

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-20BW_7.2Mbps(5G Band)

Chaia B

Channel 49 (5745MHz) 30MHz -40GHz

Channel 157 (5785MHz) 30MHz -40GHz

Channel 165 (5825MHz) 30MHz -40GHz

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-40BW_15Mbps(5G Band)

Chaia B

Channel 151 (5755MHz) 30MHz -40GHz

Channel 159 (5795MHz) 30MHz -40GHz

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11ac-80BW_32.5Mbps(5G Band)

Chaia B

Channel 155	(5775MHz)	30MHz	-40GHz
-------------	-----------	-------	--------

6. Band Edge

_

6.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2014
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2014
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015
	8-WAY Power Divider	JFW	50PD-647 / 526770 0916	Apr., 2015

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
⊠CB # 8	Х	Spectrum Analyzer	R&S	FSP40/ 100339	Oct, 2014
	Х	Horn Antenna	ETS-Lindgren	3117/ 35205	Mar., 2015
	Х	Horn Antenna	Schwarzbeck	BBHA9170/209	Jan, 2015
	Х	Horn Antenna	TRC	AH-0801/95051	Aug, 2014
	Х	Pre-Amplifier	EMCI	EMC012630SE/980210	Jan, 2015
	Х	Pre-Amplifier	MITEQ	JS41-001040000-58-5P/153945	Jul, 2014
	Х	Pre-Amplifier	NARDA	DBL-1840N506/013	Jul, 2014

Note:

1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

6.2. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

The EUT was setup according to ANSI C63.10, 2009 and tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2009 on radiated measurement.

6.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

6.6. Test Result of Band Edge

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11b 1Mbps
Test Site Test Mode	:	No.3 OATS Mode 1 SISO A: Transmit - 802.11b 1Mb

RF Radiated Measurement (Horizontal):

Channel Ma	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	31.509	37.784	69.293	74.00	54.00	Pass
01 (Peak)	2400.000	31.561	47.077	78.638	74.00	54.00	Pass
01 (Peak)	2413.800	31.651	76.969	108.621			Pass
01 (Average)	2387.000	31.497	21.802	53.299	74.00	54.00	Pass
01 (Average)	2390.000	31.509	16.099	47.608	74.00	54.00	Pass
01 (Average)	2400.000	31.561	25.539	57.100	74.00	54.00	Pass
01 (Average)	2412.800	31.645	71.444	103.088			Pass

Figure Channel 01:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11b 1Mbps

RF Radiated Measurement (Vertical):

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2388.200	30.924	36.361	67.285	74.00	54.00	Pass
01 (Peak)	2390.000	30.915	36.100	67.015	74.00	54.00	Pass
01 (Peak)	2400.000	30.912	44.754	75.666	74.00	54.00	Pass
01 (Peak)	2413.800	30.961	74.555	105.516			Pass
01 (Average)	2386.400	30.932	19.379	50.311	74.00	54.00	Pass
01 (Average)	2390.000	30.915	14.257	45.172	74.00	54.00	Pass
01 (Average)	2400.000	30.912	23.353	54.265	74.00	54.00	Pass
01 (Average)	2412.800	30.955	69.029	99.984			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11b 1Mbps

RF Radiated Measurement (Horizontal):

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
02 (Peak)	2390.000	31.509	35.526	67.035	74.00	54.00	Pass
02 (Peak)	2400.000	31.561	42.700	74.261	74.00	54.00	Pass
02 (Peak)	2418.800	31.690	77.681	109.371			Pass
02 (Average)	2390.000	31.509	21.608	53.117	74.00	54.00	Pass
02 (Average)	2400.000	31.561	29.733	61.294	74.00	54.00	Pass
02 (Average)	2416.400	31.672	72.514	104.186			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11b 1Mbps

RF Radiated Measurement (Vertical):

Channal No	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Rebuit
02 (Peak)	2388.200	30.924	33.913	64.837	74.00	54.00	Pass
02 (Peak)	2390.000	30.915	32.817	63.732	74.00	54.00	Pass
02 (Peak)	2400.000	30.912	40.175	71.087	74.00	54.00	Pass
02 (Peak)	2418.800	30.995	74.601	105.596			Pass
02 (Average)	2390.000	30.915	19.001	49.916	74.00	54.00	Pass
02 (Average)	2400.000	30.912	27.333	58.245	74.00	54.00	Pass
02 (Average)	2416.400	30.979	69.440	100.419			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11b 1Mbps

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
03 (Peak)	2390.000	31.509	35.273	66.782	74.00	54.00	Pass
03 (Peak)	2400.000	31.561	40.403	71.964	74.00	54.00	Pass
03 (Peak)	2423.800	31.729	79.647	111.376			Pass
03 (Average)	2385.600	31.492	19.875	51.367	74.00	54.00	Pass
03 (Average)	2390.000	31.509	20.358	51.867	74.00	54.00	Pass
03 (Average)	2422.800	31.721	73.936	105.657			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11b 1Mbps

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
03 (Peak)	2390.000	30.915	33.411	64.326	74.00	54.00	Pass
03 (Peak)	2400.000	30.912	39.183	70.095	74.00	54.00	Pass
03 (Peak)	2423.800	31.029	77.066	108.095			Pass
03 (Average)	2385.400	30.937	20.900	51.837	74.00	54.00	Pass
03 (Average)	2390.000	30.915	20.253	51.168	74.00	54.00	Pass
03 (Average)	2400.000	30.912	18.822	49.734	74.00	54.00	Pass
03 (Average)	2422.800	31.023	71.557	102.580			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11b 1Mbps

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
(\mathbf{Peak})	2453 700	31.957	78 367	110 324			Pass
07(1 cak)	2433.700	51.757	78.307	110.324			1 455
09 (Peak)	2483.500	32.182	35.629	67.811	74.00	54.00	Pass
09 (Average)	2451.100	31.937	73.716	105.653			Pass
09 (Average)	2483.500	32.182	20.489	52.671	74.00	54.00	Pass
09 (Average)	2488.900	32.223	20.797	53.020	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11b 1Mbps

RF Radiated Measurement (Vertical):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
09 (Peak)	2453.700	31.234	78.327	109.560			Pass
09 (Peak)	2483.500	31.435	37.944	69.379	74.00	54.00	Pass
09 (Average)	2451.300	31.217	72.718	103.935			Pass
09 (Average)	2483.500	31.435	20.338	51.773	74.00	54.00	Pass
09 (Average)	2488.900	31.472	20.871	52.343	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11b 1Mbps

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
10 (Peak)	2458.700	31.994	78.434	110.428			Pass
10 (Peak)	2483.500	32.182	39.024	71.206	74.00	54.00	Pass
10 (Average)	2456.300	31.976	72.024	104.000			Pass
10 (Average)	2483.500	32.182	21.476	53.658	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11b 1Mbps

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
10 (Peak)	2458.700	31.268	76.445	107.713			Pass
10 (Peak)	2483.500	31.435	36.433	67.868	74.00	54.00	Pass
10 (Average)	2456.100	31.250	71.130	102.380			Pass
10 (Average)	2483.500	31.435	20.808	52.243	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11b 1Mbps

RF Radiated Measurement (Horizontal):

Channel No	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Chamiler 100.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
11 (Peak)	2463.700	32.032	76.635	108.667			Pass
11 (Peak)	2483.500	32.182	39.366	71.548	74.00	54.00	Pass
11 (Average)	2461.300	32.014	71.997	104.011			Pass
11 (Average)	2483.500	32.182	17.348	49.530	74.00	54.00	Pass
11 (Average)	2488.700	32.222	21.617	53.838	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11b 1Mbps

RF Radiated Measurement (Vertical):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
11 (Peak)	2463.700	31.302	76.857	108.159			Pass
11 (Peak)	2483.500	31.435	39.596	71.031	74.00	54.00	Pass
11 (Average)	2461.300	31.286	71.391	102.677			Pass
11 (Average)	2483.500	31.435	17.338	48.773	74.00	54.00	Pass
11 (Average)	2488.900	31.472	21.539	53.011	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11b 1Mbps

RF Radiated Measurement (Horizontal):

Channal No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
12 (Peak)	2468.700	32.070	74.416	106.486			Pass
12 (Peak)	2483.500	32.182	39.429	71.611	74.00	54.00	Pass
12 (Average)	2466.300	32.052	69.219	101.271			Pass
12 (Average)	2483.500	32.182	20.539	52.721	74.00	54.00	Pass
12 (Average)	2484.500	32.190	21.090	53.280	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11b 1Mbps

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
12 (Peak)	2468.700	31.336	73.489	104.824			Pass
12 (Peak)	2483.500	31.435	39.208	70.643	74.00	54.00	Pass
12 (Average)	2466.300	31.319	68.196	99.515			Pass
12 (Average)	2483.500	31.435	20.135	51.570	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11g 6Mbps

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
01 (Peak)	2389.600	31.508	41.882	73.390	74.00	54.00	Pass
01 (Peak)	2390.000	31.509	41.986	73.495	74.00	54.00	Pass
01 (Peak)	2400.000	31.561	58.172	89.733	74.00	54.00	Pass
01 (Peak)	2416.000	31.670	78.845	110.514			Pass
01 (Average)	2390.000	31.509	22.056	53.565	74.00	54.00	Pass
01 (Average)	2400.000	31.561	39.004	70.565	74.00	54.00	Pass
01 (Average)	2415.200	31.662	67.747	99.410			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11g 6Mbps

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	30.915	40.679	71.594	74.00	54.00	Pass
01 (Peak)	2400.000	30.912	55.268	86.180	74.00	54.00	Pass
01 (Peak)	2414.200	30.964	76.390	107.354			Pass
01 (Average)	2390.000	30.915	21.291	52.206	74.00	54.00	Pass
01 (Average)	2400.000	30.912	37.280	68.192	74.00	54.00	Pass
01 (Average)	2415.200	30.971	65.207	96.178			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11g 6Mbps

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
02 (Peak)	2390.000	31.509	36.563	68.072	74.00	54.00	Pass
02 (Peak)	2400.000	31.561	54.318	85.879	74.00	54.00	Pass
02 (Peak)	2419.200	31.694	79.211	110.904			Pass
02 (Average)	2390.000	31.509	21.753	53.262	74.00	54.00	Pass
02 (Average)	2400.000	31.561	37.392	68.953	74.00	54.00	Pass
02 (Average)	2420.400	31.702	68.608	100.311			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11g 6Mbps

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
02 (Peak)	2390.000	30.915	34.995	65.910	74.00	54.00	Pass
02 (Peak)	2400.000	30.912	53.532	84.444	74.00	54.00	Pass
02 (Peak)	2420.600	31.007	77.599	108.607			Pass
02 (Average)	2390.000	30.915	21.093	52.008	74.00	54.00	Pass
02 (Average)	2400.000	30.912	36.241	67.153	74.00	54.00	Pass
02 (Average)	2420.200	31.005	66.602	97.607			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11g 6Mbps

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
10 (Peak)	2454.300	31.961	79.490	111.451			Pass
10 (Peak)	2483.500	32.182	35.498	67.680	74.00	54.00	Pass
10 (Average)	2458.700	31.994	68.381	100.375			Pass
10 (Average)	2483.500	32.182	20.998	53.180	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11g 6Mbps

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
10 (Peak)	2459.900	31.276	75.389	106.665			Pass
10 (Peak)	2483.500	31.435	31.514	62.949	74.00	54.00	Pass
10 (Peak)	2486.300	31.454	32.115	63.569	74.00	54.00	Pass
10 (Average)	2459.900	31.276	65.007	96.283			Pass
10 (Average)	2483.500	31.435	18.957	50.392	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11g 6Mbps

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
0111111111111111	(MHZ)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
11 (Peak)	2465.500	32.046	77.348	109.394			Pass
11 (Peak)	2483.500	32.182	37.058	69.240	74.00	54.00	Pass
11 (Average)	2458.700	31.994	66.512	98.506			Pass
11 (Average)	2483.500	32.182	21.592	53.774	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11g 6Mbps

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2459.500	31.273	74.436	105.709			Pass
11 (Peak)	2483.500	31.435	33.274	64.709	74.00	54.00	Pass
11 (Average)	2465.500	31.314	63.985	95.299			Pass
11 (Average)	2483.500	31.435	18.946	50.381	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11g 6Mbps

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
12 (Peak)	2470.900	32.087	73.102	105.189			Pass
12 (Peak)	2483.500	32.182	38.855	71.037	74.00	54.00	Pass
12 (Average)	2468.900	32.072	62.171	94.243			Pass
12 (Average)	2483.500	32.182	21.247	53.429	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11g 6Mbps

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
12 (Peak)	2464.700	31.308	69.660	100.969			Pass
12 (Peak)	2483.500	31.435	33.958	65.393	74.00	54.00	Pass
12 (Average)	2465.700	31.315	58.395	89.710			Pass
12 (Average)	2483.500	31.435	17.399	48.834	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
01 (Peak)	2389.000	31.505	42.213	73.718	74.00	54.00	Pass
01 (Peak)	2390.000	31.509	40.942	72.451	74.00	54.00	Pass
01 (Peak)	2400.000	31.561	57.964	89.525	74.00	54.00	Pass
01 (Peak)	2414.200	31.655	78.920	110.575			Pass
01 (Average)	2390.000	31.509	21.828	53.337	74.00	54.00	Pass
01 (Average)	2400.000	31.561	38.378	69.939	74.00	54.00	Pass
01 (Average)	2415.600	31.665	67.960	99.626			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2388.800	30.921	37.979	68.900	74.00	54.00	Pass
01 (Peak)	2390.000	30.915	37.217	68.132	74.00	54.00	Pass
01 (Peak)	2400.000	30.912	53.225	84.137	74.00	54.00	Pass
01 (Peak)	2415.600	30.973	75.085	106.059			Pass
01 (Average)	2390.000	30.915	19.088	50.003	74.00	54.00	Pass
01 (Average)	2400.000	30.912	35.091	66.003	74.00	54.00	Pass
01 (Average)	2414.800	30.968	64.665	95.633			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
02 (Peak)	2390.000	31.509	35.204	66.713	74.00	54.00	Pass
02 (Peak)	2400.000	31.561	51.235	82.796	74.00	54.00	Pass
02 (Peak)	2414.200	31.655	79.952	111.607			Pass
02 (Average)	2390.000	31.509	20.883	52.392	74.00	54.00	Pass
02 (Average)	2400.000	31.561	34.898	66.459	74.00	54.00	Pass
02 (Average)	2420.400	31.702	68.997	100.700			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
02 (Peak)	2390.000	30.915	34.906	65.821	74.00	54.00	Pass
02 (Peak)	2400.000	30.912	49.743	80.655	74.00	54.00	Pass
02 (Peak)	2413.200	30.957	76.415	107.372			Pass
02 (Average)	2390.000	30.915	19.472	50.387	74.00	54.00	Pass
02 (Average)	2400.000	30.912	32.949	63.861	74.00	54.00	Pass
02 (Average)	2414.800	30.968	65.877	96.845			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
10 (Peak)	2454.100	31.959	78.954	110.914			Pass
10 (Peak)	2483.500	32.182	36.611	68.793	74.00	54.00	Pass
10 (Average)	2454.500	31.962	67.776	99.739			Pass
10 (Average)	2483.500	32.182	21.495	53.677	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
10 (Peak)	2455.100	31.243	75.484	106.727			Pass
10 (Peak)	2483.500	31.435	32.970	64.405	74.00	54.00	Pass
10 (Average)	2453.900	31.235	64.810	96.045			Pass
10 (Average)	2483.500	31.435	19.016	50.451	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2464.100	32.036	76.716	108.751			Pass
11 (Peak)	2483.500	32.182	38.455	70.637	74.00	54.00	Pass
11 (Peak)	2483.900	32.185	39.958	72.143	74.00	54.00	Pass
11 (Average)	2459.100	31.998	65.431	97.428			Pass
11 (Average)	2483.500	32.182	21.484	53.666	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2459.100	31.271	73.055	104.326			Pass
11 (Peak)	2483.500	31.435	34.168	65.603	74.00	54.00	Pass
11 (Average)	2458.900	31.270	62.587	93.856			Pass
11 (Average)	2483.500	31.435	18.435	49.870	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
12 (Peak)	2462.700	32.025	72.974	104.999			Pass
12 (Peak)	2483.500	32.182	39.055	71.237	74.00	54.00	Pass
12 (Average)	2463.900	32.033	62.242	94.276			Pass
12 (Average)	2483.500	32.182	21.734	53.916	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
12 (Peak)	2463.900	31.303	70.301	101.604			Pass
12 (Peak)	2483.500	31.435	35.390	66.825	74.00	54.00	Pass
12 (Average)	2464.700	31.308	58.959	90.268			Pass
12 (Average)	2483.500	31.435	18.976	50.411	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
03 (Peak)	2388.200	31.502	36.588	68.090	74.00	54.00	Pass
03 (Peak)	2390.000	31.509	34.939	66.448	74.00	54.00	Pass
03 (Peak)	2400.000	31.561	49.286	80.847	74.00	54.00	Pass
03 (Peak)	2432.200	31.792	72.955	104.748			Pass
03 (Average)	2390.000	31.509	22.100	53.609	74.00	54.00	Pass
03 (Average)	2400.000	31.561	35.565	67.126	74.00	54.00	Pass
03 (Average)	2433.200	31.801	61.324	93.124			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
03 (Peak)	2381.400	30.955	31.273	62.228	74.00	54.00	Pass
03 (Peak)	2390.000	30.915	29.592	60.507	74.00	54.00	Pass
03 (Peak)	2400.000	30.912	44.126	75.038	74.00	54.00	Pass
03 (Peak)	2432.200	31.086	69.071	100.157			Pass
03 (Average)	2390.000	30.915	16.976	47.891	74.00	54.00	Pass
03 (Average)	2400.000	30.912	30.155	61.067	74.00	54.00	Pass
03 (Average)	2433.400	31.094	57.491	88.586			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

