10.2	2.4	-58.2	-13.0	-45.2	Н
9.256	3.3	44.1	-63.0	11.3	2.8	-54.5	-13.0	-41.5	H, Noise Floor
11.107	3.3	43.3	-59.0	12.1	3.0	-50.0	-13.0	-37.0	H, Noise Floor
12.959	3.3	46.8	-56.0	12.1	3.3	-47.3	-13.0	-34.3	H, Noise Floor
14.810	3.3	48.7	-53.0	13.5	3.7	-43.3	-13.0	-30.3	H, Noise Floor
16.610	3.3	47.5	-50.0	15.0	4.0	-39.1	-13.0	-26.1	H, Noise Floor
18.512	3.3	49.0	-50.0	8.4	4.4	-46.1	-13.0	-33.1	H, Noise Floor

FCC Measurement 09/19/02

Compliance Certification Services, Morgan Hill Open Field Site

Test Engr: Frank Ibrahim Project #: 02I1511-1 Company: Vacom Wireless

EUT Descrip.: CDMA 1900MHz Single Band Single Mode PCS Phone w/ Fixed Antenna

EUT M/N: VP-5X Test Target: FCC PART 24

Equipment for 1-22 GHz: Equipment for 22 - 58 GHz:

HP8566B Analyzer HP8566B Analyzer HP 8449B Preamp HP 11975A Amplifier (LO) EMCO 3115 Antenna HP 11970K External mixer/antenna Cable: IF Only (321 MHz)

Cable: feet

Peak Measurements: Average Measurements:

> 1 MHz Resolution Bandwidth 1MHz Resolution Bandwidth 1MHz Video Bandwidth 10Hz Video Bandwidth

Middle Channel

f	Dist	SA Reading	SG reading	A-Gain	CL	EIRP	Limit	Margiı	Notes
GHz	feet	dBuV	dBm	dBi	dB	dBm	dBm	dB	
3.760	3.3	41.9	-65.0	8.9	1.6	-57.7	-13.0	-44.7	V, Noise Floor
5.640	3.3	52.4	-58.5	9.7	2.1	-50.9	-13.0	-37.9	V
7.520	3.3	44.5	-64.0	10.2	2.5	-56.3	-13.0	-43.3	V, Noise Floor
9.400	3.3	44.1	-63.0	11.3	2.8	-54.5	-13.0	-41.5	V, Noise Floor
11.280	3.3	43.3	-59.0	12.1	3.1	-50.0	-13.0	-37.0	V, Noise Floor
13.160	3.3	46.8	-56.0	12.1	3.4	-47.3	-13.0	-34.3	V, Noise Floor
15.040	3.3	48.7	-53.0	13.5	3.7	-43.3	-13.0	-30.3	V, Noise Floor
16.920	3.3	47.5	-50.0	15.0	4.1	-39.1	-13.0	-26.1	V, Noise Floor
18.800	3.3	49.0	-50.0	8.4	4.4	-46.1	-13.0	-33.1	V, Noise Floor
3.760	3.3	41.9	-65.0	8.9	1.6	-57.7	-13.0	-44.7	H, Noise Floor
5.640	3.3	56.2	-55.5	9.7	2.1	-47.9	-13.0	-34.9	Н
7.520	3.3	44.5	-64.0	10.2	2.5	-56.3	-13.0	-43.3	V, Noise Floor
9.400	3.3	44.1	-63.0	11.3	2.8	-54.5	-13.0	-41.5	H, Noise Floor
11.280	3.3	43.3	-59.0	12.1	3.1	-50.0	-13.0	-37.0	H, Noise Floor
13.160	3.3	46.8	-56.0	12.1	3.4	-47.3	-13.0	-34.3	H, Noise Floor
15.040	3.3	48.7	-53.0	13.5	3.7	-43.3	-13.0	-30.3	H, Noise Floor
16.920	3.3	47.5	-50.0	15.0	4.1	-39.1	-13.0	-26.1	H, Noise Floor
18.800	3.3	49.0	-50.0	8.4	4.4	-46.1	-13.0	-33.1	H, Noise Floor

FCC Measurement

Compliance Certification Services, Morgan Hill Open Field Site

Test Engr: Frank Ibrahim Project #: 02I1511-1 Company: Vacom Wireless

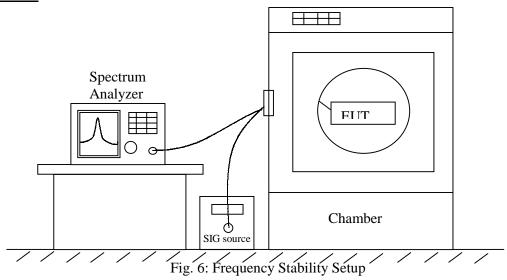
EUT Descrip.: CDMA 1900MHz Single Band Single Mode PCS Phone w/ Fixed Antenna

EUT M/N: VP-5X Test Target: FCC PART 24

Equipment for 1-22 GHz:

Equipment for 22 - 58 GHz: HP8566B Analyzer HP8566B Analyzer HP 8449B Preamp HP 11975A Amplifier (LO) EMCO 3115 Antenna HP 11970K External mixer/antenna Cable: 5.0 feet Cable: IF Only (321 MHz)

Peak Measurements:


Average Measurements: 1 MHz Resolution Bandwidth 1MHz Resolution Bandwidth 1MHz Video Bandwidth 10Hz Video Bandwidth

High Channel

f	Dist	SA Reading	SG reading	A-Gain	CL	EIRP	Limit	Margin	Notes
GHz	feet	dBuV	dBm	dBi	dB	dBm	dBm	dB	
3.818	3.3	41.9	-65.0	8.9	1.6	-57.7	-13.0	-44.7	V, Noise Floor
5.726	3.3	57.2	-52.5	9.7	2.1	-44.9	-13.0	-31.9	V
7.635	3.3	44.5	-64.0	10.2	2.5	-56.3	-13.0	-43.3	V, Noise Floor
9.544	3.3	44.1	-63.0	11.3	2.8	-54.5	-13.0	-41.5	V, Noise Floor
11.453	3.3	43.3	-59.0	12.1	3.1	-50.0	-13.0	-37.0	V, Noise Floor
13.361	3.3	46.8	-56.0	12.1	3.4	-47.3	-13.0	-34.3	V, Noise Floor
15.270	3.3	48.7	-53.0	13.5	3.8	-43.3	-13.0	-30.3	V, Noise Floor
17.178	3.3	47.5	-50.0	15.0	4.1	-39.1	-13.0	-26.1	V, Noise Floor
19.088	3.3	49.0	-50.0	8.4	4.5	-46.1	-13.0	-33.1	V, Noise Floor
3.818	3.3	41.9	-65.0	8.9	1.6	-57.7	-13.0	-44.7	H, Noise Floor
5.726	3.3	53.3	-58.3	9.7	2.1	-50.7	-13.0	-37.7	Н
7.635	3.3	44.5	-64.0	10.2	2.5	-56.3	-13.0	-43.3	V, Noise Floor
9.544	3.3	44.1	-63.0	11.3	2.8	-54.5	-13.0	-41.5	H, Noise Floor
11.453	3.3	43.3	-59.0	12.1	3.1	-50.0	-13.0	-37.0	H, Noise Floor
13.361	3.3	46.8	-56.0	12.1	3.4	-47.3	-13.0	-34.3	H, Noise Floor
15.270	3.3	48.7	-53.0	13.5	3.8	-43.3	-13.0	-30.3	H, Noise Floor
17.178	3.3	47.5	-50.0	15.0	4.1	-39.1	-13.0	-26.1	H, Noise Floor
19.088	3.3	49.0	-50.0	8.4	4.5	-46.1	-13.0	-33.1	H, Noise Floor

6.4. FREQUENCY STABILITY

TEST SETUP

TEST PROCEDURE

• Frequency stability versus environmental temperature

- 1). Setup the configuration per figure 6 for frequencies measurement inside the environmental chamber. Set the temperature of the chamber to 25°C. Set SA Resolution Bandwidth low enough to obtain the desired frequency resolution and measure the EUT 25°C operating frequency as reference frequency.
- 2). Turn EUT off and set Chamber temperature to -30°C.
- 3). Allow sufficient time (approximately 20 to 30 minus after chamber reach the assigned temperature) for EUT to stabilize and measure the EUT operating frequency.
- 4). Repeat step 3 with a 10°C increased per stage until the highest temperature of +50°C reached, record all measured frequencies on each temperature step.

• Frequency stability Ac Voltage

- 1). Setup the configuration per figure 6 and set chamber temperature to 25°C. Use a variable DC power supply to power the EUT and set DC output voltage to EUT nominal input DC voltage. Set SA Resolution Bandwidth low enough to obtain the desired frequency resolution and measure the EUT 25°C operating frequency as reference frequency.
- 2). Slowly change the EUT input voltage to specified extreme voltage variation and record the maximum frequency change.

RESULT

No non-compliance noted.

Refe	Reference Frequency: CDMA Mid Channel 1879.30313MHz @ 257C									
Power Supply	Limit: to Environment	stay ± 2.5 ppm =	4698.258 Hz Deviation							
(Vdc)	Temperature (%)	(MHz)	Delta (ppm)							
4.20	50	1879.30275	0.202							
4.20	40	1879.30238	0.399							
4.20	30	1879.30200	0.601							
4.20	25	1879.30313	0							
4.20	20	1879.30288	0.133							
4.20	10	1879.30130	0.974							
4.20	0	1879.30275	0.202							
4.20	-10	1879.30013	1.596							
4.20	-20	1879.30050	1.399							
4.20	-30	1879.30363	-0.266							
3.57	25	1879.30088	1.197							
4.83	25	1879.30013	1.596							
Batt End Point, 2.868	25	1880075840	43.492							

7. EUT SETUP PHOTOS

CONDUCTED RF MEASUREMENTS

FREQUENCY STABILITY

Page 40 of 39

RADIATED EMISSIONS

END OF REPORT

Page 41 of 39