

SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are:

averaged over 1 cm3 (1 g) of tissue:

42.0 mW/g \pm 16.8 % (k=2)²

averaged over 10 cm³ (10 g) of tissue: 22.0 mW/g \pm 16.2 % (k=2)²

Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 1900 MHz:

 $Re\{Z\} = 46.6 \Omega$

 $Im \{Z\} = 5.1 \Omega$

Return Loss at 1900 MHz

-24.0 dB

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Section 1. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

² validation uncertainty

Page 1 of 1

Date/Time: 02/17/04 14:13:01

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d041

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL 1900 MHz;

Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 38.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 30; Postprocessing SW: SEMCAD, V1.8 Build 98

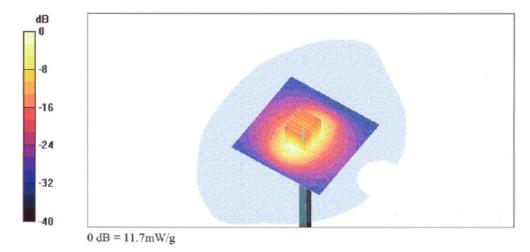
Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm

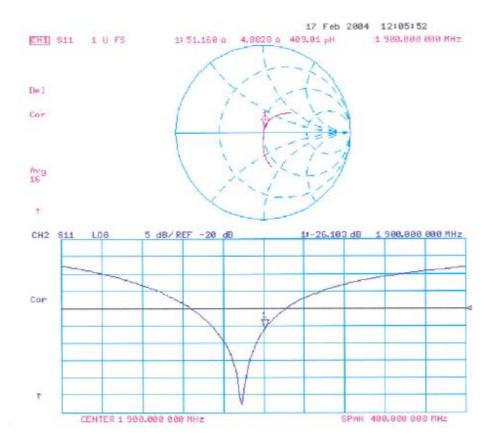
Reference Value = 93.8 V/m

Power Drift = 0.002 dB

Maximum value of SAR = 11.8 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


Peak SAR (extrapolated) = 18.7 W/kg


SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.39 mW/g

Reference Value = 93.8 V/m

Power Drift = 0.002 dB

Maximum value of SAR = 11.7 mW/g

Page 1 of 1

Date/Time: 02/09/04 15:58:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d041

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Muscle 1900 MHz;

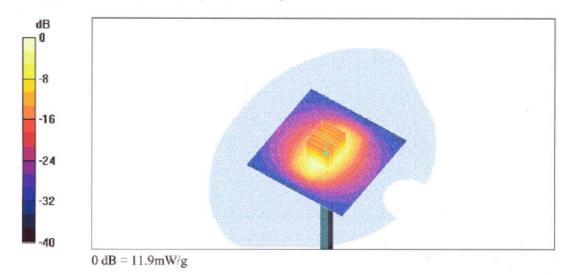
Medium parameters used: f = 1900 MHz; $\sigma = 1.58$ mho/m; $\varepsilon_r = 52.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

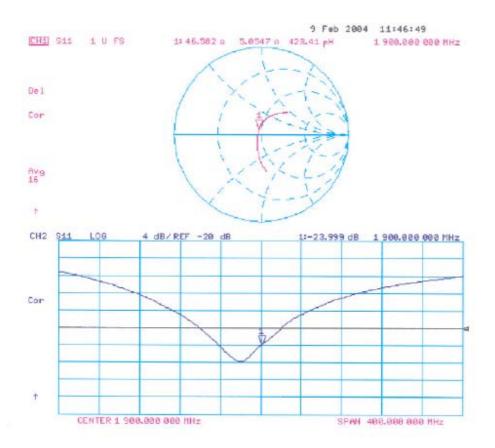
Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.57, 4.57, 4.57); Calibrated: 1/23/2004
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 25; Postprocessing SW: SEMCAD, V1.8 Build 101


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 92.6 V/m; Power Drift = 0.0 dB Maximum value of SAR (interpolated) = 11.8 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 92.6 V/m; Power Drift = 0.0 dB


Maximum value of SAR (measured) = 11.9 mW/g

Peak SAR (extrapolated) = 18.8 W/kg

SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.49 mW/g

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Auden > Sporton Int. Inc.