Channel No	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Chamber 100.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
04 (Peak)	2386.800	31.497	36.401	67.898	74.00	54.00	Pass
04 (Peak)	2390.000	31.509	35.077	66.586	74.00	54.00	Pass
04 (Peak)	2400.000	31.561	38.139	69.700	74.00	54.00	Pass
04 (Peak)	2435.600	31.819	74.457	106.276			Pass
04 (Average)	2390.000	31.509	21.621	53.130	74.00	54.00	Pass
04 (Average)	2400.000	31.561	25.817	57.378	74.00	54.00	Pass
04 (Average)	2438.600	31.842	62.651	94.493			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
04 (Peak)	2389.600	30.917	33.475	64.392	74.00	54.00	Pass
04 (Peak)	2390.000	30.915	31.940	62.855	74.00	54.00	Pass
04 (Peak)	2400.000	30.912	35.163	66.075	74.00	54.00	Pass
04 (Peak)	2432.600	31.089	70.753	101.842			Pass
04 (Average)	2390.000	30.915	17.935	48.850	74.00	54.00	Pass
04 (Average)	2400.000	30.912	22.129	53.041	74.00	54.00	Pass
04 (Average)	2438.400	31.129	59.348	90.476			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
07 (Peak)	2450.300	31.931	72.899	104.830			Pass
07 (Peak)	2483.500	32.182	35.438	67.620	74.00	54.00	Pass
07 (Peak)	2484.900	32.193	37.057	69.250	74.00	54.00	Pass
07 (Average)	2453.300	31.953	61.095	93.048			Pass
07 (Average)	2483.500	32.182	21.402	53.584	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
07 (Peak)	2451.100	31.216	69.412	100.627			Pass
07 (Peak)	2483.500	31.435	31.493	62.928	74.00	54.00	Pass
07 (Average)	2453.100	31.229	57.888	89.117			Pass
07 (Average)	2483.500	31.435	17.050	48.485	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
08 (Peak)	2451.500	31.939	72.061	104.001			Pass
08 (Peak)	2483.500	32.182	34.503	66.685	74.00	54.00	Pass
08 (Peak)	2486.500	32.206	34.850	67.055	74.00	54.00	Pass
08 (Average)	2455.500	31.971	60.344	92.314			Pass
08 (Average)	2483.500	32.182	21.337	53.519	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
08 (Peak)	2451.300	31.217	68.672	99.889			Pass
08 (Peak)	2483.500	31.435	32.253	63.688	74.00	54.00	Pass
08 (Peak)	2484.300	31.440	32.351	63.792	74.00	54.00	Pass
08 (Average)	2451.900	31.221	57.123	88.344			Pass
08 (Average)	2483.500	31.435	18.477	49.912	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
09 (Peak)	2455.900	31.973	72.804	104.777			Pass
09 (Peak)	2483.500	32.182	33.732	65.914	74.00	54.00	Pass
09 (Peak)	2484.300	32.187	34.808	66.996	74.00	54.00	Pass
09 (Average)	2463.300	32.029	60.794	92.823			Pass
09 (Average)	2483.500	32.182	21.267	53.449	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
09 (Peak)	2447.300	31.189	68.598	99.787			Pass
09 (Peak)	2483.500	31.435	29.855	61.290	74.00	54.00	Pass
09 (Average)	2455.500	31.246	56.999	88.245			Pass
09 (Average)	2483.500	31.435	17.558	48.993	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
10 (Peak)	2465.500	32.046	69.407	101.453			Pass
10 (Peak)	2483.500	32.182	34.393	66.575	74.00	54.00	Pass
10 (Average)	2468.100	32.065	57.751	89.816			Pass
10 (Average)	2483.500	32.182	21.397	53.579	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
10 (Peak)	2461.300	31.286	66.336	97.622			Pass
10 (Peak)	2483.500	31.435	29.540	60.975	74.00	54.00	Pass
10 (Average)	2459.500	31.273	54.948	86.221			Pass
10 (Average)	2483.500	31.435	18.286	49.721	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11a 6Mbps

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5745	46.54	>20	PASS

Agilent Spe	ctrum An	alyzer - Sw	ept SA								
LXI RL	RF	50 Ω	AC		SEI	VSE:INT		ALIGN AUTO	06:56:54 P	M May 14, 2015	Frequency
Center	Freq	5.72500	00000 GH	Z	Trig: Free	Run	Avg I	ype: Log-Pwr	TY	23456 ■ M WWWW	Trequency
			IFG	io: Fast 🕞 Gain:Low	#Atten: 3	DdB			D	ET P N N N N N	
								Mk	r2 5 72	5 0 GHz	Auto Tune
10 dB/div	Ref Ref	0ffset 1.9 f 21.50 (dBm						-41.	28 dBm	
Log								1			
11.5								-+ \ '			Center Freq
1.50							سالعامير	Anter Aster Labor			5.725000000 GHz
-8.50							1				
-18.5							1			-15.64 dBm	
20.5						للمعلد	1		What.		Start Freq
-20.5						2			New York		5.675000000 GHz
-38.5					العل	and the second s				n	
-48.5	و برواند مراور و	a kanalah kabupa	the section of the	aller here and	and the state of t					The Handel and	
-58.5	A to the second second	and and the state of the state					_				Stop Freq
-68.5											5.775000000 GHz
00.0											
Center	5.7250	0 GHz	•						Span 1	00.0 MHz	CE Step
#Res B\	N 100	kHz		#VBV	/ 1.0 MHz			#Sweep 5	00.0 ms (1001 pts)	10.000000 MHz
MKBI MODE	TRCL SCI		×		Y	EUI	JETION	EUNCTION WIDTH	FUNCTI		<u>Auto</u> Man
1 N	1 f		5.747 (5 GHz	4.36 d	3m		010101	Tonon		
2 N	1 f		5.725 () GHz	-41.28 di	3m					Erog Offort
4	_										Frequise
5											0 HZ
6											
8											
9											
11										~	
<		•			ш		1			>	
MSG								STATUS	3		

:	Intel® Dual Band Wireless-AC 8260
:	Band Edge
:	No.3 OATS
:	Mode 1 SISO A: Transmit - 802.11a 6Mbps
	: : :

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5825	53.30	>20	PASS

Agilent Spectr	um Analyzer - Swept	SA						
Center F	RF 50 Ω req 5.850000	AC 000 GHz	SENSE:IN	Avg Typ	ALIGNAUTO e: Log-Pwr	07:02:31 PM TRAC	E 1 2 3 4 5 6	Frequency
10 dB/div	Ref Offset 1.5 d Ref 21.50 dE	PNO: Fast IFGain:Low IB	#Atten: 30 dB		Mk	r2 5.850 -49.3	0 GHz 9 dBm	Auto Tune
11.5 1.50		1 						Center Freq 5.85000000 GHz
-18.5 -28.5 -38.5		4	**************************************				-16.09 dBm	Start Freq 5.80000000 GHz
-48.5 -58.5				hat you the end of the second	Arrent vilne - nte	war da m	my for the land of the state	Stop Freq 5.90000000 GHz
Center 5. #Res BW	35000 GHz 100 kHz	#V	BW 1.0 MHz	#	Sweep 5	Span 10 00.0 ms (′	00.0 MHz 1001 pts)	CF Step 10.000000 MHz Auto Man
MKE MODE IT 1 N 1 2 N 1 3 4 - 6 - - 7 - - 9 - - 10 - - 11 - -		× 5.827 5 GHz 5.850 0 GHz	¥ 3.91 dBm -49.39 dBm	FUNCTION FU		FUNCTIO	N V2LUE	Freq Offset 0 Hz

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-20BW_7.2Mbps(5G Band)

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5745	46.20	>20	PASS

Agilen	t Spe	ctrun	n Ana	alyzer - Sw	rept SA											
Cen	ter	Fre	RF	50 Ω 5.7250	AC 00000 GH	z	Tria: Fi	ENSE:I	nt	Avg T	ype:	LIGNAUTO	06:55:46 Pl TRAC	M May 14, 2015		Frequency
10 di	B/div	,	Ref Ref	Offset 1. 5 21.50	5 dB dBm	iU: Fast Sain:Low	#Atten:	30 dB				Mk	r2 5.72	5 0 GHz 51 dBm		Auto Tune
Log 11.5 1.50 -8.50											₩ ₽ ₽	1 planderlootaday			5	Center Freq .725000000 GHz
-18.5 -28.5 -38.5								2 ²	Martingallulit			l	M. Martin Balanta	-15.31 dBm	5	Start Freq .675000000 GHz
-48.5 -58.5 -68.5	ley	n/~alpoh	•	all and a constant	A Band and Angel Phylog	in wordt	Participant de catalon							Whyteheddory Bigday	5	Stop Freq .775000000 GHz
Cen #Re:	ter s Bl	5.72 N 1	250 00	0 GHz kHz		#VE	BW 1.0 MH	Iz			#5	Sweep 5	Span 1 00.0 ms (00.0 MHz 1001 pts)	Aut	CF Step 10.000000 MHz
1 2 3 4 5 6 7 8 9 10 11			f		× 5.747 (5.725 (5 GHz	¥ 4.69 -41.51	dBm dBm	FUNC		FUN		FUNCTIO			Freq Offset 0 Hz
MSG												STATUS	5			

:	Intel® Dual Band Wireless-AC 8260
:	Band Edge
:	No.3 OATS
:	Mode 1 SISO A: Transmit - 802.11n-20BW_7.2Mbps(5G Band)
	: : :

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5825	52.93	>20	PASS

Agilen	t Spec	ctrun	n Ana	alyzer - Swe	pt SA													
Cen	ter	Fre	RF q {	50 Ω 5.85000	AC	lz		SEM	NSE:IN	IT	Avg 1	Гуре	align auto : Log-Pwr	07:01:2 T	1 PM May RACE 1 2 TYPE M F	14, 2015 2 3 4 5 6	6	Frequency
10 df	Ref Offset 1.5 dB Mkr2 5.850 0 GHz 0 dB/div Ref 21.50 dBm														Auto Tune			
Log 11.5 1.50				مليكس	A A A A A A A A A A A A A A A A A A A	huly												Center Freq 5.85000000 GHz
-18.5 -28.5 -38.5		Junk	part of	autor and a second		- \ \ 	2000	monoral and a second	2-							16.15 dBm		Start Freq 5.80000000 GHz
-48.5 -58.5 -68.5		<u> </u>						"WARLED	- and	Wyntwli.	ectronyments	bladdaya.	Mr.Mainlagran 4	Hereinen er	ever grand	in the second		Stop Freq 5.90000000 GHz
Cen #Re:	ter : s B\	5.85 N 1	500 00	0 GHz kHz		#V	вw	1.0 MHz				#\$	Sweep 5	Span 00.0 ms	100.0 5 (100) MHz 1 pts)		CF Step 10.000000 MHz
1 2 3 4 5 6 7 8 9	MODE N N		f		× 5.827 5.850	5 GHz 0 GHz		Y 3.85 df -49.08 df	3m 3m	FUNC		FUN	CTION WIDTH	FUNC	CTION VAI			Freq Offset 0 Hz
11 MSG													STATU	S		>		

:	Intel® Dual Band Wireless-AC 8260
:	Band Edge
:	No.3 OATS
:	Mode 1 SISO A: Transmit - 802.11n-40BW_15Mbps(5G Band)
	: : :

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5755	40.70	>20	PASS

Agilen	it Spe	ctrun	n Ana	ilyzer - Swe	ept SA												
KAN Cen	ter	Fre	RF q 5	50 Ω 5.72500	AC 100000 GH	IZ	_	SB ^h	NSE:IN	T	Avg	Туре	ALIGNAUTO : Log-Pwr	07:03:47 P	M May 14, 20 CE 1 2 3 4 PE M MAAAA	015 5 6	Frequency
10 d	B/div	,	Ref Ref	Offset 1.6	5 dB	40: Fast Sain:Low	, -	#Atten: 30	dB				Mkr	□ 2 5.725 -40.	00 GH	iz m	Auto Tune
Log 11.5 1.50 -8.50										,М,	puladd	Villey	\1 phil/4ehak/4	ار بر ار بر			Center Freq 5.725000000 GHz
-18.5 -28.5 -38.5									2	and the second s				- North Andrew Contraction of the second sec	-19.70 d	<u>Bm</u>	Start Freq 5.650000000 GHz
-48.5 -58.5 -68.5	, where	New P	N.J.P	herdefit for the state of the s		an a	u frite-table									144	Stop Freq 5.80000000 GHz
Cen #Re	ter: sB\ Minima	5.72 N 1	250 00	0 GHz kHz	×	#V	вw	1.0 MHz		FUN	זווא	#\$	Sweep 5	Span 1 00.0 ms (50.0 Mi 1001 pt	HZ (S)	CF Step 15.000000 MHz <u>Auto</u> Man
1 2 3 4 5 6	N N	1	f		5.758 70 5.725 00	5 GHz 0 GHz		0.30 dE -40.40 dE	3m 3m								Freq Offset 0 Hz
7 8 9 10 11 <																	
MSG													STATUS	;			

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-40BW_15Mbps(5G Band)

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5795	53.22	>20	PASS

Agilen	it Spe	ctrun	n Ana	alyzer - Swe	pt SA												
Cen	ter	Fre	RF q (50 Ω 5.85000	AC	z	_	SEI	NSE:IN	IT	Avg 1	Туре	ALIGNAUTO : Log-Pwr	07:06:20 TR T	PM May 14, 2 ACE 1 2 3 4	015 5 6	Frequency
10 di	Ref Offset 1.5 dB 0 dB/div Ref 21.50 dBm Ref 0 dBm														Auto Tune		
Log 11.5 1.50	مايليتر	whited	յդյ	م باللبر	ماليليع											_	Center Freq 5.85000000 GHz
-18.5 -28.5 -38.5	-			V	- ANA	mille			2						-18.98	dBm	Start Freq 5.775000000 GHz
-48.5 -58.5 -68.5									Mur ^{ra}	yng friffither.	Walter Var	սիս _{երն} ,	in the south have	and the second	.a _r ahanjanim	.FmA	Stop Freq 5.925000000 GHz
Cen #Re:	ter: sB\ MODE	5.8: N 1	00	0 GHZ kHz	×	#V	вw	1.0 MHz		FUNC	TION	#S	Sweep 5	Span 00.0 ms	150.0 IVI (1001 p ION VALUE	HZ ts)	CF Step 15.000000 MHz <u>Auto</u> Man
1 3 4 5 6 7 8 9 10 11	N	1	f		5.798 7 5.850 0	0 GHz 0 GHz		1.02 di -52.20 di	Bm								Freq Offset 0 Hz
MSG													STATUS	5			

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11ac-80BW_32.5Mbps(5G Band)

