

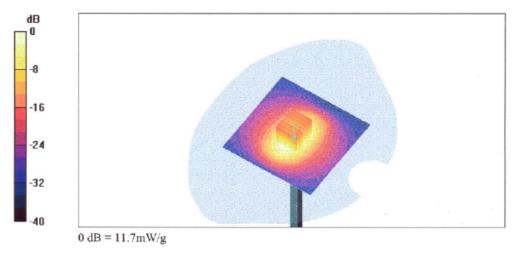
Page 1 of 1 Date/Time: 02/17/04 14:13:01

Test Laboratory: SPEAG, Zurich, Switzerland

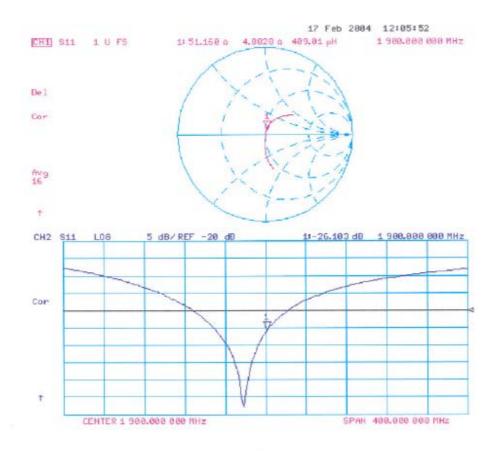
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d041

Communication System: CW-1900; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: HSL 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_r = 38.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 30; Postprocessing SW: SEMCAD, V1.8 Build 98


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 93.8 V/m Power Drift = 0.002 dB Maximum value of SAR = 11.8 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

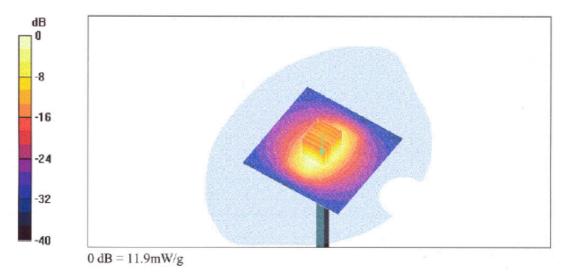
Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.39 mW/g Reference Value = 93.8 V/m Power Drift = 0.002 dB Maximum value of SAR = 11.7 mW/g

Page 1 of 1 Date/Time: 02/09/04 15:58:45

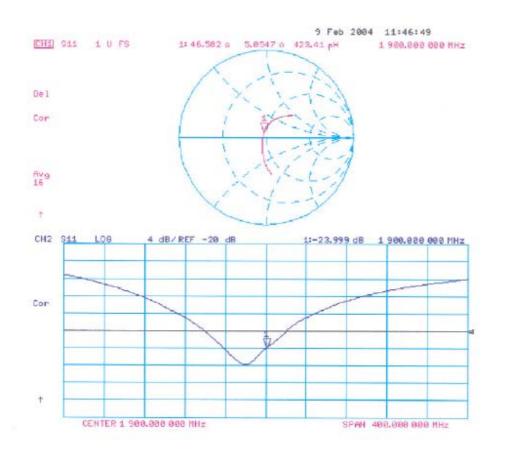
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d041

Communication System: CW-1900; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: Muscle 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.58$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.57, 4.57, 4.57); Calibrated: 1/23/2004
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 25; Postprocessing SW: SEMCAD, V1.8 Build 101


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 92.6 V/m; Power Drift = 0.0 dB Maximum value of SAR (interpolated) = 11.8 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.6 V/m; Power Drift = 0.0 dBMaximum value of SAR (measured) = 11.9 mW/gPeak SAR (extrapolated) = 18.8 W/kgSAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.49 mW/g

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client Auden > Sporton Int. Inc.