Object(s)	ET3DV6 - SN:1788					
Calibration procedure(s)	QA CAL-01 v2 Calibration pro	cedure for dosimetric E-field probe	98			
Calibration date:	August 29, 200	03				
Condition of the calibrated item	In Tolerance (a	according to the specific calibration	1 document)			
This celibration statement documen 17025 international standard,	its traceability of M&TE	used in the calibration procedures and conformity of	the procedures with the ISO/IEC			
All calibrations have been conducte	d in the closed laborato	ry facility: environment temperature 22 +/- 2 degrees	Celsius and humidity < 75%.			
Calibration Equipment used (M&TE	critical for calibration)					
	critical for calibration)	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration			
Model Type RF generator HP 8684C	ID# US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05			
Model Type RF generator HP 8684C Power sensor E4412A	ID# US3642U01700 MY41495277	4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250)	In house check: Aug-05 Apr-04			
Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A	ID# US3642U01700 MY41495277 MY41092180	4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918)	In house check: Aug-05 Apr-04 Sep-03			
Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 6481A Power meter EPM E4419B	ID# US3642U01700 MY41495277 MY41092180 GB41293874	4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250)	In house check: Aug-05 Apr-04 Sep-03 Apr-04			
Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E Fluke Process Calibrator Type 702	ID # US3842U01700 MY41495277 MY41092180 GB41293874 US37390585	4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918)	In house check: Aug-05 Apr-04 Sep-03			
Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E	ID # US3842U01700 MY41495277 MY41092180 GB41293874 US37390585	4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101)	In house check: Aug-05 Apr-04 Sep-03 Apr-04 In house check: Oct 03			
Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E Fluke Process Celibrator Type 702	ID # US3642U01700 MY41495277 MY41092180 GB41293874 US37390585 SN: 6295803	4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101) 3-Sep-01 (ELCAL, No.2360)	In house check: Aug-05 Apr-04 Sep-03 Apr-04 In house check: Oct 03 Sep-03			
Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power motor EPM E4419B Network Analyzer HP 8753E	ID # US3642U01700 MY41495277 MY41092180 GB41293874 US37390585 SN: 6295803	4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101) 3-Sep-01 (ELCAL, No.2360)	In house check: Aug-05 Apr-04 Sep-03 Apr-04 In house check: Oct 03 Sep-03			
Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E Fluke Process Celibrator Type 702 Calibrated by:	ID # US3642U01700 MY41495277 MY41092180 GB41293874 US37390585 SN: 6295803 Name Nico Veteri	4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101) 3-Sep-01 (ELCAL, No 2360) Function Technician	In house check: Aug-05 Apr-04 Sep-03 Apr-04 In house check: Oct 03 Sep-03 Signature			
Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E Fluke Process Calibrator Type 702 Calibrated by:	ID # US3642U01700 MY41495277 MY41092180 GB41293874 US37390585 SN: 6295803 Name Nico Veteri	4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101) 3-Sep-01 (ELCAL, No 2360) Function Technician	In house check: Aug-05 Apr-04 Sep-03 Apr-04 In house check: Oct 03 Sep-03 Signature			
Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E Fluke Process Celibrator Type 702 Calibrated by:	ID # US3642U01700 MY41495277 MY41092180 GB41293874 US37390585 SN: 6295803 Name Neo Velferii Kafja Pokovis	4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101) 3-Sep-01 (ELCAL, No 2360) Function Technician	In house check: Aug-05 Apr-04 Sep-03 Apr-04 In house check: Oct 03 Sep-03 Signature Oslobia Date issued: August 28, 2003			

880-KP0301061-A

Page 1 (1)