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5775	36.83	>30	PASS

Agile	nt Spe	ectrur	n An	alyzer - Sw	ept SA											
M RF 50 Ω AC SENSE:INT ALIGNAUTO 09:21:10 PM May 14, 2015 Center Freq 5.725000000 GHz Trig: Free Bun Avg Type: Log-Pwr TRACE [12 3 4 5 6														5 6	Frequency	
10 c	Ref Offset 1.5 dB 10 dB/div Ref 14.50 dBm -0.893 dBm														iz m	Auto Tune
4.50 -5.50 -15.5									utw	CHUMP-W	U.L.L.	alu, adua	1 بسلی <i>اسی</i> ندار _س	-luulu		Center Freq 5.725000000 GHz
-25.6 -35.6 -45.6	5	.				addaabdarroom	franter ware stated	2,e	/					-30.894d	Bm	Start Freq 5.625000000 GHz
-55.6 -65.6 -75.6	5														_	Stop Freq 5.825000000 GHz
Cei #Re	Center 5.7250 GHz Span 200.0 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 19.13 ms (1001 pts)													lz s)	CF Step 20.000000 MHz Auto Map	
1 2 3 4 5 6 7 8 9 10 11			f		× 5.790 (5.725 (D GHz D GHz	¥ _0.893 _37.725	dBm dBm	FUN		FUNCT		FUNCTIO	DN VALUE		Freq Offset 0 Hz
MSG												STATUS				

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11b 1Mbps

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
01 (Peak)	2390.000	31.509	39.637	71.146	74.00	54.00	Pass
01 (Peak)	2400.000	31.561	48.474	80.035	74.00	54.00	Pass
01 (Peak)	2413.800	31.651	78.522	110.174			Pass
01 (Average)	2385.600	31.492	21.552	53.044	74.00	54.00	Pass
01 (Average)	2390.000	31.509	14.949	46.458	74.00	54.00	Pass
01 (Average)	2400.000	31.561	26.498	58.059	74.00	54.00	Pass
01 (Average)	2412.800	31.645	73.143	104.787			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11b 1Mbps

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	30.915	36.108	67.023	74.00	54.00	Pass
01 (Peak)	2400.000	30.912	44.484	75.396	74.00	54.00	Pass
01 (Peak)	2413.800	30.961	74.972	105.933			Pass
01 (Average)	2385.600	30.936	18.525	49.461	74.00	54.00	Pass
01 (Average)	2390.000	30.915	13.685	44.600	74.00	54.00	Pass
01 (Average)	2400.000	30.912	23.050	53.962	74.00	54.00	Pass
01 (Average)	2412.800	30.955	69.608	100.563			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11b 1Mbps

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
02 (Peak)	2389.400	31.507	38.080	69.587	74.00	54.00	Pass
02 (Peak)	2390.000	31.509	37.528	69.037	74.00	54.00	Pass
02 (Peak)	2400.000	31.561	45.719	77.280	74.00	54.00	Pass
02 (Peak)	2415.400	31.664	80.427	112.091			Pass
02 (Average)	2390.000	31.509	19.122	50.631	74.00	54.00	Pass
02 (Average)	2400.000	31.561	36.131	67.692	74.00	54.00	Pass
02 (Average)	2416.400	31.672	75.121	106.793			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11b 1Mbps

Channal No	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
02 (Peak)	2389.200	30.919	34.930	65.849	74.00	54.00	Pass
02 (Peak)	2390.000	30.915	34.191	65.106	74.00	54.00	Pass
02 (Peak)	2400.000	30.912	41.389	72.301	74.00	54.00	Pass
02 (Peak)	2418.800	30.995	77.079	108.074			Pass
02 (Average)	2390.000	30.915	16.216	47.131	74.00	54.00	Pass
02 (Average)	2400.000	30.912	32.630	63.542	74.00	54.00	Pass
02 (Average)	2416.200	30.978	71.929	102.907			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11b 1Mbps

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
09 (Peak)	2453.700	31.957	79.984	111.941			Pass
09 (Peak)	2483.500	32.182	38.895	71.077	74.00	54.00	Pass
09 (Average)	2451.300	31.938	74.706	106.644			Pass
09 (Average)	2483.500	32.182	21.251	53.433	74.00	54.00	Pass

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11b 1Mbps

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
09 (Peak)	2450.100	31.208	77.298	108.507			Pass
09 (Peak)	2483.500	31.435	35.537	66.972	74.00	54.00	Pass
09 (Average)	2451.300	31.217	72.093	103.310			Pass
09 (Average)	2483.500	31.435	18.795	50.230	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11b 1Mbps

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
10 (Peak)	2458.700	31.994	78.307	110.301			Pass
10 (Peak)	2483.500	32.182	38.438	70.620	74.00	54.00	Pass
10 (Average)	2456.300	31.976	73.144	105.120			Pass
10 (Average)	2483.500	32.182	20.836	53.018	74.00	54.00	Pass

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11b 1Mbps

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
10 (Peak)	2455.100	31.243	75.539	106.782			Pass
10 (Peak)	2483.500	31.435	35.079	66.514	74.00	54.00	Pass
10 (Average)	2456.300	31.251	70.302	101.553			Pass
10 (Average)	2483.500	31.435	18.235	49.670	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11b 1Mbps

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
11 (Peak)	2463.700	32.032	78.304	110.336			Pass
11 (Peak)	2483.500	32.182	40.470	72.652	74.00	54.00	Pass
11 (Peak)	2484.300	32.187	40.818	73.006	74.00	54.00	Pass
11 (Average)	2461.100	32.013	73.161	105.174			Pass
11 (Average)	2483.500	32.182	16.072	48.254	74.00	54.00	Pass
11 (Average)	2488.700	32.222	20.790	53.011	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11b 1Mbps

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
11 (Peak)	2460.100	31.277	75.540	106.817			Pass
11 (Peak)	2483.500	31.435	38.083	69.518	74.00	54.00	Pass
11 (Average)	2461.300	31.286	70.327	101.613			Pass
11 (Average)	2483.500	31.435	14.726	46.161	74.00	54.00	Pass
11 (Average)	2488.700	31.471	18.393	49.863	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11b 1Mbps

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
12 (Peak)	2468.700	32.070	75.296	107.366			Pass
12 (Peak)	2483.500	32.182	41.515	73.697	74.00	54.00	Pass
12 (Average)	2466.300	32.052	70.106	102.158			Pass
12 (Average)	2483.500	32.182	21.243	53.425	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11b 1Mbps

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
12 (Peak)	2465.100	31.312	72.256	103.567			Pass
12 (Peak)	2483.500	31.435	38.543	69.978	74.00	54.00	Pass
12 (Average)	2466.300	31.319	67.170	98.489			Pass
12 (Average)	2483.500	31.435	18.788	50.223	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11g 6Mbps

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	31.509	40.275	71.784	74.00	54.00	Pass
01 (Peak)	2400.000	31.561	56.873	88.434	74.00	54.00	Pass
01 (Peak)	2415.800	31.667	78.692	110.359			Pass
01 (Average)	2390.000	31.509	21.605	53.114	74.00	54.00	Pass
01 (Average)	2400.000	31.561	39.499	71.060	74.00	54.00	Pass
01 (Average)	2415.600	31.665	68.000	99.666			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11g 6Mbps

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	30.915	40.359	71.274	74.00	54.00	Pass
01 (Peak)	2400.000	30.912	55.319	86.231	74.00	54.00	Pass
01 (Peak)	2408.800	30.937	77.095	108.031			Pass
01 (Average)	2390.000	30.915	21.624	52.539	74.00	54.00	Pass
01 (Average)	2400.000	30.912	39.017	69.929	74.00	54.00	Pass
01 (Average)	2415.800	30.975	66.437	97.412			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11g 6Mbps

Channel No	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Chamier 100.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	11050110
11 (Peak)	2457.900	31.988	77.604	109.592			Pass
11 (Peak)	2483.500	32.182	36.556	68.738	74.00	54.00	Pass
11 (Peak)	2483.900	32.185	39.173	71.358	74.00	54.00	Pass
11 (Average)	2458.500	31.992	67.131	99.124			Pass
11 (Average)	2483.500	32.182	20.100	52.282	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11g 6Mbps

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
11 (Peak)	2463.900	31.303	76.861	108.164			Pass
11 (Peak)	2483.500	31.435	37.739	69.174	74.00	54.00	Pass
11 (Peak)	2484.100	31.439	38.421	69.860	74.00	54.00	Pass
11 (Average)	2465.700	31.315	66.458	97.773			Pass
11 (Average)	2483.500	31.435	19.906	51.341	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11g 6Mbps

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
12 (Peak)	2463.300	32.029	74.964	106.993			Pass
12 (Peak)	2483.500	32.182	38.542	70.724	74.00	54.00	Pass
12 (Average)	2468.500	32.068	64.451	96.519			Pass
12 (Average)	2483.500	32.182	20.013	52.195	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11g 6Mbps

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
12 (Peak)	2470.700	31.349	74.746	106.095			Pass
12 (Peak)	2483.500	31.435	37.182	68.617	74.00	54.00	Pass
12 (Peak)	2483.900	31.438	38.344	69.782	74.00	54.00	Pass
12 (Average)	2468.700	31.336	64.014	95.349			Pass
12 (Average)	2483.500	31.435	19.717	51.152	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
| Product | : | Intel® Dual Band Wireless-AC 8260 |
|-----------|---|---|
| Test Item | : | Band Edge |
| Test Site | : | No.3 OATS |
| Test Mode | : | Mode 2 SISO B: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band) |

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	31.509	41.753	73.262	74.00	54.00	Pass
01 (Peak)	2400.000	31.561	56.761	88.322	74.00	54.00	Pass
01 (Peak)	2414.800	31.660	79.517	111.177			Pass
01 (Average)	2390.000	31.509	21.453	52.962	74.00	54.00	Pass
01 (Average)	2400.000	31.561	38.684	70.245	74.00	54.00	Pass
01 (Average)	2415.600	31.665	68.363	100.029			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	30.915	38.950	69.865	74.00	54.00	Pass
01 (Peak)	2400.000	30.912	55.313	86.225	74.00	54.00	Pass
01 (Peak)	2410.400	30.941	76.813	107.754			Pass
01 (Average)	2390.000	30.915	19.865	50.780	74.00	54.00	Pass
01 (Average)	2400.000	30.912	36.402	67.314	74.00	54.00	Pass
01 (Average)	2414.800	30.968	65.522	96.490			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2460.100	32.005	78.908	110.913			Pass
11 (Peak)	2483.500	32.182	38.364	70.546	74.00	54.00	Pass
11 (Peak)	2483.700	32.183	40.670	72.854	74.00	54.00	Pass
11 (Average)	2458.500	31.992	67.609	99.602			Pass
11 (Average)	2483.500	32.182	20.392	52.574	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
11 (Peak)	2463.500	31.300	75.258	106.558			Pass
11 (Peak)	2483.500	31.435	36.238	67.673	74.00	54.00	Pass
11 (Peak)	2484.300	31.440	38.408	69.849	74.00	54.00	Pass
11 (Average)	2465.900	31.317	64.617	95.934			Pass
11 (Average)	2483.500	31.435	18.639	50.074	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
12 (Peak)	2465.300	32.044	75.320	107.364			Pass
12 (Peak)	2483.500	32.182	39.235	71.417	74.00	54.00	Pass
12 (Average)	2469.900	32.079	63.881	95.960			Pass
12 (Average)	2483.500	32.182	21.237	53.419	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
12 (Peak)	2468.900	31.337	72.097	103.434			Pass
12 (Peak)	2483.500	31.435	36.235	67.670	74.00	54.00	Pass
12 (Average)	2470.300	31.346	61.609	92.955			Pass
12 (Average)	2483.500	31.435	18.927	50.362	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
03 (Peak)	2389.200	31.506	35.762	67.268	74.00	54.00	Pass
03 (Peak)	2390.000	31.509	35.266	66.775	74.00	54.00	Pass
03 (Peak)	2400.000	31.561	49.142	80.703	74.00	54.00	Pass
03 (Peak)	2432.200	31.792	73.900	105.693			Pass
03 (Average)	2390.000	31.509	22.294	53.803	74.00	54.00	Pass
03 (Average)	2400.000	31.561	35.791	67.352	74.00	54.00	Pass
03 (Average)	2433.400	31.802	62.223	94.025			Pass

Horizontal (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
03 (Peak)	2389.600	30.917	35.622	66.539	74.00	54.00	Pass
03 (Peak)	2390.000	30.915	34.172	65.087	74.00	54.00	Pass
03 (Peak)	2400.000	30.912	48.678	79.590	74.00	54.00	Pass
03 (Peak)	2424.800	31.036	72.414	103.450			Pass
03 (Average)	2390.000	30.915	21.221	52.136	74.00	54.00	Pass
03 (Average)	2400.000	30.912	34.768	65.680	74.00	54.00	Pass
03 (Average)	2433.400	31.094	60.701	91.796			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
09 (Peak)	2455.700	31.972	74.534	106.506			Pass
09 (Peak)	2483.500	32.182	30.521	62.703	74.00	54.00	Pass
09 (Peak)	2484.700	32.192	32.521	64.712	74.00	54.00	Pass
09 (Average)	2456.900	31.982	62.476	94.457			Pass
09 (Average)	2483.000	32.179	18.921	51.099	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
09 (Peak)	2455.700	31.247	72.955	104.202			Pass
09 (Peak)	2483.500	31.435	30.632	62.067	74.00	54.00	Pass
09 (Peak)	2485.500	31.449	31.502	62.951	74.00	54.00	Pass
09 (Average)	2449.700	31.205	60.800	92.006			Pass
09 (Average)	2483.500	31.435	17.756	49.191	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
10 (Peak)	2459.100	31.998	70.570	102.567			Pass
10 (Peak)	2483.500	32.182	34.569	66.751	74.00	54.00	Pass
10 (Average)	2454.500	31.962	58.929	90.892			Pass
10 (Average)	2483.500	32.182	21.144	53.326	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
10 (Peak)	2453.100	31.229	70.697	101.926			Pass
10 (Peak)	2483.500	31.435	33.092	64.527	74.00	54.00	Pass
10 (Average)	2454.500	31.238	57.070	88.309			Pass
10 (Average)	2483.500	31.435	19.795	51.230	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11a 6Mbps

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5745	43.21	>20	PASS

Agilent Spectrum Analyzer - Swept SA				
XV RL RF 50Ω AC	SENSE:INT	ALIGNAUTO	07:18:23 PM May 14, 2015	Frequency
Center Freq 5./25000000 GHz	Trig: Free Run	Avg Type: Log-Pwr	TYPE MWWWWW	
IFGain:Low	#Atten: 30 dB		DET P NNNN	
Pof Offset 1 5 dP		Mk	r2 5.725 0 GHz	Auto Tune
10 dB/div Ref 21.50 dBm			-40.93 dBm	
Log		1		
11.5				Center Freq
1.50		- Alabahala alabahala hala		5.725000000 GHz
-8.50			-14.94 dBm	
-18.5			-14.04 0.011	Otort From
-28.5			marker	StartFreq
20.5	2		And a second sec	5.675000000 GHz
-50.5	at a the sheet of the second		"Wint Maringardant	
-48.5 Combours in growthy of marked with my day of the origination	-policies		Okan	Stop Fred
-58.5				5 775000000 GHz
-68.5				0.770000000 0112
Center 5./2500 GHz	1.0 MHz	#Oween 5	Span 100.0 MHz	CF Step
#Res BW 100 KHz #VBW		#aweep J	00.0 ms (1001 pts)	Auto Man
MKR MODE TRC SCL X	Y FUNC	TION FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 f 5.725 0 GHz	-40.93 dBm			
3				Freq Offset
5			=======================================	0 Hz
6				
8				
9				
		+ +		
MSG		STATUS		