Object(s)	ET3DV6 - SN:	1788	
Calibration procedure(s)	QA CAL-01 v2 Calibration pro) ocedure for dosimetric E-field prob	95
Calibration date:	August 29, 200	03	
Condition of the calibrated item	In Tolerance (a	according to the specific calibration	n document)
17025 international standard.	d in the closed laborato	used in the calibration procedures and conformity of ry facility: environment temperature 22 +/- 2 degrees	
Model Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05
Power sensor E4412A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04
Power sensor HP 8481A	MY41092180	18-Sep-02 (Agilent, No. 20020918)	Sep-03
Power meter EPM E4419B	GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-Q4
Network Analyzer HP 8753E	US37390585	18-Oct-01 (Agilent, No. 24BR1033101)	In house check: Clot 03
Fluke Process Calibrator Type 702	SN: 6295803	3-Sep-01 (ELCAL, No.2360)	Sep-03
	Name	Function	Signature
Calibrated by:	Nico Vetlerii	Technician	Diete
	Katja Pokovic	Laboratory Director	Mon that
Approved by:	1.2.046		
Approved by:			Date issued: August 28, 2003

880-KP0301061-A

Page 1 (1)

Schmid & Partner Engineering AG

speag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ET3DV6

SN:1788

Manufactured: Last calibration: May 28, 2003 August 29, 2003

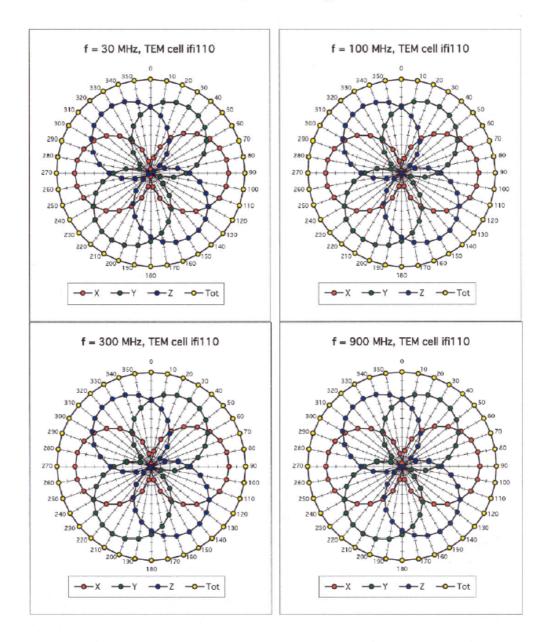
Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Page 1 of 10