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ET3DV6

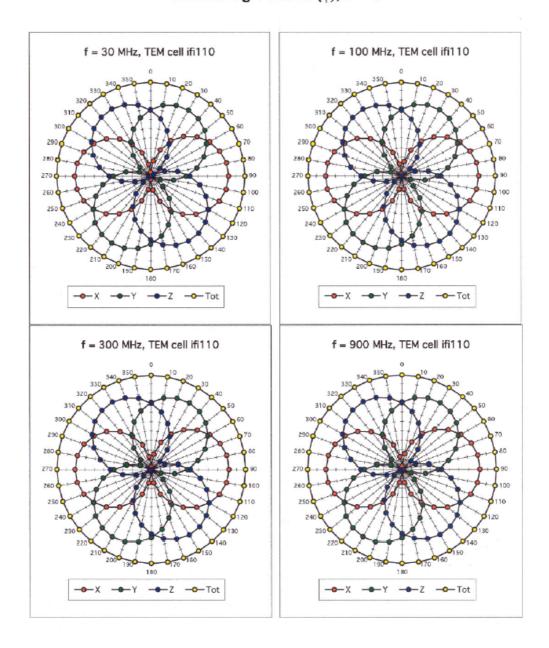
SN:1788

Manufactured: Last calibration: May 28, 2003 August 29, 2003

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

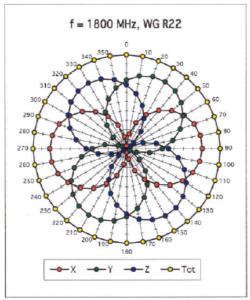
ET3DV6 SN:1788 August 29, 2003

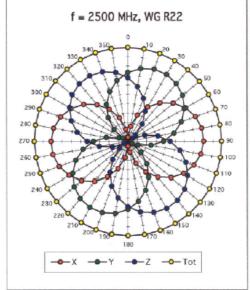

DASY - Parameters of Probe: ET3DV6 SN:1788

Sensitivity in Free	Space	Diode	Compressio	n	
NormX	1.68 µV/(V/m) ²	2	DCP X	95	mV
NormY	1.62 μV/(V/m) ²	2	DCP Y	95	mV
NormZ	1.71 μV/(V/m) ²	2	DCP Z	95	mV
Sensitivity in Tissue	Simulating Liquid				
THE REPORT OF THE PARTY OF THE	P-1-9000 2	41.5 ± 5%	$\sigma = 0.97 \pm 5\%$		
	with Head Tissue Simulating L				
ConvF X	6.6 ± 9.5% (k=		Boundary ef		
ConvF Y	6.6 ± 9.5% (k=		Alpha	0.34	
ConvF Z	6.6 ± 9.5% (k=	2)	Depth	2.48	
Head 180	0 MHz ε _r =	40.0 ± 5%	$\sigma = 1.40 \pm 5\%$	mho/m	
Valid for f=1710-1910 MHz	with Head Tissue Simulating	Liquid according to EN 5	60361, P1528-20	0 X	
ConvF X	5.3 ±9.5% (k=	2)	Boundary ef	fect:	
ConvF Y	5.3 ± 9.5% (k=	2)	Alpha	0.43	
ConvF Z	5.3 ± 9.5% (k=	2)	Depth	2.80	
Boundary Effect					
Head 90	0 MHz Typical SA	R gradient: 5 % per mi	m		
Probe Tip to	Boundary		1 mm	2 mm	
SAR _{be} [%]	Without Correction Algori	thm	8.7	5.0	
SAR _{be} [%]	With Correction Algorithm	1	0.3	0.5	
Head 180	0 MHz Typical SA	R gradient: 10 % per n	nm		
Probe Tip to	Boundary		1 mm	2 mm	
SAR _{be} [%]	Without Correction Algori	thm	12.8	8.9	
SAR _{be} [%]	With Correction Algorithm	1	0.3	0.1	
Sensor Offset					
Probe Tip to	Sensor Center	2.7		mm	
Optical Surfa	ce Detection	1.6 ± 0.	2	mm	