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11a 6Mbps

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5825	48.03	>20	PASS

Agiler	Agilent Spectrum Analyzer - Swept SA													
w∥ ℝ Cer	ter	Fre	RF	50 Ω 5.85000	AC 0000 GH	z	Tria: E	SENSE:		Avg Tyj	ALIGNAUTO De: Log-Pwr	07:18:52 P TRA	M May 14, 2015 E 1 2 3 4 5 6	Frequency
10 d	PN0: Fast#Atten: 30 dB IFGain:Low #Atten: 30 dB Ref Offset 1.5 dB 0 dB/div Ref 21.50 dBm												Auto Tune	
Log 11.5 1.50				ملهارم	1 	-talkay								Center Freq 5.85000000 GHz
-8.50 -18.5 -28.5 -38.5		- materia		çar d			Mar Marine Marine	¢2					-14.80 dBm	Start Freq 5.800000000 GHz
-48.5 -58.5 -68.5									ndphaphyny	i - mailine - dan in the second s	ilden versamler	leter and a second start age.	and generalized	Stop Freq 5.90000000 GHz
Cer #Re	iter : s B\ MODE	5.85 N 1	500 00	0 GHz kHz	×	#VE	BW 1.0 MH	Iz	FUN	CTION F	#Sweep {	Span 1 500.0 ms (00.0 MHz 1001 pts) IN VALUE	CF Step 10.000000 MHz Auto Man
1 3 4 5 6 7 8 9 10 11 <	N	1	f		5.827 :	5 GHz	5.20 -46.04	dBm dBm						Freq Offset 0 Hz
MSG											STATU	JS		

:	Intel® Dual Band Wireless-AC 8260
:	Band Edge
:	No.3 OATS
:	Mode 2 SISO B: Transmit - 802.11n-20BW_7.2Mbps(5G Band)
	: : :

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5745	43.21	>20	PASS

Agilen	t Spe	ctrun	n Ana	alyzer - Sw	ept SA											
Cen	ter	Fre	RF q {	∣ 50 Ω 5.72500	AC D0000 GH	Z	Tria: F	SENSE:I	NT	Avg T	ALI ype: L	GNAUTO .og-Pwr	07:19:24 P	M May 14, 20 CE 1 2 3 4 5 PE M MAAAAA	15	Frequency
10 dE	PRU: Fast United Terror IFGain:Low #Atten: 30 dB Ref Offset 1.5 dB 10 dB/div Ref 21.50 dBm										Mkr2 5.725 0 GHz -37 96 dBm					Auto Tune
Log 11.5 1.50										مالىلى العاليم مىلىلى العاليم	~	1 Jaholy				Center Freq 5.725000000 GHz
-18.5 -28.5 -38.5								2-	Walnut all	/			Vite West	-14.75 di	∃m 	Start Freq 5.675000000 GHz
-48.5 -58.5 -68.5	Mar . Mar	dina.	mhu	han an a	in ministration		ing the local second second									Stop Freq 5.775000000 GHz
Cen #Res	ter: sB)	5.72 N 1	250 00	0 GHz kHz	x	#V	3W 1.0 MI	3W 1.0 MHz #Sweep				Span 100.0 MHz eep 500.0 ms (1001 pts)			iz s)	CF Step 10.000000 MHz <u>Auto</u> Man
1 3 4 5 6 7 8 9	N N		f		5.725 (5 GHz) GHz	5.25 -37.96	dBm dBm	PONC				FORCE			Freq Offset 0 Hz
11 K MSG												STATUS	•		•	

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-20BW_7.2Mbps(5G Band)

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5825	48.03	>20	PASS

Agile	Agilent Spectrum Analyzer - Swept SA															
wµ Cer	L nter	Fre	RF	50 Ω 5.85000	AC 0000 GH	z	Tria: E	SENSE:		Avg	/ Type:	LIGNAUTO	07:20:55 P TRA	M May 14, 20: CE 1 2 3 4 5	15 i 6	Frequency
10 d	PN0: Fast Ing. free Nam IFGain:Low #Atten: 30 dB Ref Offset 1.5 dB Mkr2 5.850 0 GHz 0 dB/div Ref 21.50 dBm												Auto Tune			
Log 11.5 1.50			-	سلمهاريس		L.										Center Freq 5.85000000 GHz
-0.30 -18.5 -28.5 -38.5		Marche	, and the	here all and a second sec		- Vry	Wing William	2						-14.85 dE	ðm -	Start Freq 5.80000000 GHz
-48.5 -58.5 -68.5										- widey	Uninger of	nvionalistorna dje	a manufacture	Arthough a the	-	Stop Freq 5.90000000 GHz
Cer #Re	nter s B1	5.8: W 1	500 00 501	U GHZ kHz	×	#VE	3W 1.0 MI Y	Hz	FUNI	CTION	#S	weep 5	Span 1 00.0 ms (EUNCI	100.0 IVIH 1001 pts INVALUE	IZ S)	CF Step 10.000000 MHz <u>Auto</u> Man
1 2 3 4 5 6 7 8 9 10 11 <	N		f		5.827	5 GHz 0 GHz	<u>5.15</u> -42.88	idBm idBm								Freq Offset 0 Hz
MSG												STATUS	5			

:	Intel® Dual Band Wireless-AC 8260
:	Band Edge
:	No.3 OATS
:	Mode 2 SISO B: Transmit - 802.11n-40BW_15Mbps(5G Band)
	: : :

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5755	36.81	>20	PASS

Agiler	nt Spe	ctrun	n Ana	alyzer - Swe	pt SA									
KXIR Cen	L Iter	Fre	RF eq (50 Ω 5.72500	AC 00000 GH	z	Tria: Fr			Avg Typ	ALIGNAUTO e: Log-Pwr	07:25:45 P TRA	M May 14, 2015 CE 1 2 3 4 5 6	Frequency
10 d	B/div	,	Ref Ref	Offset 1.5	odB JBm	NO: Fast Gain:Low	#Atten:	30 dB			Mkr	2 5.725 -34.	00 GHz 68 dBm	Auto Tune
Log 11.5 1.50 -8.50									μ		J. J. KURHULA	łų		Center Freq 5.725000000 GHz
-18.5 -28.5 -38.5							- longerman heilende					- Vor	-17.87 dBm	Start Freq 5.65000000 GHz
-48.5 -58.5 -68.5	urtido	and the	** ***		ak had to an a first of the spin of the sp	ku <mark>llan</mark> ti≌								Stop Freq 5.80000000 GHz
Cen #Re	s B1	5.72 N 1	250 00	0 GHz kHz	X	#V	BW 1.0 MH	z	FUNC	#	¢Sweep 5	Span 1 00.0 ms (50.0 MHz 1001 pts)	CF Step 15.000000 MHz <u>Auto</u> Man
1 3 4 5 6 7 8 9	N	1	f		5.750 0 5.725 0	5 GHz 0 GHz	2.13 -34.68	dBm dBm						Freq Offset 0 Hz
11 MSG							Ш				STATUS	6	×	

:	Intel® Dual Band Wireless-AC 8260
:	Band Edge
:	No.3 OATS
:	Mode 2 SISO B: Transmit - 802.11n-40BW_15Mbps(5G Band)
	: : :

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5795	50.25	>20	PASS

Agilen	it Spe	ctrun	n Ana	alyzer - Swe	pt SA												
Cen	ter	Fre	RF q (50 Ω 5.85000	AC 10000 GH	lz		SEI		JT	Avg	Туре	ALIGNAUTO : Log-Pwr	07:30:25 TR. T	PM May 14, 2 ACE 1 2 3 4	56	Frequency
10 d	B/div	,	Ref Ref	Offset 1.5	odB JBm	NO: Fast Gain:Lov	v P	#Atten: 3	0 dB	•			Mkr	2 5.850 -47	00 GH	-IZ m	Auto Tune
Log 11.5 1.50	الملام	u dalahan d	, and		-												Center Freq 5.85000000 GHz
-18.5 -28.5 -38.5	_					h h	-	alah N	2-						-17.39)	:/Bm	Start Freq 5.775000000 GHz
-48.5 -58.5 -68.5									joh-1 0**	egenter dur	br**sbre√t	ici depart	man hired land	⁴ da ⁿ 944anJµ	h-showing	** .	Stop Freq 5.925000000 GHz
Cen #Re	ter s Bi	5.85 N 1	500 00	0 GHz kHz		#V	'BW 1	.0 MHz			71011	#9	Sweep 5	Span 00.0 ms	150.0 M (1001 p	Hz ts)	CF Step 15.000000 MHz Auto Man
1 2 3 4 5 6 7 8 9 10 11 <					× 5.800 0 5.850 0	5 GHz 0 GHz		2.61 dl -47.64 dl	Bm 3m	FUND	TION			FUNC			Freq Offset 0 Hz
MSG													STATUS	3			

:	Intel® Dual Band Wireless-AC 8260
:	Band Edge
:	No.3 OATS
:	Mode 2 SISO B: Transmit - 802.11ac-80BW_32.5Mbps(5G Band)
	: : :

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5775	39.09	>30	PASS

Agile	nt Spe	ctrun	n Ana	alyzer - Swe	ept SA												
<mark>س</mark> Cer	nter	Fre	RF q 5	50 Ω 5.72500	AC 00000 GH	Iz		SEM	SE:INT		Avg '	/ Type told::	LIGNAUTO	09:22:06 P TRA TY	M May 14, 20 CE 1 2 3 4 1 PE M MAAAAA	015 5 6	Frequency
10 d	B/div		Ref Ref	Offset 1.5	i dB JBm	NU: Fast Gain:Low		Atten: 30	dB				Mk	ت r1 5.77 1.1	ет Р N N N 0 0 GH 90 dB	iz m	Auto Tune
4.50 -5.50 -15.5										<u>I</u> II.w	WIW	uuu.	1 Avid 11rout data	-Million-although	July .		Center Freq 5.725000000 GHz
-25.5 -35.5 -45.5						welly of some de	yurahay		2 ¹⁴						-3140-a	Bm J	Start Freq 5.625000000 GHz
-55.5 -65.5 -75.5																	Stop Freq 5.825000000 GHz
Cer #Re	nter es Bl	5.72 W 1	250 00	GHz kHz		#VI	BW 31	00 kHz			Span 200.0 MHz Sweep 19.13 ms (1001 pts)					HZ (S)	CF Step 20.000000 MHz Auto Map
■30 1 2 3 4 5 6 7 8 9 10 11 <	MODE N				× 5.770 (5.725 (0 GHz 0 GHz	-4	Y 1.190 dE 0.284 dE	3m 3m	FUNC		FUN		FUNCTI	ON VALUE		Freq Offset 0 Hz
MSG													STATUS	5			

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-20BW_14.4Mbps(2.4G Band)

Channel No	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel NO.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	31.509	34.898	66.407	74.00	54.00	Pass
01 (Peak)	2400.000	31.561	52.077	83.638	74.00	54.00	Pass
01 (Peak)	2415.800	31.667	78.153	109.820			Pass
01 (Average)	2390.000	31.509	22.122	53.631	74.00	54.00	Pass
01 (Average)	2400.000	31.561	37.291	68.852			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-20BW_14.4Mbps(2.4G Band)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	30.915	34.378	65.293	74.00	54.00	Pass
01 (Peak)	2400.000	30.912	50.286	81.198	74.00	54.00	Pass
01 (Peak)	2408.600	30.936	75.469	106.405			Pass
01 (Average)	2390.000	30.915	19.606	50.521	74.00	54.00	Pass
01 (Average)	2400.000	30.912	34.617	65.529	74.00	54.00	Pass
01 (Average)	2409.600	30.939	62.197	93.136			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-20BW_14.4Mbps(2.4G Band)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
02 (Peak)	2386.600	31.496	36.686	68.182	74.00	54.00	Pass
02 (Peak)	2390.000	31.509	35.245	66.754	74.00	54.00	Pass
02 (Peak)	2400.000	31.561	48.416	79.977	74.00	54.00	Pass
02 (Peak)	2419.600	31.697	80.894	112.590			Pass
02 (Average)	2390.000	31.509	21.138	52.647	74.00	54.00	Pass
02 (Average)	2400.000	31.561	33.814	65.375	74.00	54.00	Pass
02 (Average)	2419.800	31.698	67.654	99.352			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-20BW_14.4Mbps(2.4G Band)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
02 (Peak)	2390.000	30.915	32.714	63.629	74.00	54.00	Pass
02 (Peak)	2400.000	30.912	46.324	77.236	74.00	54.00	Pass
02 (Peak)	2419.800	31.003	77.106	108.108			Pass
02 (Average)	2390.000	30.915	18.509	49.424	74.00	54.00	Pass
02 (Average)	2400.000	30.912	31.529	62.441	74.00	54.00	Pass
02 (Average)	2420.400	31.006	64.328	95.334			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-20BW_14.4Mbps(2.4G Band)

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
03 (Peak)	2390.000	31.509	34.247	65.756	74.00	54.00	Pass
03 (Peak)	2400.000	31.561	46.544	78.105	74.00	54.00	Pass
03 (Peak)	2425.800	31.745	81.979	113.723			Pass
03 (Average)	2390.000	31.509	22.242	53.751	74.00	54.00	Pass
03 (Average)	2400.000	31.561	30.711	62.272	74.00	54.00	Pass
03 (Average)	2424.400	31.733	69.398	101.131			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-20BW_14.4Mbps(2.4G Band)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
03 (Peak)	2389.000	30.920	34.970	65.890	74.00	54.00	Pass
03 (Peak)	2390.000	30.915	33.493	64.408	74.00	54.00	Pass
03 (Peak)	2400.000	30.912	46.500	77.412	74.00	54.00	Pass
03 (Peak)	2425.000	31.037	79.061	110.099			Pass
03 (Average)	2390.000	30.915	19.890	50.805	74.00	54.00	Pass
03 (Average)	2400.000	30.912	28.589	59.501	74.00	54.00	Pass
03 (Average)	2419.800	31.003	66.273	97.275			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-20BW_14.4Mbps(2.4G Band)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
10 (Peak)	2454.900	31.966	83.589	115.555			Pass
10 (Peak)	2483.500	32.182	34.243	66.425	74.00	54.00	Pass
10 (Average)	2458.700	31.994	70.228	102.222			Pass
10 (Average)	2483.500	32.182	21.181	53.363	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-20BW_14.4Mbps(2.4G Band)

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
10 (Peak)	2453.900	31.235	79.590	110.825			Pass
10 (Peak)	2483.500	31.435	31.348	62.783	74.00	54.00	Pass
10 (Peak)	2484.300	31.440	33.620	65.061	74.00	54.00	Pass
10 (Average)	2455.500	31.246	66.408	97.654			Pass
10 (Average)	2483.500	31.435	19.102	50.537	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-20BW_14.4Mbps(2.4G Band)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2457.900	31.988	82.254	114.242			Pass
11 (Peak)	2483.500	32.182	40.936	73.118	74.00	54.00	Pass
11 (Average)	2460.100	32.005	67.917	99.922			Pass
11 (Average)	2483.500	32.182	21.009	53.191	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-20BW_14.4Mbps(2.4G Band)