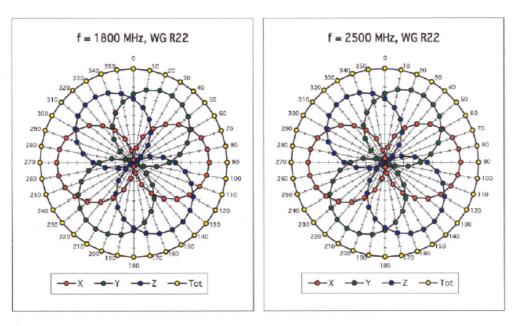
August 29, 2003

DASY - Parameters of Probe: ET3DV6 SN:1788

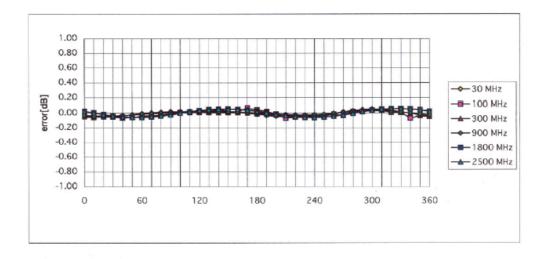

Sensiti	vity in Free	Space		Diode C	ompressi	on	
	NormX	1.	68 μV/(V/m) ²		DCP X	95	mV
	NormY	1.	62 μV/(V/m) ²		DCP Y	95	mV
	NormZ	1.	71 μV/(V/m)²		DCP Z	95	mV
Sensitiv	vity in Tissue						
Head	1.1	0 MHz	ε _r = 41.5 ±		= 0.97 ± 59		
Valid for f			sue Simulating Liquid acc	ording to EN 5030			
	ConvF X		.6 ± 9.5% (k=2)		Boundary e		
	ConvF Y		.6 ± 9.5% (k=2)		Alpha	0.34	
	ConvF Z	6	.6 ± 9.5% (k=2)		Depth	2.48	
Head	180	0 MHz	$\varepsilon_r = 40.0 \pm$	5% σ	= 1.40 ± 59	6 mho/m	
Valid for f	=1710-1910 MHz	with Head Ti	ssue Simulating Liquid ac	cording to EN 503	361, P1 528-20	XOO	
	ConvF X	5	.3 ± 9.5% (k=2)		Boundary e	effect:	
	ConvF Y	5	.3 ± 9.5% (k=2)		Alpha	0.43	
	ConvF Z	5	.3 ± 9.5% (k=2)		Depth	2.80	
Bound	ary Effect						
Head	90	0 MHz	Typical SAR gradie	nt: 5 % per mm			
	Probe Tip to	Boundary			1 mm	2 mm	
	SAR _{be} [%]	S	orrection Algorithm		8.7	5.0	
	SAR _{be} [%]	With Corre	ection Algorithm		0.3	0.5	
Head	180	0 MHz	Typical SAR gradie	nt: 10 % per mm	ı		
	Probe Tip to	Boundary			1 mm	2 mm	
	SAR _{be} [%]		orrection Algorithm		12.8	8.9	
	SAR _{be} [%]	With Corre	ection Algorithm		0.3	0.1	
Sensor	r Offset						
	Probe Tip to	Sensor Cent	er	2.7		mm	
	Optical Surfa	ce Detection		1.6 ± 0.2		mm	
			Page 2 of 10	10.00			

Page 2 of 10

ET3DV6 SN:1788

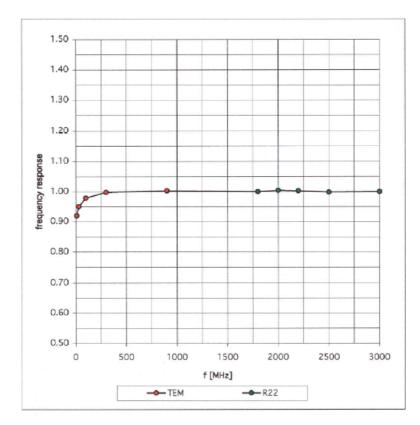

August 29, 2003

Receiving Pattern (ϕ), $\theta = 0^{\circ}$


Page 3 of 10

August 29, 2003

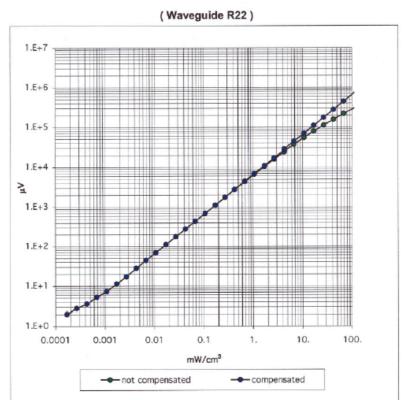
Isotropy Error (ϕ), $\theta = 0^{\circ}$



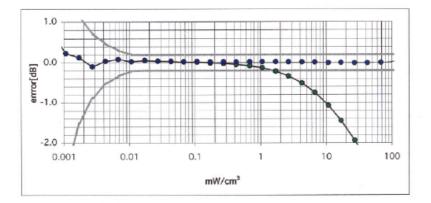
Page 4 of 10

August 29, 2003

Frequency Response of E-Field

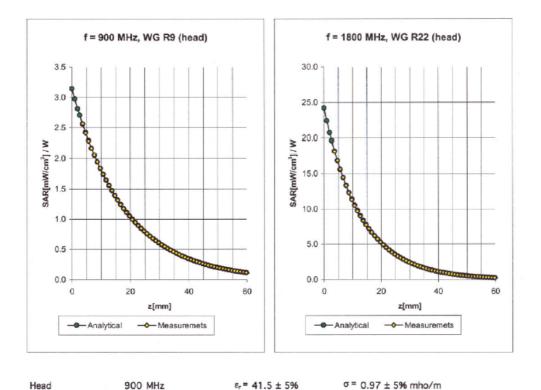

(TEM-Cell:ifi110, Waveguide R22)