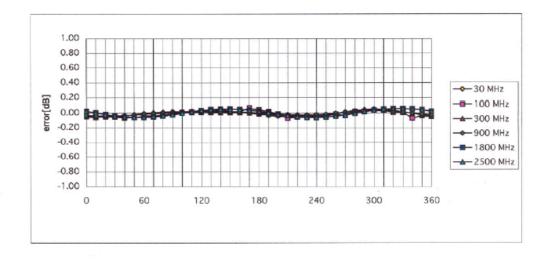
Page 2 of 10

ET3DV6 SN:1788 August 29, 2003


Receiving Pattern (ϕ), θ = 0°



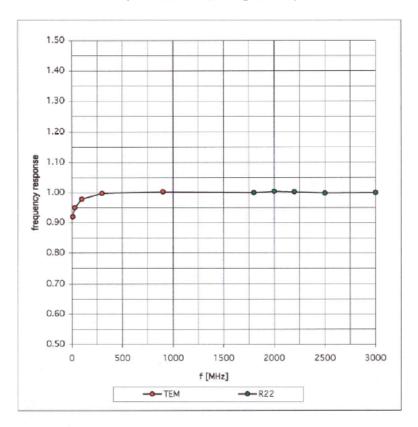
Page 3 of 10


ET3DV6 SN:1788

August 29, 2003

Isotropy Error (ϕ), $\theta = 0^{\circ}$

Page 4 of 10

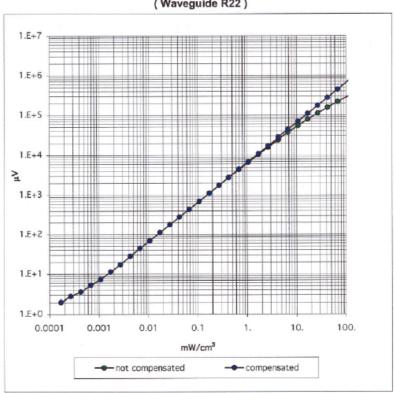


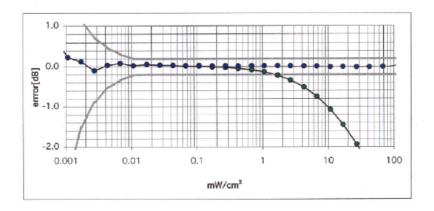
ET3DV6 SN:1788

August 29, 2003

Frequency Response of E-Field

(TEM-Cell:ifi110, Waveguide R22)

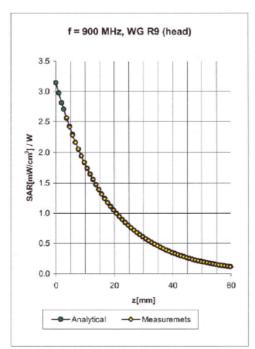

ET3DV6 SN:1788

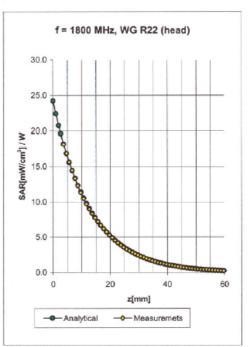

Test Report No : 0480206-1-2-01

August 29, 2003

Dynamic Range f(SAR_{brain})

(Waveguide R22)


Page 6 of 10



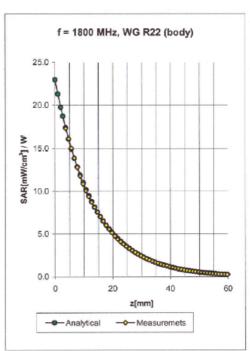
ET3DV6 SN:1788

August 29, 2003

Conversion Factor Assessment

Head	900 MHz		ϵ_r = 41.5 ± 5%	σ=	0.97 ± 5% mho/n	1
Valid for f=80	0-1000 MHz with Head	Tissue	Simulating Liquid according to EN !	5036	1, P1528-200X	
	ConvF X	6.6	$\pm 9.5\% \ (k=2)$		Boundary effect:	
	ConvF Y	6.6	± 9.5% (k=2)		Alpha	0.34
	ConvF Z	6.6	± 9.5% (k=2)		Depth	2.48
Head	1800 MHz		$\varepsilon_r = 40.0 \pm 5\%$	σ=	1.40 ± 5% mho/n	1
Valid for f=17	10-1910 MHz with Head	d Tiss	ue Simulating Liquid according to EN	503	61, P1528-200X	
	ConvF X	5.3	± 9.5% (k=2)		Boundary effect:	
	ConvF Y	5.3	± 9.5% (k=2)		Alpha	0.43
	ConvF Z	5.3	± 9.5% (k=2)		Depth	2.80