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
11 (Peak)	2460.500	31.280	77.505	108.785			Pass
11 (Peak)	2483.500	31.435	32.610	64.045	74.00	54.00	Pass
11 (Peak)	2484.500	31.442	34.694	66.136	74.00	54.00	Pass
11 (Average)	2459.700	31.275	64.320	95.595			Pass
11 (Average)	2483.500	31.435	18.396	49.831	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-20BW_14.4Mbps(2.4G Band)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Posult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
12 (Peak)	2463.900	32.033	78.980	111.014			Pass
12 (Peak)	2483.500	32.182	38.571	70.753	74.00	54.00	Pass
12 (Peak)	2483.900	32.185	40.131	72.316	74.00	54.00	Pass
12 (Average)	2463.300	32.029	64.582	96.611			Pass
12 (Average)	2483.500	32.182	21.295	53.477	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-20BW_14.4Mbps(2.4G Band)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
12 (Peak)	2470.500	31.348	73.898	105.246			Pass
12 (Peak)	2483.500	31.435	38.645	70.080	74.00	54.00	Pass
12 (Average)	2464.500	31.307	60.747	92.054			Pass
12 (Average)	2483.500	31.435	19.252	50.687	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-40BW_30Mbps(2.4G Band)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
03 (Peak)	2390.000	31.509	36.544	68.053	74.00	54.00	Pass
03 (Peak)	2400.000	31.561	50.265	81.826	74.00	54.00	Pass
03 (Peak)	2429.600	31.773	77.128	108.901			Pass
03 (Average)	2390.000	31.509	22.220	53.729	74.00	54.00	Pass
03 (Average)	2400.000	31.561	36.258	67.819	74.00	54.00	Pass
03 (Average)	2430.600	31.780	61.822	93.603			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-40BW_30Mbps(2.4G Band)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
03 (Peak)	2390.000	30.915	33.996	64.911	74.00	54.00	Pass
03 (Peak)	2400.000	30.912	48.668	79.580	74.00	54.00	Pass
03 (Peak)	2434.000	31.099	73.132	104.231			Pass
03 (Average)	2390.000	30.915	20.300	51.215	74.00	54.00	Pass
03 (Average)	2400.000	30.912	33.933	64.845	74.00	54.00	Pass
03 (Average)	2428.400	31.060	58.448	89.509			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-40BW_30Mbps(2.4G Band)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
04 (Peak)	2390.000	31.509	33.637	65.146	74.00	54.00	Pass
04 (Peak)	2400.000	31.561	38.683	70.244	74.00	54.00	Pass
04 (Peak)	2436.600	31.827	76.965	108.791			Pass
04 (Average)	2390.000	31.509	21.418	52.927	74.00	54.00	Pass
04 (Average)	2400.000	31.561	26.234	57.795	74.00	54.00	Pass
04 (Average)	2435.800	31.820	62.426	94.246			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-40BW_30Mbps(2.4G Band)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
04 (Peak)	2390.000	30.915	32.388	63.303	74.00	54.00	Pass
04 (Peak)	2400.000	30.912	36.995	67.907	74.00	54.00	Pass
04 (Peak)	2420.200	31.005	73.520	104.525			Pass
04 (Average)	2390.000	30.915	19.077	49.992	74.00	54.00	Pass
04 (Average)	2400.000	30.912	24.579	55.491	74.00	54.00	Pass
04 (Average)	2433.400	31.094	58.511	89.606			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-40BW_30Mbps(2.4G Band)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
05 (Peak)	2390.000	31.509	37.056	68.565	74.00	54.00	Pass
05 (Peak)	2400.000	31.561	41.009	72.570	74.00	54.00	Pass
05 (Peak)	2433.600	31.803	78.767	110.571			Pass
05 (Average)	2390.000	31.509	22.300	53.809	74.00	54.00	Pass
05 (Average)	2400.000	31.561	27.217	58.778	74.00	54.00	Pass
05 (Average)	2440.000	31.852	64.002	95.854			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-40BW_30Mbps(2.4G Band)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
05 (Peak)	2387.000	30.929	31.990	62.919	74.00	54.00	Pass
05 (Peak)	2390.000	30.915	31.531	62.446	74.00	54.00	Pass
05 (Peak)	2400.000	30.912	37.207	68.119	74.00	54.00	Pass
05 (Peak)	2430.600	31.075	73.854	104.930			Pass
05 (Average)	2390.000	30.915	19.281	50.196	74.00	54.00	Pass
05 (Average)	2400.000	30.912	23.806	54.718	74.00	54.00	Pass
05 (Average)	2438.600	31.130	59.054	90.184			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-40BW_30Mbps(2.4G Band)

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
09 (Peak)	2445.100	31.891	78.766	110.657			Pass
09 (Peak)	2483.500	32.182	36.773	68.955	74.00	54.00	Pass
09 (Peak)	2484.300	32.187	37.644	69.832	74.00	54.00	Pass
09 (Average)	2458.900	31.997	62.899	94.895			Pass
09 (Average)	2483.500	32.182	21.716	53.898	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-40BW_30Mbps(2.4G Band)

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
09 (Peak)	2458.900	31.270	71.454	102.723			Pass
09 (Peak)	2483.500	31.435	29.469	60.904	74.00	54.00	Pass
09 (Peak)	2484.300	31.440	30.852	62.293	74.00	54.00	Pass
09 (Average)	2458.100	31.263	57.314	88.578			Pass
09 (Average)	2483.500	31.435	17.765	49.200	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-40BW_30Mbps(2.4G Band)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
10 (Peak)	2450.100	31.928	72.811	104.740			Pass
10 (Peak)	2483.500	32.182	32.646	64.828	74.00	54.00	Pass
10 (Average)	2450.300	31.931	59.669	91.600			Pass
10 (Average)	2483.500	32.182	20.668	52.850	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-40BW_30Mbps(2.4G Band)

RF Radiated Measurement (Vertical):

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
10 (Peak)	2446.100	31.181	67.636	98.817			Pass
10 (Peak)	2483.500	31.435	29.098	60.533	74.00	54.00	Pass
10 (Average)	2454.500	31.238	53.594	84.833			Pass
10 (Average)	2483.500	31.435	16.885	48.320	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-20BW_14.4Mbps(5G Band)

Chaia A

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5745	46.20	>20	PASS

Agilen	it Spe	ctrun	n Ana	alyzer - Swe	ept SA								
Cen	ter	Fre	RF	50 Ω 5.72500	AC 00000 GH	Z	SE		Avg T	ALIGN AUTO ype: Log-Pw	06:55:46 P r TRA TY	M May 14, 2015 CE 1 2 3 4 5 6	Frequency
10 d	PN0: Fast Trig: Free Run IFGain:Low #Atten: 30 dB Ref Offset 1.5 dB Ref Offset 1.5 dB -41.51 dBm -41.51 dBm								Auto Tune				
Log 11.5 1.50 -8.50										And all Actual Willed	۲ ۲		Center Freq 5.725000000 GHz
-18.5 -28.5 -38.5								2 and the set			Null Internet	-15.31 dBm	Start Freq 5.675000000 GHz
-48.5 -58.5 -68.5	der torn	nvalet	*/	ultrisolocid	lend and an of the second s	LAMP-AN	all and the case of the second s					· Wordshey Black	Stop Freq 5.775000000 GHz
Cen #Re	ter : s B\	5.72 N 1	250 00	0 GHz kHz		#VB	W 1.0 MHz			#Sweep	Span 1 500.0 ms (00.0 MHz (1001 pts)	CF Step 10.000000 MHz Auto Man
1 2 3 4 5 6 7 8 9 10 11 <			f		× 5.747 (5.725 (5 GHz) GHz	¥ 4.69 d -41.51 d	FU Bm Bm 					Freq Offset 0 Hz
MSG										STA	TUS		

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-20BW_14.4Mbps(5G Band)

Chaia A

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5825	52.94	>20	PASS

Agilent Spectre	um Analyzer - Sw	rept SA								
Center Fr	RF 50 Ω eq 5.85000	00000 GHz		SENS	E:INT	Avg Type	ALIGNAUTO : Log-Pwr	07:01:21 Pf TRAC	May 14, 2015	Frequency
10 dB/div	Ref Offset 1. Ref 21.50	PNO: IFGair 5 dB dBm	:Fast (⊾) n:Low	#Atten: 30	dB		Mk	r2 5.850 -49.0	0 0 GHz	Auto Tune
Log 11.5 1.50 -8.50	ليدم	1 And And And And And And And And And And	day							Center Freq 5.85000000 GHz
-18.5 -28.5 -38.5	Walder Contract		North Contraction	han here	2				-16.15 dBm	Start Freq 5.80000000 GHz
-48.5 -58.5				Uler Robert	enitti yohni	all shower the inco	ph.naehanna)	htternet mensel	prinspindude Aprend	Stop Freq 5.90000000 GHz
Center 5.8 #Res BW	35000 GHz 100 kHz		#VBW	1.0 MHz		#	Sweep 5	Span 1 00.0 ms (00.0 MHz 1001 pts)	CF Step 10.000000 MHz Auto Man
MKR MODE TF 1 N 1 2 N 1 3 4 - 6 - 7 8 - - 9 - 10 11 -		X 5.827 5 G 5.850 0 G	GHZ GHZ	¥ 3.85 dB 49.08 dB	FUN m m		NCTION WIDTH	FUNCTIO		Freq Offset 0 Hz

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-20BW_14.4Mbps(5G Band)

Chaia B

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5745	45.64	>20	PASS

Agilent S	ipectr	um An	alyzer - Swo	ept SA								
Cente	er Fr	RF eq	50 Ω 5.72500	AC 00000 GH	z			Avg T	ALIGNAU ype: Log-P	TO 06:56:54 Wr TF	4 PM May 14, 2015 RACE 1 2 3 4 5 1	Frequency
10 dB/d	PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB Ref Offset 1.5 dB Ref Offset 1.5 dB Atten: 30 dB Atten: 30 dB Mkr2 5.725 0 GHz -41.28 dBm								Auto Tune			
Log 11.5 - 1.50 -								malater	AL ALL	flydger 1		Center Freq 5.725000000 GHz
-18.5 -28.5 -38.5							2 and the state			No.	-15.64 dBm	Start Freq 5.675000000 GHz
-48.5	Youthington	irvelura	ኯኯ	and and a second se	niped bet for	All and a set of a se						Stop Freq 5.775000000 GHz
Cente #Res	er 5.7 BW	7250 100	0 GHz kHz		#VB	W 1.0 MHz			#Swee	Span 500.0 ms	100.0 MHz s (1001 pts)	CF Step 10.000000 MHz Auto Man
MKR M0 1 N 2 N 3 4 5 6 7 8 9 10 11 <				× 5.747 5 5.725 (5 GHz) GHz	¥ <u>4.36 di</u> -41.28 di			FUNCTION W		TTION VALUE	Freq Offset

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-20BW_14.4Mbps(5G Band)

Chaia B

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5825	53.30	>20	PASS

Agile	nt Spe	ctrur	m An	alyzer - Swe	ept SA												
ι <mark>,x</mark> ν ℝ Cer	L nter	Fre	RF eq (50 Ω 5.85000	AC 00000 GH	lz		SEF		Γ	Avg 1	, Гуре	LIGNAUTO Log-Pwr	07:02:31 P TRA	M May 14, 20 CE 1 2 3 4 PF M MAAAAA	5 6	Frequency
10 d	B/div		Ref Ref	Offset 1.6	5 dB	NO: Fast Gain:Low	, . ,	#Atten: 30	D dB				Mk	r2 5.85 -49.	0 0 GH	iz m	Auto Tune
Log 11.5 1.50 -8.50				- Alaka	1	Mar Lung											Center Freq 5.85000000 GHz
-18.5 -28.5 -38.5			and the second	well work of the second s		1	North Contraction	low Maker	2-						-16.09 c	18m	Start Freq 5.80000000 GHz
-48.5 -58.5 -68.5		Y							er vich.	trong and	palayet worker of	(Lannus)	รั รเร าไขรไปการเป็น	m.d.	angle the links		Stop Freq 5.90000000 GHz
Cer #Re	nter es Bl	5.8: W 1	500 00	0 GHz kHz		#V	BW '	1.0 MHz				#\$	Sweep 5	Span 1 00.0 ms (00.0 Mi 1001 pi	Hz is)	CF Step 10.000000 MHz
1 2 3 4 5 6 7 8 9 10 11 <	N				× 5.827 5.850	5 GHz 0 GHz		¥ 3.91 df -49.39 df	3m 3m	FUNC		FUN		FUNCTI	DN VALUE		Freq Offset 0 Hz
MSG													STATUS				

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-40BW_30Mbps(5G Band)

Chaia A

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5755	40.70	>20	PASS

Agilent Sp	ectrum A	nalyzer - Swe	ept SA								
Center	· Freq	F 50 Ω 5.72500	AC 10000 GH	z	SEI		Avg Ty	ALIGNAUTO pe: Log-Pwr	07:03:47 P TRA	M May 14, 2015 CE 1 2 3 4 5 6 PE M MANANANAN	Frequency
10 dB/di	Re iv R i	of Offset 1.6	odB JBm	NO: Fast Gain:Low	#Atten: 30	dB		Mkr	00 GHz	Auto Tune	
Log 11.5 1.50 -8.50							He Marker Here	1 Lapellelisti	ļ.,		Center Freq 5.725000000 GHz
-18.5 -28.5 -38.5						2 week				-19.70 dBm	Start Freq 5.65000000 GHz
-48.5 -58.5 -68.5	ANA Ana ana ana ana ana ana ana ana ana ana	<mark>plantheol</mark> tery		an a							Stop Freq 5.80000000 GHz
Center #Res B	5.725 W 10	00 GHz) kHz		#VB	SW 1.0 MHz			#Sweep 5	Span 1 00.0 ms (50.0 MHz 1001 pts)	CF Step 15.000000 MHz Auto Man
MM2 M000 1 N 2 N 3 4 5 6 7 8 9 10 11			5.758 71 5.725 00	5 GHz 0 GHz	0.30 di -40.40 di				FUNCTI		Freq Offset 0 Hz
MSG								STATUS	5		

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-40BW_30Mbps(5G Band)

Chaia A

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5795	41.67	>20	PASS

Agilen	t Spe	ctrun	n Ana	alyzer - Swe	pt SA												
Cen	ter	Fre	RF eq (50 Ω 5.85000	AC 0000 GH	lz		SEI	NSE:IN	т	Avg 1	, Гуре	LIGNAUTO	07:06:20 F	M May 14, 2015	- -	Frequency
10 d	B/div		Ref	Offset 1.5	dB Bm	NO: Fast Gain:Low	, • #	Atten: 3	0 dB				Mkr	2 5.850 -52	00 GHz		Auto Tune
Log 11.5 1.50 -8.50	بليلر	Whited	, IA		Maha												Center Freq 5.85000000 GHz
-18.5 -28.5 -38.5				N	- have	mille			• 2						-18.98 dBm		Start Freq 5.775000000 GHz
-48.5 -58.5 -68.5								themaline	Mar Mar	nun mun	Watelliter Caleri	- - ₁ 9476	in the second	and the second second	Andrew Pick		Stop Freq 5.925000000 GHz
Cen #Re	ter: sB)	5.84 N/1	500 00	0 GHz kHz		#V	BW 1.	0 MHz		FUN		#\$	Sweep 5	Span * 00.0 ms	150.0 MHz (1001 pts)	A	CF Step 15.000000 MHz . <u>uto</u> Man
1 2 3 4 5 6 7 8 9 10 11	N		f		5.798 71 5.850 0	0 GHz 0 GHz	*	<u>1.02 dl</u> 52.20 dl	Bm								Freq Offset 0 Hz
MSG													STATUS	8			

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-40BW_30Mbps(5G Band)

Chaia B

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5755	53.22	>20	PASS

Agilent Sp	pectrum	i Ana	ilyzer - Swe	pt SA								
(X/ RL Cente	r Fre	RF q 5	50 Ω 5.72500	AC 0000 GH	z			Avg Type	ALIGNAUTO : Log-Pwr	07:04:52 P	M May 14, 2015	Frequency
10 dB/d	liv	Ref Ref	Offset 1.5 21.50 d	dB iBm	10: Fast Gain:Low	#Atten: \$	30 dB		Mkr	2 5.725 -41.	00 GHz 39 dBm	Auto Tune
11.5 1.50							,	L. M. H. M. L. M. L.	J ¹			Center Freq 5.725000000 GHz
-18.5 -28.5 -38.5							2				-19.72 dBm	Start Freq 5.65000000 GHz
-48.5 -58.5 -68.5	N snaph ^{one}		holes and the second	And the second	nine make						Production of the state of the	Stop Freq 5.80000000 GHz
Center #Res E	r 5.72 3W 10	2500 00	0 GHz kHz	1	#VE	3W 1.0 MH	2	#	Sweep 5	Span 1 00.0 ms (50.0 MHz 1001 pts)	CF Step 15.000000 MHz Auto Man
1 N 2 N 3 4 5 6 7 8 9 10 11		f		× 5.759 9 5.725 0	5 GHz 0 GHz	<u>0.28 c</u> 41.39 c				FUNCTI		Freq Offset
MSG									STATUS	3		

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11n-40BW_30Mbps(5G Band)