Page 5 of 10



ET3DV6 SN:1788

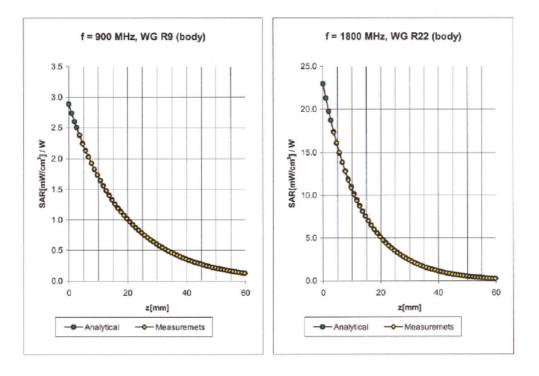
August 29, 2003


Dynamic Range f(SAR_{brain})

Page 6 of 10

August 29, 2003

Conversion Factor Assessment


Valid for f=800-1000 MHz with He	ad Tissue Simulating Liquid according to	EN 50361, P1528-200X
ConvF X	6.6 ± 9.5% (k=2)	Boundary effect:
ConvF Y	6.6 ± 9.5% (k=2)	Alpha 0.34
ConvF Z	6.6 ± 9.5% (k=2)	Depth 2.48
Head 1800 MHz	$\epsilon_r = 40.0 \pm 5\%$	σ = 1.40 ± 5% mho/m
Valid for f=1710-1910 MHz with H	lead Tissue Simulating Liquid according t	to EN 50361, P1528-200X
ConvF X	5.3 ± 9.5% (k=2)	Boundary effect:
ConvF Y	5.3 ± 9.5% (k=2)	Alpha 0.43
ConvF Z	5.3 ± 9.5% (k=2)	Depth 2.80

Page 7 of 10

August 29, 2003

Test Report No : 0480206-01-1-2-01

Conversion Factor Assessment

Valid for f=800-1000 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C ConvF X 6.5 ± 9.5% (k=2) Boundary effect: 6.5 ± 9.5% (k=2) 0.31 ConvF Y Alpha 2.92 ConvF Z 6.5 ± 9.5% (k=2) Depth $\epsilon_r = 53.3 \pm 5\%$ σ = 1.52 ± 5% mho/m Body 1800 MHz Valid for f=1710-1910 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C 5.0 ± 9.5% (k=2) ConvF X Boundary effect: 5.0 ± 9.5% (k=2) ConvF Y Alpha 0.51

5.0 ± 9.5% (k=2)

 $e_r = 55.0 \pm 5\%$

 $\sigma = 1.05 \pm 5\%$ mho/m

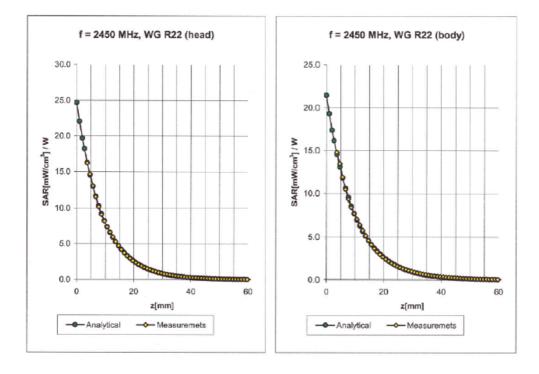
Depth

2.78

Page 8 of 10

©2004 SPORTON International Inc..SAR Testing Lab

ConvF Z


Body

This report shall not be reproduced except in full, without the written approval of Sporton. Rev.01