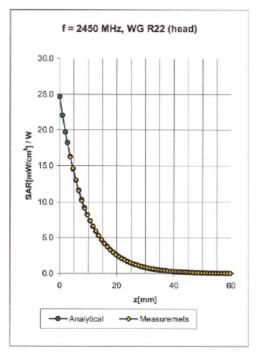

Page 7 of 10

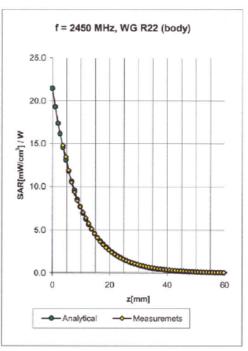


ET3DV6 SN:1788

August 29, 2003

Conversion Factor Assessment


Body	900 MHz			ε _r = 55.0 ± 5%	σ=	1.05 ± 5% mho/m	È
Valid for f=800-100	MHz with Body Ti	issue	Simulat	ing Liquid according to OET	65 5	Suppl. C	
ConvF	x 6	6.5	± 9.5%	(k=2)		Boundary effect:	
ConvF	Υ (6.5	± 9.5%	(k=2)		Alpha	0.31
ConvF	z (6.5	± 9.5%	(k=2)		Depth	2.92
Body	1800 MHz			ϵ_r = 53.3 \pm 5%	σ=	1.52 ± 5% mho/m	i.
Valid for f=1710-19	10 MHz with Body	Tissue	e Simul	ating Liquid according to OE	T 65	Suppl. C	
ConvF	х :	5.0	± 9.5%	(k=2)		Boundary effect:	


5.0 ± 9.5% (k=2) ConvF Y Alpha 0.51 $5.0 \pm 9.5\% (k=2)$ 2.78 ConvF Z Depth

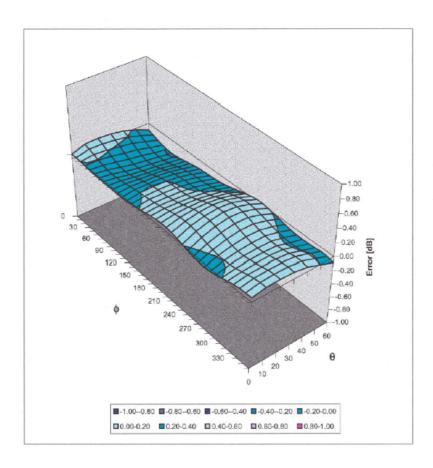
Page 8 of 10

ET3DV6 SN:1788 August 29, 2003

Conversion Factor Assessment

Head	2450 MHz	ϵ_r = 39.2 ± 5%	σ=	1.80 ± 5% mho/m	1	
Valid for f=2400-250	0 MHz with Head Tiss	ue Simulating Liquid according to EN	503	61, P1528-200X		
ConvF	× 4.7	± 8.9% (k=2)		Boundary effect:		
ConvF	Y 4.7	± 8.9% (k=2)		Alpha	0.99	
ConvF	z 4.7	± 8.9% (k=2)		Depth	1.81	
Body	2450 MHz	ε_r = 52.7 ± 5%	σ=	1.95 ± 5% mho/m	1	
Valid for f=2400-250	0 MHz with Body Tiss	ue Simulating Liquid according to OE	T 65	Suppl. C		
ConvF	x 4.5	± 8.9% (k=2)		Boundary effect:		
ConvF	Y 4.5	± 8.9% (k=2)		Alpha	1.01	
ConvF	z 4.5	± 8.9% (k=2)		Depth	1.74	

Page 9 of 10



ET3DV6 SN:1788

August 29, 2003

Deviation from Isotropy in HSL

Error (θ,ϕ) , f = 900 MHz

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client Sporton (Auden)