Chaia B

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5795	52.43	>20	PASS

Agilen	it Spe	ctrun	n Ana	alyzer - Swe	pt SA												
Cen	ter	Fre	RF eq (50 Ω 5.85000	AC 0000 GH	lz		SEN			Avg T	ہ ype:	LIGNAUTO Log-Pwr	07:07:26 TR 1	PM May 14, 20 ACE 1 2 3 4 5 YPE MIAAAAAA	15 5 6	Frequency
10 d	IFGain:Low #Atten: 30 dB Der IP NNNN Ref Offset 1.5 dB Mkr2 5.850 00 GHz -51.51 dBm 0 dB/div Ref 21.50 dBm -51.51 dBm													Auto Tune			
Log 11.5 1.50 -8.50	المهر	ليلغر	, MA	ا المريطالليانية	Muhuy												Center Freq 5.85000000 GHz
-18.5 -28.5 -38.5						undle			2						-19.08 dE	<u>Ərn</u>	Start Freq 5.775000000 GHz
-48.5 -58.5 -68.5								mundered	himer takes or	nyretu delati	rhitayara	lforden se	in the Northern	gel-managed	inner internet	1 22	Stop Freq 5.92500000 GHz
Cen #Re	ter sB MMM	5.84 N/1	500 00	0 GHz kHz		#V	BW 1.0	MHz		FUNC	TION T	#S	weep 5	Span 00.0 ms	150.0 MH (1001 pt:	IZ S)	CF Step 15.000000 MHz <u>Auto</u> Man
1 2 3 4 5 6 7 8 9 10 11	N N		f		5.790 0 5.850 0	0 GHz 0 GHz	(-5'	0.92 dE	3m 3m								Freq Offset 0 Hz
MSG													STATUS	5			

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11ac-80BW_65Mbps(5G Band)

Chaia A

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5775	36.83	>30	PASS

Agiler	nt Spe	etrur	n An	alyzer - Sw	ept SA								
₩ Cer	nter	Fre	RF Pq (50 Ω 5.72500	AC D0000 GH	z	SE		Avg Typ	ALIGNAUTO	09:21:10 P TRA	M May 14, 2015 CE 1 2 3 4 5 6	Frequency
10 d	PHO: Fast IFGain:Low Atten: 30 dB Atten: 30 dB Mkr1 5.790 0 GHz -0.893 dBm -0.893 dBm											Auto Tune	
Log 4.50 -5.50 -15.5								μυ	nt the solution of the solutio	11.hm/11	1 ليك ليا الما السياطين	-linly	Center Freq 5.725000000 GHz
-25.5 -35.5 -45.5	Jub	•-**	4.000	-iy-+vit-144-	and a strate the state of the s	allaultarismi	hadistarappenteterate	2,000				-30.89,dBm	Start Freq 5.625000000 GHz
-55.5 -65.5 -75.5													Stop Freq 5.825000000 GHz
Cer #Re	nter Is B	5.72 W 1	250 00	GHz kHz		#VE	3W 300 kHz			Sweep 1	Span 2 9.13 ms (00.0 MHz 1001 pts)	CF Step 20.000000 MHz Auto Man
MKF 1 2 3 4 5 6 7 8 9 10 11 <					× <u>5.790 (</u> 5.725 (D GHz D GHz	Y 0.893 d -37.725 d	FU Bm Bm 		UNCTION WIDTH		N VALUE	Freq Offset 0 Hz
MSG										STATU	S		

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3 MIMO: Transmit - 802.11ac-80BW_65Mbps(5G Band)

Chaia B

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5775	37.67	>30	PASS

Agilent Spe	ctrum Analyz	er - Swept SA										
₩ Center	RF Freq 5.7	50 Ω AC 2500000	0 GH:	Z	SEI	VSE:INT	1	vg Typ	ALIGNAUTO : Log-Pwr	09:21:31 P TRA	M May 14, 2015 CE 1 2 3 4 5 6	Frequency
10 dB/div	Ref Off Ref 14	set 1.5 dB I.50 dBm	PN IFG	0: Fast ain:Low	Trig: Free Atten: 30	Atten: 30 dB				ہ 15.77 kr1 5.77	0 0 GHz 55 dBm	Auto Tune
4.50 -5.50							utna til	չը ^{, ա} ւնվորո	1 Analus analus	apulnaand _{ee}	mu	Center Freq 5.725000000 GHz
-25.5 -35.5 -45.5				Multin	Walewey-atelestow	2,00					-30,96,dBm	Start Freq 5.625000000 GHz
-55.5												Stop Freq 5.825000000 GHz
Center #Res B	5.7250 GI W 100 kH	lz z		#VB\	V 300 kHz		FUNCTION		Sweep 1	Span 2 19.13 ms (00.0 MHz 1001 pts)	CF Step 20.000000 MHz Auto Man
1 N 2 N 3 4 5 6 7 8 9 10 11 <			5.770 0 5.725 0	I GHZ	-0.055 dl -37.725 dl	3m 3m						Freq Offset 0 Hz

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

RF Radiated Measurement (Horizontal):

Channel Na	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	31.509	40.384	71.893	74.00	54.00	Pass
01 (Peak)	2400.000	31.561	58.357	89.918	74.00	54.00	Pass
01 (Peak)	2410.400	31.627	80.929	112.556			Pass
01 (Average)	2390.000	31.509	22.033	53.542	74.00	54.00	Pass
01 (Average)	2400.000	31.561	38.569	70.130	74.00	54.00	Pass
01 (Average)	2415.200	31.662	69.681	101.344			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

RF Radiated Measurement (Vertical):

Channel Ne	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2387.800	30.925	35.626	66.551	74.00	54.00	Pass
01 (Peak)	2390.000	30.915	35.070	65.985	74.00	54.00	Pass
01 (Peak)	2400.000	30.912	53.308	84.220	74.00	54.00	Pass
01 (Peak)	2414.400	30.966	76.978	107.944			Pass
01 (Average)	2390.000	30.915	19.314	50.229	74.00	54.00	Pass
01 (Average)	2400.000	30.912	35.391	66.303	74.00	54.00	Pass
01 (Average)	2415.200	30.971	66.086	97.057			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

RF Radiated Measurement (Horizontal):

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
02 (Peak)	2389.400	31.507	38.979	70.486	74.00	54.00	Pass
02 (Peak)	2390.000	31.509	37.207	68.716	74.00	54.00	Pass
02 (Peak)	2400.000	31.561	55.950	87.511	74.00	54.00	Pass
02 (Peak)	2414.000	31.654	85.531	117.184			Pass
02 (Average)	2390.000	31.509	21.778	53.287	74.00	54.00	Pass
02 (Average)	2400.000	31.561	39.014	70.575	74.00	54.00	Pass
02 (Average)	2419.800	31.698	74.120	105.818			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
02 (Peak)	2390.000	30.915	33.501	64.416	74.00	54.00	Pass
02 (Peak)	2400.000	30.912	53.037	83.949	74.00	54.00	Pass
02 (Peak)	2419.200	30.998	79.934	110.932			Pass
02 (Average)	2390.000	30.915	17.559	48.474	74.00	54.00	Pass
02 (Average)	2400.000	30.912	34.410	65.322	74.00	54.00	Pass
02 (Average)	2419.400	30.999	69.304	100.304			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
10 (Peak)	2459.700	32.002	84.815	116.817			Pass
10 (Peak)	2483.500	32.182	34.237	66.419	74.00	54.00	Pass
10 (Peak)	2490.700	32.237	37.474	69.710	74.00	54.00	Pass
10 (Average)	2455.300	31.969	73.355	105.324			Pass
10 (Average)	2483.500	32.182	21.224	53.406	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

RF Radiated Measurement (Vertical):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
10 (Peak)	2453.900	31.235	77.169	108.404			Pass
10 (Peak)	2483.500	31.435	29.727	61.162	74.00	54.00	Pass
10 (Peak)	2490.100	31.480	26.862	58.342	74.00	54.00	Pass
10 (Average)	2453.900	31.235	66.670	97.905			Pass
10 (Average)	2483.500	31.435	17.891	49.326	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2464.700	32.039	81.982	114.022			Pass
11 (Peak)	2483.500	32.182	40.382	72.564	74.00	54.00	Pass
11 (Average)	2459.500	32.001	70.983	102.983			Pass
11 (Average)	2483.500	32.182	21.242	53.424	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

RF Radiated Measurement (Vertical):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
11 (Peak)	2459.900	31.276	74.959	106.235			Pass
11 (Peak)	2483.500	31.435	30.335	61.770	74.00	54.00	Pass
11 (Peak)	2484.100	31.439	32.728	64.167	74.00	54.00	Pass
11 (Average)	2459.300	31.272	64.149	95.421			Pass
11 (Average)	2483.500	31.435	16.837	48.272	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
12 (Peak)	2469.700	32.078	76.935	109.013			Pass
12 (Peak)	2483.500	32.182	39.408	71.590	74.00	54.00	Pass
12 (Average)	2464.300	32.037	65.842	97.879			Pass
12 (Average)	2483.500	32.182	21.344	53.526	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band)

RF Radiated Measurement (Vertical):

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
12 (Peak)	2462.500	31.294	70.101	101.395			Pass
12 (Peak)	2483.500	31.435	33.434	64.869	74.00	54.00	Pass
12 (Average)	2464.500	31.307	59.236	90.543			Pass
12 (Average)	2483.500	31.435	17.610	49.045	74.00	54.00	Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
03 (Peak)	2390.000	31.509	36.410	67.919	74.00	54.00	Pass
03 (Peak)	2400.000	31.561	50.076	81.637	74.00	54.00	Pass
03 (Peak)	2434.000	31.807	76.527	108.334			Pass
03 (Average)	2390.000	31.509	21.609	53.118	74.00	54.00	Pass
03 (Average)	2400.000	31.561	36.401	67.962	74.00	54.00	Pass
03 (Average)	2429.400	31.772	61.669	93.441			Pass

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

RF Radiated Measurement (Vertical):

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
03 (Peak)	2390.000	30.915	31.212	62.127	74.00	54.00	Pass
03 (Peak)	2400.000	30.912	44.610	75.522	74.00	54.00	Pass
03 (Peak)	2430.000	31.071	71.639	102.710			Pass
03 (Average)	2390.000	30.915	17.529	48.444	74.00	54.00	Pass
03 (Average)	2400.000	30.912	31.772	62.684	74.00	54.00	Pass
03 (Average)	2428.400	31.060	57.267	88.328			Pass

Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
04 (Peak)	2390.000	31.509	35.601	67.110	74.00	54.00	Pass
04 (Peak)	2400.000	31.561	40.682	72.243	74.00	54.00	Pass
04 (Peak)	2439.000	31.845	76.976	108.821			Pass
04 (Average)	2390.000	31.509	21.946	53.455	74.00	54.00	Pass
04 (Average)	2400.000	31.561	27.024	58.585	74.00	54.00	Pass
04 (Average)	2434.400	31.809	62.366	94.176			Pass

Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
04 (Peak)	2389.000	30.920	31.021	61.941	74.00	54.00	Pass
04 (Peak)	2390.000	30.915	29.680	60.595	74.00	54.00	Pass
04 (Peak)	2400.000	30.912	35.222	66.134	74.00	54.00	Pass
04 (Peak)	2435.200	31.107	72.255	103.362			Pass
04 (Average)	2390.000	30.915	17.655	48.570	74.00	54.00	Pass
04 (Average)	2400.000	30.912	22.757	53.669	74.00	54.00	Pass
04 (Average)	2434.600	31.102	57.937	89.040			Pass

Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
09 (Peak)	2455.900	31.973	78.045	110.018			Pass
09 (Peak)	2483.500	32.182	33.067	65.249	74.00	54.00	Pass
09 (Peak)	2484.500	32.190	34.934	67.124	74.00	54.00	Pass
09 (Average)	2458.100	31.990	65.769	97.759			Pass
09 (Average)	2483.500	32.182	21.190	53.372	74.00	54.00	Pass

Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
09 (Peak)	2442.100	31.154	71.886	103.040			Pass
09 (Peak)	2483.500	31.435	28.572	60.007	74.00	54.00	Pass
09 (Peak)	2483.900	31.438	30.239	61.677	74.00	54.00	Pass
09 (Average)	2443.300	31.161	60.033	91.195			Pass
09 (Average)	2483.500	31.435	17.025	48.460	74.00	54.00	Pass

Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

RF Radiated Measurement (Horizontal):

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
10 (Peak)	2450.100	31.928	72.811	104.740			Pass
10 (Peak)	2483.500	32.182	32.646	64.828	74.00	54.00	Pass
10 (Average)	2450.300	31.931	59.669	91.600			Pass
10 (Average)	2483.500	32.182	20.668	52.850	74.00	54.00	Pass

Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-40BW_15Mbps(2.4G Band)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
10 (Peak)	2446.100	31.181	67.636	98.817			Pass
10 (Peak)	2483.500	31.435	29.098	60.533	74.00	54.00	Pass
10 (Average)	2454.500	31.238	53.594	84.833			Pass
10 (Average)	2483.500	31.435	16.885	48.320	74.00	54.00	Pass

Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-20BW_7.2Mbps(5G Band)

Chain A

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5745	43.21	>20	PASS

Agilent Spect	rum Analyzer -	Swept SA								
Center F	RF 5 Freq 5.725	0 Ω AC 0000000 GH	Z	SEN		Avg Typ	ALIGNAUTO e: Log-Pwr	07:19:24 Pl TRAC	M May 14, 2015	Frequency
	PNO: Fast ING. Free Kun IFGain:Low #Atten: 30 dB Ref Offset 1.5 dB Mkr2 5.725 0 GHz									
10 dB/div Log 11.5	Ref 21.5	0 dBm				ل. المماليكر العاليس	1 Alaka and a start and a start and a start a sta	-37.3		Center Freq 5.725000000 GHz
-8.50 -18.5 -28.5 -38.5					2 - water and a start of the st			Not	-14.75 dBm	Start Freq 5.675000000 GHz
-48.5 <mark>المرتجعة المعامة المحمد المعامة معامة محمد معامة معامة المعامة المعامة المعامة المعامة المحمد المعامة المعامة المعامة المعامة المعامة المعامة المعامة المعامة الم</mark>	inteldit.cv เป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็น	an a		a alandaradar					Theory California and California	Stop Freq 5.775000000 GHz
Center 5 #Res BW	.72500 GH 100 kHz	Z	#VBV	V 1.0 MHz		#	Sweep 5	Span 1 00.0 ms (00.0 MHz 1001 pts)	CF Step 10.000000 MHz Auto Man
MKE MODE 1 N 2 N 3 4 5 5 6 7 7 8 9 10 11 11 < 11 11	IRC SCL 1 f 1 f 	× 5.747 (5.725 (5 GHz D GHz	Y 5.25 dE -37.96 dE	FUNC BM BM BM BM BM BM BM BM BM BM BM BM BM		NCTION WIDTH	FUNCTIO		Freq Offset 0 Hz
MSG							STATUS	\$		

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-20BW_7.2Mbps(5G Band)

Chain A

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5825	48.03	>20	PASS

Agiler	it Spe	ctrun	n Ana	alyzer - Swe	pt SA												
w∥ R Cer	ter	Fre	RF q {	50 Ω 5.85000	AC 0000 GH	lz		SEI	NSE:II	NT	Avg 1	, Гуре	ALIGN AUTO : Log-Pwr	07:20:55 F TRA	M May 14, 20 CE 1 2 3 4 5	15 5 6	Frequency
10 d	Bidiy		Ref	Offset 1.5	edB IBm	NO: Fast Gain:Low	, -	#Atten: 3	0 dB				Mk	r2 5.85 -42.	et PNNNI 0 0 GH 88 dBi	iz n	Auto Tune
Log 11.5 1.50				n n n n n n n n n n n n n n n n n n n		Lakey											Center Freq 5.85000000 GHz
-18.5 -28.5 -38.5	ر الفعاد ال	NAMA PIC		bradd and		L.	YW YW	Why we dry where	2						-14.85 di	<u>Əm</u>	Start Freq 5.80000000 GHz
-48.5 -58.5 -68.5									<u></u>	Websterry ro	- www.ivho	Urt-April	munaherrudp	¹ างระหาให้และ _{สา} ง	And a		Stop Freq 5.90000000 GHz
Cer #Re	ter : s B\	5.85 N 1	500 00	0 GHz kHz		#V	BW	1.0 MHz				#\$	Sweep 5	Span 1 00.0 ms (00.0 MH (1001 pt	lz s)	CF Step 10.000000 MHz Auto Man
1 2 3 4 5 6 7 8 9 10 11 <					× 5.827 5.850	5 GHz 0 GHz		¥ 5.15 dl -42.88 dl	Bm Bm	FUNC		FUN		FUNCTI	ON VALUE		Freq Offset 0 Hz
MSG													STATUS	5			

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-20BW_7.2Mbps(5G Band)