900 MHz

August 29, 2003

Conversion Factor Assessment

Valid for f=2400-2500 MHz with Head	Tissu	e Simulating Liquid according to EN 50	361, P1528-200X	
ConvF X	4.7	± 8.9% (k=2)	Boundary effect:	
ConvF Y	4.7	± 8.9% (k=2)	Alpha	0.99
ConvF Z	4.7	± 8.9% (k=2)	Depth	1.81
Body 2450 MHz		$\epsilon_r = 52.7 \pm 5\%$ or	= 1.95 ± 5% mho/n	n
Valid for f=2400-2500 MHz with Body	Tissu	e Simulating Liquid according to OET 6	5 Suppl. C	
ConvF X	4.5	± 8.9% (k=2)	Boundary effect:	
ConvF Y	4.5	± 8.9% (k=2)	Alpha	1.01
ConvF Z	4.5	± 8.9% (k=2)	Depth	1.74

 $\epsilon_r = 39.2 \pm 5\%$

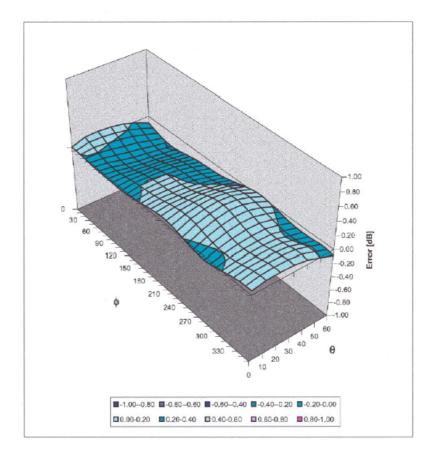
 $\sigma = 1.80 \pm 5\%$ mho/m

Page 9 of 10

Head

©2004 SPORTON International Inc..SAR Testing Lab This report shall not be reproduced except in full, without the written approval of Sporton. **Rev.01**

2450 MHz



ET3DV6 SN:1788

August 29, 2003

Deviation from Isotropy in HSL

Error (θ,φ), f = 900 MHz

Page 10 of 10

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

j	С	li	e	n	t	

Sporton (Auden)

Object(s)	DAE3 - SD 000 D03	3 AA - SN:577	
Calibration procedure(s)	QA CAL-06.v4 Calibration procedur	re for the data acquisi	tion unit (DAE)
Calibration date:	21.11.2003		
Condition of the calibrated item	In Tolerance (accord	ding to the specific cal	libration document)
This calibration statement docume 17025 international standard.	ints traceability of M&TE used in	the calibration procedures and c	conformity of the procedures with the ISO/IEI
All calibrations have been conduct	ed in the closed laboratory facilit	ly: environment temperature 22 +	I- 2 degrees Celsius and humidity ≤ 75%.
Calibration Equipment used (M&T	E critical for calibration)		
lodel Type	ID #	Cai Date	Scheduled Calibration
Model Type Fluke Process Calibrator Type 702		Cai Date 8-Sep-03	Scheduled Calibration Sep-05
		8-Sep-03 Function	Sep-05
	2 SN: 6295803	8-Sep-03 Function	Sep-05
luke Process Calibrator Type 702	2 SN: 6295803 Name	8-Sep-03 Function	Sep-05
luke Process Calibrator Type 702	2 SN: 6295803 Name	8-Sep-03 Function	Sep-05
luke Process Calibrator Type 702	SN: 6295803 Namo Philipp Storchenegger	8-Sep-03 Function	Sep-05
luke Process Calibrator Type 702	SN: 6295803 Namo Philipp Storchenegger	8-Sep-03 Function	Sep-05 Signature P.J. J. T. Baushalf

DAE3 SN: 577 1. Cal Lab. Incoming Inspection & Pre Test

DATE: 21.11.2003

Modification Status	Note Status here $\rightarrow \rightarrow \rightarrow \rightarrow$	BC
Visual Inspection	Note anomalies	None
Pre Test	Indication	Yes/No
Probe Touch	Function	Yes
Probe Collision	Function	Yes
Probe Touch&Collision	Function	Yes