Object(s)	DAE3 - SD 000 D03	3 AA - SN:577	
Calibration procedure(s)	QA CAL-06.v4 Calibration procedure	re for the data acquisi	ition unit (DAE)
Calibration date:	21.11.2003		
Condition of the calibrated item	In Tolerance (accord	ding to the specific ca	libration document)
		the calibration procedures and	conformity of the procedures with the ISO/IE
his calibration statement docume 7025 international standard.	ents traceability of M&TE used in	the cambration procedures and t	como may of the procedures may the rocket
7025 international standard.			+/- 2 degrees Celsius and humidity < 75%.
	ted in the closed laboratory facili		
7025 international standard.	ted in the closed laboratory facili		
7025 international standard. Il calibrations have been conductable alibration Equipment used (M&T) Ilodel Type	ted in the closed laboratory faciling E critical for calibration)	ly environment temperature 22 Cal Date	+/- 2 degrees Celsius and humidity < 75%. Scheduled Calibration
7025 international standard. Il calibrations have been conductable alibration Equipment used (M&T) lodel Type	ted in the closed laboratory faciling E critical for calibration)	ly environment temperature 22	+/- 2 degrees Celsius and humidity < 75%.
7026 international standard. Il calibrations have been conductable alibration Equipment used (M&T odel Type)	ted in the closed laboratory faciling E critical for calibration)	ly environment temperature 22 Cal Date	+/- 2 degrees Celsius and humidity < 75%. Scheduled Calibration
7025 international standard. Il calibrations have been conductable alibration Equipment used (M&T) Ilodel Type	ted in the closed laboratory faciling E critical for calibration)	ly environment temperature 22 Cal Date	+/- 2 degrees Celsius and humidity < 75%. Scheduled Calibration
7025 international standard. Il calibrations have been conductable alibration Equipment used (M&T) lodel Type	ted in the closed laboratory faciling E critical for calibration)	ly environment temperature 22 Cal Date	+/- 2 degrees Celsius and humidity < 75%. Scheduled Calibration
7025 international standard. Il calibrations have been conduc	ted in the closed laboratory faciling E critical for calibration)	ly environment temperature 22 Cal Date	+/- 2 degrees Celsius and humidity < 75%. Scheduled Calibration
7025 international standard. Il calibrations have been conductable alibration Equipment used (M&T) lodel Type	ted in the closed laboratory facilities critical for calibration) ID # 2 SN: 6295803	Cai Date 8-Sep-03	+/- 2 degrees Celsius and humidity < 75%. Scheduled Calibration
7025 international standard. Il calibrations have been conductable alibration Equipment used (M&T) Ilodel Type	ted in the closed laboratory faciling E critical for calibration)	Cal Date 8-Sep-03	+/- 2 degrees Celsius and humidity < 75%. Scheduled Calibration Sep-05
7026 international standard. Il calibrations have been conductable alibration Equipment used (M&T odel Type uke Process Calibrator Type 703	ted in the closed laboratory facilities critical for calibration) ID # 2 SN: 6295803	Cal Date 8-Sep-03	+/- 2 degrees Celsius and humidity < 75%. Scheduled Calibration Sep-05
7025 international standard. Il calibrations have been conductable alibration Equipment used (M&T) lodel Type	ted in the closed laboratory facilities critical for calibration) ID # 2 SN. 6295803	Cal Date 8-Sep-03	+/- 2 degrees Celsius and humidity < 75%. Scheduled Calibration Sep-05
7025 international standard. I calibrations have been conduct alibration Equipment used (M&T odel Type uke Process Calibrator Type 70.	ted in the closed laboratory facilities critical for calibration) ID # 2 SN. 6295803	Cal Date 8-Sep-03	+/- 2 degrees Celsius and humidity < 75%. Scheduled Calibration Sep-05
I calibrations have been conductable alibration Equipment used (M&T code) Type use Process Calibrator Type 70:	ted in the closed laboratory facilities critical for calibration) ID # 2 SN: 6295803 Name Philipp Storchenegger	Cal Date 8-Sep-03	+/- 2 degrees Celsius and humidity < 75%. Scheduled Calibration Sep-05

DAE3 SN: 577

DATE: 21.11.2003

1. Cal Lab. Incoming Inspection & Pre Test

Modification Status	Note Status here → → → →	BC
Visual Inspection	Note anomalies	None