Chain B

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5745	42.76	>20	PASS

Agilent Spectr	um Analyzer - Sw	vept SA								
uxu _{RL} Center F	RF 50 S req 5.7250	2 AC 00000 GH	z	SEN		Avg Type	ALIGNAUTO : Log-Pwr	07:19:43 PI TRAC	M May 14, 2015	Frequency
	Ref Offset 1.5 dB Mkr2 5.725 0 GHz									
10 dB/div Log 11.5	Ref 21.50	dBm					1 Alla alay	-37.0		Center Freq 5.725000000 GHz
-0.50 -18.5 -28.5 -38.5					2-marthant			Don war and have the	-14.88 dBm	Start Freq 5.675000000 GHz
-48.5	รม _{ีโก} ร์การรู้สม _า ยุการรู้สมาย	the construction	and the street of the state of							Stop Freq 5.775000000 GHz
Center 5. #Res BW	72500 GHz 100 kHz		#VBV	V 1.0 MHz		#	Sweep 5	Span 1 00.0 ms (00.0 MHz 1001 pts)	CF Step 10.000000 MHz Auto Man
MKR MODE TI 1 N 1 2 N 1 3 4 - 5 - 6 7 - - 8 - - 9 - - 10 - -		× 5.750 (5.725 () GHz) GHz	¥ 5.12 dE -37.64 dE	FUNC 3m 3m		NCTION WIDTH	FUNCTIO		Freq Offset 0 Hz
MSG							STATUS	;		L]

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-20BW_7.2Mbps(5G Band)

Chain B

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5825	48.54	>20	PASS

Center Freq S	50 Ω AC 5.850000000 GHz PNO: Fas IFGain:Lo	sense:ur t	NT Avg Type: n	LIGNAUTO 07:21: : Log-Pwr	19 PM May 14, 2015 TRACE 1 2 3 4 5 6	Frequency					
10 dB/div Ref Log 11.50	PNO: Fas IFGain:Lo	w #Atten: 30 dB			TYPE MIAJAJAJAJ						
11.50 -8.50	PN0: Fast Ing. Free Run IFGain:Low #Atten: 30 dB Ref Offset 1.5 dB dB/div Ref 21 50 dBm -43.35 dBm										
						Center Freq 5.850000000 GHz					
-18.5 -28.5 -38.5		and the state of t			-14.81 dBm	Start Freq 5.80000000 GHz					
-48.5			All and a second and a second and a second and a second a	artalaneurpan-kalaanayangala.	my of all and a second se	Stop Freq 5.90000000 GHz					
Center 5.8500 #Res BW 100	00 GHz kHz #\	/BW 1.0 MHz	#9	Spa Sweep 500.0 m	n 100.0 MHz is (1001 pts)	CF Step 10.000000 MHz Auto Man					
MKR M003 F60 S92 1 N 1 f 2 N 1 f 3 - - - 4 - - - 5 - 6 - 7 - - 8 - 9 - 10 - 11 - 5 -	* 5.827 5 GHz 5.850 0 GHz	¥ 5.19 dBm -43.35 dBm				Freq Offset 0 Hz					

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-40BW_15Mbps(5G Band)

Chain A

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5755	36.81	>20	PASS

It RF 90.2 AC BEREENTI ALIGNANTO D0725-357MM Mp14, 2015 Frequency Center Freq 5.725000000 GHz Trig: Free Run Avg Type: Log-Pwr Trace 12.3 4 5 6 Auto Tune I dots Ref Offset 1.5 dB Mkr2 5.725 00 GHz Auto Tune Auto Tune 10 db/dv Ref 21.50 dBm -34.68 dBm -34.68 dBm 5.725000000 GHz 115 db/dv Ref 21.50 dBm -34.68 dBm -34.68 dBm 5.725000000 GHz 125 db/dv Ref 21.50 dBm -34.68 dBm -34.68 dBm 5.725000000 GHz 126 db/dv db/dv db/dv -34.68 dBm 5.725000000 GHz 285 db/dv db/dv db/dv db/dv -34.68 dBm 5.650000000 GHz 385 db/dv db/dv db/dv db/dv -34.68 dBm 5.650000000 GHz 286 db/dv db/dv db/dv db/dv -34.68 dBm 5.650000000 GHz 288 db/dv db/dv db/dv db/dv -34.68 dBm -34.6	Agilent Spect	Agilent Spectrum Analyzer - Swept SA													
PN0: rast #Atten: 30 dB Der PINNNN Ref Offset 1.5 dB Mkr2 5.725 00 GHz Auto Tune 10 dB/div Ref 21.50 dBm -34.68 dBm -34.68 dBm 11.5	Center F	req :	50 Ω 5.72500	AC	Z	SEM		Avg Type	ALIGNAUTO : Log-Pwr	07:25:45 P	M May 14, 2015 CE 1 2 3 4 5 6 PE M MAAAAAAAA	Frequency			
Log 1 <th1< th=""> 1 1 1</th1<>	10 dB/div	Ref Ref	Offset 1.5	ifG dB IBm	iu: Fast (Gain:Low	#Atten: 30) dB		Mkr	2 5.725 -34.	00 GHz 68 dBm	Auto Tune			
18.5 17.37 dBm 28.5 2 38.5 2 48.5 2 68.5 3 68.5 3 7 1 8 3 9 9 9 9 10 1	Log 11.5 1.50 -8.50							Junanu	priktiliket-hile	μų.		Center Freq 5.725000000 GHz			
48.5	-18.5 -28.5 -38.5					Linger-anti-hitseyable	2 durter and				-17.87 dBm	Start Freq 5.65000000 GHz			
Center 5.72500 GHz Span 150.0 MHz CF Step 15.00000 MHz #Res BW 100 kHz #VBW 1.0 MHz #Sweep 500.0 ms (1001 pts) Low Max 1 N 1 f 5.750.05 GHz 2.13 dBm FUNCTION WIDTH FUNCTION WIDTH<	-48.5 -58.5 -68.5	- And and a second	weeks dat buye	de de de la companya	red and a second second	e ^{r -}						Stop Freq 5.80000000 GHz			
MXE Mode FRC Sol X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE Function Value 1 N 1 f 5.750.05 GHz 2.13 dBm Function width Function value Function value Function value Function value Freq Offset 0 Hz 0 Hz	Center 5. #Res BW	.7250 100	0 GHz kHz		#VB	W 1.0 MHz		#	Sweep 5	Span 1 00.0 ms (50.0 MHz 1001 pts)	CF Step 15.000000 MHz			
	MKF MODE T 1 N 2 2 N 3 4 5 6 7 8 9 10 11			× 5.750 05 5.725 00	5 GHz	¥ _2.13 df -34.68 df	Sm Sm Sm			FUNCTI		Freq Offset 0 Hz			

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-40BW_15Mbps(5G Band)

Chain A

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5795	50.25	>20	PASS

M RL RF SO Q. AC SENSE.INT ALIGNAUTO 07:30:25 PM May 14, 2015. Center Freq 5.85000000 GHz PN0: Fast Trig: Free Run Avg Type: Log-Pwr TRACE 12 2 3 45. Frequency QM AC PN0: Fast Trig: Free Run Avg Type: Log-Pwr TRACE 12 2 3 45. Frequency QM AC Ref Offset 1.5 dB Mkr2 5.850 00 GHZ Center Freq 5.850000 GHZ Auto Tur 10 dB/div Ref 21.5 0 dBm -47.64 dBm -47.64 dBm -47.64 dBm 1.50 -47.64 dBm -47.39 dbm -5.850000 Gi -5.850000 Gi 8.50 -48.5 -48.5 -47.39 dbm -5.9200000 Gi 8.65 -48.5 -48.5 -48.5 -5.9200000 Gi -5.92500000 Gi 8.86 -48.5 <t< th=""><th colspan="14">Agilent Spectrum Analyzer - Swept SA</th></t<>	Agilent Spectrum Analyzer - Swept SA														
PNO: Fast Ing. Free Num Det (P NNNNN) Ref Offset 1.5 dB Mkr2 5.850 00 GHz Auto Tur 10 dB/div Ref 21.50 dBm -47.64 dBm Center Fre 150 1 1 1 5.850000 GHz Start Fre 185 1 1 1 1 1 5.775000000 GHz 185 1 1 1 1 1 5.775000000 GHz 185 1 1 1 1 1 5.775000000 GHz 186 1 1 1 1 1 1 5.75000000 GHz 186 1 1 1 1 1 1 5.92500000 GHz 186 1 1 1 1 1 1 5.92500000 GHz 187 1 1 1 1 5.800 05 GHz 2.61 dBm 1 1 15.00000 MHz 1 1 1 1 5.800 05 GHz 2.61 dBm 1 1 1 1 1 </td <th>Frequency</th> <td>M May 14, 2015 E 1 2 3 4 5 6</td> <td>07:30:25 PM TRAC</td> <td>ALIGNAUTO : Log-Pwr</td> <td>Avg Type</td> <td>E:INT</td> <td>SENS</td> <td>z</td> <td>AC 10000 GH</td> <td> 50 Ω 5.85000</td> <td>RF Freq :</td> <td>nter</td> <td>¤ الاس Cer</td>	Frequency	M May 14, 2015 E 1 2 3 4 5 6	07:30:25 PM TRAC	ALIGNAUTO : Log-Pwr	Avg Type	E:INT	SENS	z	AC 10000 GH	50 Ω 5.85000	RF Freq :	nter	¤ الاس Cer		
Log 1.6 1.6 Center Fre 1.50	Auto Tune	Ref Offset 1.5 dB Mkr2 5.850 00 GHz dB/div Ref 21.50 dBm													
18.5 -17.39 dBm 28.5 -17.39 dBm 28.5 -17.39 dBm 38.5 -17.39 dBm 48.5 -17.39 dBm 58.5 -10.10 58.5 -10.10 58.5 -10.10 58.5 -10.10 58.5 -10.10 58.5 -10.10 58.5 -10.10 58.5 -10.10 58.5 -10.10 59.7 -10.00 6 -10.10 7 -10.10	Center Freq 5.85000000 GHz								-		, Julio Angle	5 	Log 11.6 1.50		
48.5	Start Freq 5.775000000 GHz	-17.39 dBm				2	latat L	Y worth liter work		·		;	-18.5 -28.5 -38.5		
Center 5.85000 GHz Span 150.0 MHz Span 150.0 MHz CF Ster #Res BW 100 kHz #VBW 1.0 MHz #Sweep 500.0 ms (1001 pts) 15.00000 MI 1 N 1 f 5.800 0 GHz -47.64 dBm -	Stop Freq 5.925000000 GHz	๛๚๚๛๛๚ๅ๛ๅ๛๚๚ั	iden gestynn, fryse	martingal land	an water of the state of the st	ally report of the						; ;	-48.5 -58.6 -68.6		
MKER Mode Frei Scu X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE Function Value 1 N 1 f 5.800.05 GHz 2.61 dBm Function Value Function Val	CF Step 15.000000 MHz Auto Man	50.0 MHz 1001 pts)	Span 1 00.0 ms (Sweep 5	#		1.0 MHz	#VBW		0 GHz kHz	5.8500 V 100	nter (es BV	Cer #Re		
	Freq Offset		FUNCTIO			FUN m m 	Y 2.61 dB -47.64 dB	5 GHz	× 5.800 0 5.850 0				1 2 3 4 5 6 7 8 9 10 11 <		

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-40BW_15Mbps(5G Band)

Chain B

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5755	38.47	>20	PASS

Agilen	Agilent Spectrum Analyzer - Swept SA													
Cen	ter	Fre	RF Pq (50 Ω 5.72500	AC	lz	SE Trig: Fre	NSE:INT	Avg T	ALIGNAU ype: Log-P	1TO 07:27 'wr	2:41 PM May 14, 2 TRACE 1 2 3 4 TYPE MWWW	2015	Frequency
	IFGain:Low #Atten: 30 dB Der[P NNNN Ref Offset 1.5 dB Mkr2 5.725 00 GHz 36.16 dBm 0 dB/div Ref 21.50 dBm -36.16 dBm													Auto Tune
10 di Log 11.5 1.50		,		21.50 0					hall and the state of the state		had had		_	Center Freq 5.725000000 GHz
-18.5 -28.5 -38.5							Latteruse destilut	2 town				-17.70	dBm	Start Freq 5.65000000 GHz
-48.5 -58.5 -68.5	mulu	w.	****	bealyland at long	ala da	•₩ _{₩9} 8.604°							<u>MUA</u>	Stop Freq 5.80000000 GHz
Cen #Re	ter sB1	5.72 W 1	250 00	0 GHz kHz	×	#VB	W 1.0 MHz			#Swee	Spa p 500.0 m	an 150.0 M ns (1001 p	Hz ts)	CF Step 15.000000 MHz <u>Auto</u> Man
1 2 3 4 5 6 7 8 9 10 11			f		5.758 7 5.725 0	5 GHz 0 GHz	2.31 d -36.16 d	Bm Bm Bm		FUNCTION				Freq Offset 0 Hz
< MSG										S	TATUS			

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11n-40BW_15Mbps(5G Band)

Chain B

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5795	49.50	>20	PASS

Agiler	it Spe	ctrun	n Ana	alyzer - Swe	pt SA											
<mark>ж</mark> к Cen	ter	Fre	RF eq (50 Ω 5.85000	AC 10000 GH	z	S Tria: Er	ENSE:IN	IT	Avg 1	AL ype:	lign auto Log-Pwr	07:31:15 F TRA	M May 14, 20: CE 1 2 3 4 5 PE M MAAAAAA	15 6	Frequency
10 d	B /div		Ref	Offset 1.5	idB	NO: Fast Sain:Low	#Atten:	30 dB	·			Mkr	2 5.850 -46.	00 GH	z n	Auto Tune
Log 11.5 1.50	ماليليم	لما الم		1	an a											Center Freq 5.85000000 GHz
-0.50 -18.5 -28.5 -38.5				• 	- Vor		walatit.	¢2-						-17.12 dE	im	Start Freq 5.775000000 GHz
-48.5 -58.5 -68.5										abel and be	Mondy	white your and the second	Uhrmon			Stop Freq 5.925000000 GHz
Cen #Re	ter: sB\ mma	5.84 N 1	500 00	0 GHz kHz	X	#VE	3W 1.0 MH	z	FLIN		#S'	weep 5	Span 1 00.0 ms (50.0 MH (1001 pts	iz S)	CF Step 15.000000 MHz <u>Auto</u> Man
1 3 4 5 6 7 8 9 10 11 <			f		5.790 0 5.850 0	0 GHz 0 GHz	<u>2.88 (</u> -46.62 c	dBm dBm	FUN		FUNL		FUNCT			Freq Offset 0 Hz
MSG												STATUS	6			

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11ac-80BW_32.5Mbps(5G Band)

Chain A

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5775	39.09	>30	PASS

Agilen	t Spec	ctrun	n Ana	alyzer - Swe	ept SA											
<mark>.⊯</mark> Cen	ter	Fre	RF q 5	50 Ω 5.72500	AC			SENSE:I	nt	Avg T AvgIH	AL [ype: old:>1	.IGN AUTO Log-Pwr 100/100	09:22:06 P TRA TY	M May 14, 20 CE 1 2 3 4 PE M WWW	5 6	Frequency
10 dE	Bidiy		Ref	Offset 1.5	idB	iu: Fast Sain:Low	Atte	n: 30 dB				Mk	₀ 1.1 5.77 0 1.1	^{ET P NNN} 0 0 GH 90 dB	iz m	Auto Tune
4.50 -5.50 -15.5				14.50 0					,Ulwi	LUI ^{III-nI}	<u>untv</u>		Mulmonth	Lulu	_	Center Freq 5.725000000 GHz
-25.5 -35.5 -45.5						and the second	the loss of the first of the fi	3, 1,74-4	M					-3140	Bn Je	Start Freq 5.625000000 GHz
-55.5 -65.5 -75.5	4 6-48-40	(*1.41.99)	ww.or												_	Stop Freq 5.825000000 GHz
Cen #Res	ter : s B\	5.72 N 1	250 00	GHz kHz		#VI	300 I	Hz			SI	weep 1	Span 2 9.13 ms (00.0 Mi 1001 pi	Hz ts)	CF Step 20.000000 MHz
1 2 3 4 5 6 7 8 9 10 11	N N N	1 1	SDL f		× 5.770 5.725	0 GHz 0 GHz	¥ -1.19 -40.28	0 dBm 4 dBm	FUN		FUNC	TION WIDTH	FUNCTI			Freq Offset 0 Hz
MSG												STATUS				

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 4 Beamforming: Transmit - 802.11ac-80BW_32.5Mbps(5G Band)

Chain B

Test Frequency	Measurement Level	Limit	Result
(MHz)	Δ (dB)	Δ (dB)	
5775	37.85	>30	PASS

Agiler	nt Spec	trum.	Anal	yzer - Swe	pt SA												
IXI Dici	alav	Lin	RF	50Ω				SEM	ISE:INT		Ava	/ Type		09:22:29 P	M May 14, 201	5	Display
DIS	Jiay	LIN	8	51.20 (P P	NO: Fast	Ţ	Trig: Free	Run		Avg F	lold>	100/100	TY		N N	
						sain:Luv	/	Atten. 00	40				Mk	r1 5 77	0.0.04	7	Annotation►
10 d	B/div	R	ef C ef	Offset 1.5 14.50 d	idB IBm									-1.2	67 dBn		
Log													▲ 1			1	
4.50												nduuu	tadil allor				Title►
-0.00										Шли				With Control of Contro	4hala		
-25.5										Į							
-35.5								(اس مرجع						-31 \$26 dBr		Graticule
-45.5					hi	whethere	فاستعرب	المماليب وعدما	r						-`	On	Off
-55.5	ntonthan	አትጊላ ት አ	ru _{nst}	الهايج مرحسهم	and hours of the second												
-65.5																	-31.26 dBm
-75.5																On	l Off
		. 70												.			
ucer #Re	nter : s B¥	5.723 N 10	0 k	GHZ HZ		#V	вw	300 kHz				s	weep 1	span⊿ 9.13 msí	(1001 pts		
MKB	MODE	TRC			×			Y		FUN	TION	EUN		ELINCTI			
1	N	1	f		5.770	0 GHz		-1.267 dE	3m								
2	N	1	r		5.725	U GHZ		-39.121 dE	3m								System
4			+														Settings
6																	
8																	
9 10																	
11																	
MSG													STATUS	;			

7. Occupied Bandwidth

7.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2014
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2014
Х	Spectrum Analyzer	Agilent	N9010A/MY48030495	Apr., 2015

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

The minimum bandwidth shall be at least 500 kHz.