2. DC Voltage Measurement

A/D - Converter Resolution nominal

High Range:	1LSB =	6.1µV,	full range =	400 mV
Low Range:	1LSB =	61nV,	full range =	4 mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.434	403.889	404.352
Low Range	3.94303	3.94784	3.9501
Connector Angle to be used	in DASY System	127 °	

High Range	Input	Reading in µV	% Error
Channel X + Input	200mV	200000.6	0.00
	20mV	20000.9	0.00
Channel X - Input	20mV	-19992.7	-0.04
Channel Y + Input	200mV	200000.6	0.00
	20mV	19999.1	0.00
Channel Y - Input	20mV	-19994.7	-0.03
Channel Z + Input	200mV	199999.8	0.00
	20mV	19998.1	-0.01
Channel Z - Input	20mV	-19999.2	0.00

Low Range	Input	Reading in µV	% Error
Channel X + Input	2mV	1999.94	0.00
	0.2mV	199.08	-0.46
Channel X - Input	0.2mV	-200.24	0.12
Channel Y + Input	2mV	1999.98	0.00
	0.2mV	199.50	-0.25
Channel Y - Input	0.2mV	-200.80	0.40
Channel Z + Input	2mV	1999.98	0.00
	0.2mV	199.11	-0.44
Channel Z - Input	0.2mV	-201.12	0.56

Page 2 of 4

DAE3	SN:	577	
------	-----	-----	--

3. Common mode sensitivity

High/Low Range

DATE: 21.11.2003

DASY measurement parameters: Auto Zero Time: 3 sec,

Measuring time: 3 sec High D.

in μV	Common mode Input Voltage	High Range Reading	Low Range Reading
Channel X	200mV	12.00	11.9
	- 200mV	-10.76	-12.44
Channel Y	200mV	-8.55	-8.51
	- 200mV	7.58	6.67
Channel Z	200mV	-0.86	-0.58
	- 200mV	-0.85	-0.77

4. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec, High Range

Measuring time: 3 sec

in μV	Input Voltage	Channel X	Channel Y	Channel Z
Channel X	200mV	-	1.96	0.28
Channel Y	200mV	0.66	-	3.59
Channel Z	200mV	-0.89	-0.11	-

5.1 AD-Converter Values with Input Voltage set to 2.0 VDC

in Zero Low	Low Range Max - Min	Max.	Min
Channel X	17	16137	16120
Channel Y	27	16767	16740
Channel Z	8	15103	15077

5.2 AD-Converter Values with inputs shorted

in LSB	Low Range	High Range
Channel X	16134	15955
Channel Y	16740	15960
Channel Z	15093	16252

6. Input Offset Measurement

Page 3 of 4

DAE3 SN: 577

DATE: 21.11.2003

DASY measurement parameters: Auto Zero Time: 3 sec, Number of measurements:

Measuring time: 3 sec 100, Low Range

Input 10MΩ

in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	-0.64	-1.84	0.71	0.49
Channel Y	-1.77	-3.93	0.94	0.58
Channel Z	-2.21	-3.14	-0.81	0.34

Input shorted

in µV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	0.12	-1.34	1.45	0.69
Channel Y	-0.69	-1.39	0.30	0.26
Channel Z	-0.94	-1.58	-0.30	0.23

7. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

8. Input Resistance

In MOhm	Calibrating	Measuring
Channel X	0.2000	197.1
Channel Y	0.1999	200.3
Channel Z	0.2001	198.3

9. Low Battery Alarm Voltage

in V	Alarm Level
Supply (+ Vcc)	7.58
Supply (- Vcc)	-7.65

10. Power Consumption

in mA	Switched off	Stand by	Transmitting
Supply (+ Vcc)	0.00	5.65	13.7
Supply (- Vcc)	-0.01	-7.69	-8.97

Page 4 of 4