Pre Test	Indication	Yes/No
Probe Touch	Function	Yes
Probe Collision	Function	Yes
Probe Touch&Collision	Function	Yes

2. DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1\mu V$, full range = 400 mVLow Range: 1LSB = 61nV, full range = 4 mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	Х	Y	Z
High Range	404.434	403.889	404.352
Low Range	3.94303	3.94784	3.9501
Connector Angle to be used	in DASY System	127 °	

High Range	Input	Reading in µV	% Error
Channel X + Input	200mV	200000.6	0.00
	20mV	20000.9	0.00
Channel X - Input	20mV	-19992.7	-0.04
Channel Y + Input	200mV	200000.6	0.00
	20mV	19999.1	0.00
Channel Y - Input	20mV	-19994.7	-0.03
Channel Z + Input	200mV	199999.8	0.00
	20mV	19998.1	-0.01
Channel Z - Input	20mV	-19999.2	0.00

Low Range	Input	Reading in µV	% Error
Channel X + Input	2mV	1999.94	0.00
	0.2mV	199.08	-0.46
Channel X - Input	0.2mV	-200.24	0.12
Channel Y + Input	2mV	1999.98	0.00
	0.2mV	199.50	-0.25
Channel Y - Input	0.2mV	-200.80	0.40
Channel Z + Input	2mV	1999.98	0.00
	0.2mV	199.11	-0.44
Channel Z - Input	0.2mV	-201.12	0.56

Page 2 of 4

DAE3 SN: 577

DATE: 21.11.2003

3. Common mode sensitivity

DASY measurement parameters:

Auto Zero Time: 3 sec,

Measuring time: 3 sec

High/Low Pange

in μV	Common mode Input Voltage	High Range Reading	Low Range Reading
Channel X	200mV	12.00	11.9
	- 200mV	-10.76	-12.44
Channel Y	200mV	-8.55	-8.51
	- 200mV	7.58	6.67
Channel Z	200mV	-0.86	-0.58
	- 200mV	-0.85	-0.77

4. Channel separation

DASY measurement parameters:

Auto Zero Time: 3 sec,

Measuring time:

3 sec

in μV	Input Voltage	Channel X	Channel Y	Channel Z
Channel X	200mV	-	1.96	0.28
Channel Y	200mV	0.66	-	3.59
Channel Z	200mV	-0.89	-0.11	-

5.1 AD-Converter Values with Input Voltage set to 2.0 VDC

in Zero Low	Low Range Max - Min	Max.	Min
Channel X	17	16137	16120
Channel Y	27	16767	16740
Channel Z	8	15103	15077

5.2 AD-Converter Values with inputs shorted

in LSB	Low Range	High Range
Channel X	16134	15955
Channel Y	16740	15960
Channel Z	15093	16252

6. Input Offset Measurement

DAE3 SN: 577

DATE: 21.11.2003

DASY measurement parameters:

Auto Zero Time: 3 sec. Number of measurements: Measuring time: 3 sec

100, Low Range

Input 10MΩ

mpat rowsz					
in μV	Average	min. Offset	max. Offset	Std. Deviation	
Channel X	-0.64	-1.84	0.71	0.49	
Channel Y	-1.77	-3.93	0.94	0.58	
Channel Z	-2.21	-3.14	-0.81	0.34	

Input shorted

in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	0.12	-1.34	1.45	0.69
Channel Y	-0.69	-1.39	0.30	0.26
Channel Z	-0.94	-1.58	-0.30	0.23

7. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

8. Input Resistance

In MOhm	Calibrating	Measuring
Channel X	0.2000	197.1
Channel Y	0.1999	200.3
Channel Z	0.2001	198.3

9. Low Battery Alarm Voltage

in V	Alarm Level
Supply (+ Vcc)	7.58
Supply (- Vcc)	-7.65

10. Power Consumption

in mA	Switched off	Stand by	Transmitting
Supply (+ Vcc)	0.00	5.65	13.7
Supply (- Vcc)	-0.01	-7.69	-8.97