7.4. Test Procedure

The EUT was setup according to ANSI C63.10, 2009; tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

7.5. Uncertainty

± 150Hz

7.6. Test Result of Occupied Bandwidth

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11b 1Mbps (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412.00	10200	>500	Pass

Figure Channel 1:

- POTOMAN A	M Apr 17, 2015	02:51:55 F	ALIGNAUTO		NSE:INT	SE		AC	50 Ω	RF		L	R
Frequency	E 123456	TRAC	: Log-Pwr	Avg Ty			z	0000 GH	.41200	eq 2.	Fre	nter	Cen
	ETPNNNNN	D			dB	#Atten: 3	IO: Fast 🕞 iain:Low	PN					
Auto Tun	90 GHz 02 dBm	Ref Offset 0.5 dB Mkr2 2.406 90 GHz 10 dB/div Ref 20.50 dBm -1.02 dBm -1.02 dBm											
Contor Fra	1	Page 1		2	\bigcirc^1	2	1	11	19.40		-		.0g
CenterFre	1.39 dBm		i	()°	phrang	mallering				-		<u>[</u>	200
2.412000000 GH				May	P	-	Mary			2.17			
[n			J.						9.50
Start Fre	1			1			1					-	19.5
2 38700000 GH					-		1			-	-	-	29.5
2.007.000000						-	1			-		-	39.5
	the section of the sector	and Bergery and	ones instrum	-				- manapartille	Proven alla	and an	all gores		49.5
Stop Fre											Aris all.	-	EDE
2.437000000 GH						1				-	_	L	59.5
Contraction of the													69.5
CF Ste	0.00 MHz 1001 pts)	Span 5 .80 ms (Sweep 4			300 kHz	#VBW		GHz Hz	1200 00 k	2.4 W 1	ter s B	Cen #Re
Auto Ma	ON VALUE	FUNCTIO	ICTION WIDTH	ICTION		Y		×		SCL	TRC	MODE	MKR
1					Bm	7.39 d	GHz	2.413 00		f	1	N	1
F					Bm	-1.02 d	D GHZ	2.406 90		f	1	N	3
Frequisi				1									4
0 H		_			-				_				5
													7
					-						-	_	8
			-										10
													11
		_		_	_		-		_		-	_	12

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11b 1Mbps (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437.00	10200	>500	Pass

Figure Channel 6:

1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	03:01:06 PM Apr 17, 2015	ALIGNAUTO		SENSE:INT	S		AC	50 Ω	RF		L	RI
Frequency	TRACE 123456 TYPE MWWWAWW DET P N N N N N	e: Log-Pwr	Avg Typ	ree Run : 30 dB	Trig: Fre	IZ 10: Fast 😱	00000 GH	.43700	q 2	Fre	ter	en
Auto Tun	2.431 90 GHz 0.17 dBm	Mkr2				Jan.cow	5 dB dBm	Offset 0.6 20.50 (Ref C Ref	. 1	B/div) dE
Center Fre 2.437000000 GH	2.16 dBm		3	M PLALAIA	2	- Mary						og 10,5 500
Start Fre 2.412000000 GH			May 1			f.						9.5 9.5 9.5
Stop Fre 2.46200000 GH	and a solution of the solution	No. Constant					Man Sunt	and the second	With Bark	life and a	A	19.5 19.5 19.5
CF Ste	Span 50.00 MHz 80 ms (1001 pts)	Sweep 4		Hz	300 kHz	#VBW		GHz Hz	8700 00 k	2.43 W 1	ter : s Bl	en Re
<u>Auto</u> Ma	FUNCTION VALUE	INCTION WIDTH	NCTION	dBm	8.16 c	0 GHz	× 2.436 00		f		N	
Freq Offso 0 H				dBm	0.62 c	0 GHz	2.442 10		f	1	N	3 4 5 6 7
												8 9 0 1

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11b 1Mbps (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462.00	10200	>500	Pass

Figure Channel 11:

- For an and a second	4 Apr 17, 2015	03:10:09 P	ALIGNAUTO		INSE:INT	SE		AC	50 Ω	RF		L	RL
Frequency	123456	TRAC	: Log-Pwr	Avg Typ		THEFT	z	0000 GH	46200	q 2.	Fre	ter	en
T. Sales	TPNNNNN	DE			e Run 0 dB	#Atten: 3	10: Fast 🕞 Gain:Low	PN					
Auto Tui	90 GHz 55 dBm	2.456 -3.	Mkr2					dB Bm)ffset 0.5 20.50 d	Ref 0 Ref 1		B/div	0 dE
Center En	10000	les des			1		1	$\sim - 1$	19.40		-		0g
Center Fit	-1.35 dBm		1	3	PARLAN	2 ALMANNA	1	11 - 11				1	500
2.46200000 Gi				M	Y		area?					ί, Ε.	1 50
				a Ty			P						95
StartFr				2			I	1				1	5.9
2.437000000 G				X			1º				-		9.5
							1						9.5
	AT a lond as a	mater	all and the start of the start				-	- WWWWW	- www.unter	Ny NY	water w	-divid	3.5
Stop Fre	and an and a second of the				-					-		100	9.5
2.487000000 GI						-			-			-	9.5
CF Ste	0.00 MHz 1001 pts)	Span 5 .80 ms (Sweep 4			300 kHz	#VBW	()	GHz Hz	200 00 k	2.46 W 1	ter : s Bl	en Re
Auto M	N VALUE	FUNCTIO	ICTION WIDTH	TION FL	E	Y		X		SCL	TRC	MODE	KR I
					Bm	4.65 d	0 GHz	2.461 50		f	1	N	1
			_		IBm IBm	-3.55 d	0 GHZ	2.456 90		f	1	N	3
Frequis				244						-			4
01					_					-			5
													7
										-	-		8
													0
													1
					_		-			_			2

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11b 1Mbps (2467MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
12	2467.00	10200	>500	Pass

Figure Channel 12:

🍺 Keysight Sp	pectrum Analyzer - Sw	vept SA								
Center F	RF 50 Ω Feq 2.4670	AC 00000 GH	z	SEN	SE:INT		ALIGN AUTO : Log-Pwr >100/100	05:32:25 PI TRAC	May 15, 2015 E 1 2 3 4 5 6 E M WWWW	Frequency
10 dB/div	Ref Offset 0. Ref 20.50	.5 dB dBm	iain:Low	#Atten: 30) dB	/ · · · · ·	ΔΝ	™ 1kr3 10. 0	20 MHz	Auto Tune
Log				2 Junner	Al philipping	3∆2			2.51 dBm	Center Freq 2.467000000 GHz
-19.5 -29.5 -39.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-					Walnut	WM WERK	when why the	Start Freq 2.442000000 GHz
-49.5										Stop Frec 2.492000000 GHz
Center 2 #Res BW	.46700 GHz / 100 kHz		#VBW	/ 300 kHz		۱ •	Sweep 4	Span 5 .800 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MH: Auto Mar
MKR MODE 1 1 N 2 N 3 Δ2 4 5 6	RC SCL 1 f 1 f 1 f (Δ)	× 2.468 00 2.461 90 10.20) GHz) GHz) MHz (Δ)	¥ 8.510 dB 0.039 dB 0.100 d	3m 3m dB		ICTION WIDTH	FUNCTIO		Freq Offse
7 8 9 10 11										
MSG							STATUS	\$,	

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11g 6Mbps (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412.00	16450	>500	Pass

Figure Channel 1:

PI PE EDO AC	CENICE-INI	T	ALICALALITO	02:19:11 DM Apr 17: 2015	. 1
enter Freq 2.412000000 GHz] SENSEAN	Avg Ty	pe: Log-Pwr	TRACE 1 2 3 4 5 (Frequency
PNO: Fast 🦕 IFGain:Low	Trig: Free Run #Atten: 30 dB				V
Ref Offset 0.5 dB 0 dB/div Ref 20.50 dBm			Mkr	2 2.403 80 GHz -1.29 dBm	Auto Tune
09 10.5 500	had a bardhe good for		3	-1.23 dBm	Center Fred 2.412000000 GH:
150 9.5 19.5 19.5		````	hand he for a for	and monthly and the	Start Free 2.387000000 GH
9.5					Stop Fre 2.437000000 GH
enter 2.41200 GHz Res BW 100 kHz #VBW	300 kHz		Sweep 4	Span 50.00 MHz .80 ms (1001 pts)	CF Ste
KR MODE TRC SCL X 1 N 1 F 2.417 00 GHz	4.77 dBm	FUNCTION	UNCTION WIDTH	FUNCTION VALUE	Auto Ma
2 N 1 f 2.403 80 GH2 3 N 1 f 2.420 25 GHz 4 5 6 6	-1.29 dBm -2.00 dBm				Freq Offse 0 H
/					
2					

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11g 6Mbps (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437.00	16450	>500	Pass

Figure Channel 6:

Teo como o	6:23 PM Apr 17, 2015	03:26	ALIGNAUTO		NSE:INT	SEI		AC	50 Ω	RF		RL.
Frequency	TRACE 1 2 3 4 5 6 TYPE MWWWWWWW		: Log-Pwr	Avg Typ	Run	Trig: Free	Hz NO: Fast 😱	00000 G	2.43700	eq	er Fre	nte
Auto Tu	28 80 GHz	2 2.4	Mkr2		a B	#Atten: 30	Gain:Low	IF 5 dB	OffcetO	Ref		
-	0.77 dBm			1.2		_		dBm	20.50	Rei	div	B/
Center Fr				$\sqrt[n]{1}$			A2			-		5
2.437000000 GI	0.93 dBm			manholds -	- level and	man have	flimbral				-	0
1			200	1			wet		-			0
Start Fre	WHILL AL	mayney	- Marchandrown	-				the work and	Windhum			5
2.412000000 GI	Description in the second	1	1					11		M-PP	Martinin	5
												6
Stop Fr	1 3		1								_	
2.462000000 GI												5
1	an 50.00 MHz	Spa			-				GHz	370	er 2.43	L
CF Ste 5.000000 Mi	ns (1001 pts)	1.80 n	Sweep 4		_	300 kHz	#VBW	_	kHz	00	BW 1	es
<u>Auto</u> M	UNCTION VALUE	FU	NCTION WIDTH	NCTION	E F	Y CO2 di		×		SCL	DE TRC	MO
			-		Bm	0.93 di	30 GHz	2.442		f	1 1	N
Freq Offs					Bm	-0.44 di	25 GHz	2.445		f	4 1	N
01		-	7						_	-		-
											-	
												-
				11								-

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11g 6Mbps (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462.00	16450	>500	Pass

Figure Channel 11:

RL	1	RF 50 Ω	AC		SENSI	EINT		ALIGNAUTO	03:34:56 F	M Apr 17, 2015	-
enter	Free	q 2.46200	00000 GH	z	Tria: Eros B		Avg Type	e: Log-Pwr	TRAC		Frequency
			PI IFC	NO: Fast 🕞 Gain:Low	#Atten: 30 d	В			D	ETPNNNNN	1.8.52
0 dB/di	v F	tef Offset 0.5 tef 20.50 d	idB 1Bm					Mkr	2 2.453 -3.	80 GHz 90 dBm	Auto Tune
og 10.5	1	1. 1. 1.	1 1'	1.5.5		1	£ 1	2) (in-	1.000	Contor Fro
500				2	Perturbative pr	Sindenberger	3	=		-3.86 dBm	2.462000000 GH
9.50				1			1	-			la la constante de la constante La constante de la constante de
19.5			and the second	-			~	When the all was			Start Free
39.5	2.006 N	S	Mannet					a number	annon anno anno	Prin to La.	2.437000000 GH
49.5 w//m*	Artis . Alex	Mer						-		THIN WALTUND	
59.5				1							Stop Fre
69.5			1.1								2.407000000 011
enter Res B	2.46: W 10	200 GHz 10 kHz		#VBW	/ 300 kHz			Sweep 4	Span 5 4.80 ms (0.00 MHz 1001 pts)	CF Ste
IKR MODE	TRC	SOL	×		Y	FUNCTIO	IN FU	NCTION WIDTH	FUNCTI	ON VALUE	Auto Ma
1 N 2 N	1	f f	2.467 0	0 GHz 0 GHz	2.34 dBr -3.90 dBr	n n			A		
3 N 4	1	f	2.470 2	5 GHz	-4.81 dBr	n					Freq Offse
5 6											OH
7 8				-							1
9											
1											
SG.							-	STATUS			

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11g 6Mbps (2467MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
12	2467.00	15800	>500	Pass

Figure Channel 12:

🊺 Ke	ysight !	Spectr	rum /	Analyzer	- Swep	ot SA																				×
<mark>⊯</mark> R Cen	L Iter	Fre	RF q 2	2.467	50 Ω 7000	AC 000	0 G	Hz	2	_]_	SE	NSE:I	NT		Avg T	ype:	LIGN AU	JTO Pwr	05:36	5:00 PI TRAC	M May 1	5,2015 3 4 5	6	Frequency	/
10 d	D (diu		Ref	Offse	t 0.5	dB	1	PNC FGa	D: Fasi iin:Lov	t (_	##	Atten: 3	30 dE			.vgiri	014.2	- 100/1	ΔΝ	lkr3	15. -0	80 I	MHz dE	Ň	Auto T	une
10.5 10.5 0.500				20.		BIII			- All	2	⊫ar /I.,	⊶⊪.₀.∩		1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Lml	34	2					2.25 dDn		Center F 2.467000000	Freq GHz
-19.5 -29.5 -39.5				MAMM	an Mur	т ^{лали}	m ^N la th	and the second s	~~ [~]								Yuree a	WWW WYWYW	ut _{volen}	ⁿ www.	Նույս				Start F 2.442000000	req GHz
-49.5 -59.5 -69.5	<u>-1</u> 1-(11)	lo-do-a	_																						Stop F 2.492000000	Freq GHz
Cen #Re	ter : s B\	2.46 N 1	670 00	0 GH kHz	z				#\	/BW	30	0 kHz	2				s	wee	p 4.	Spa .800 r	an 5 ns (0.00 1001	MHz pts		CF S 5.000000	Step MHz Man
MKR 1 2 3 4 5 6 7 8 9 10 11 <			SCL f f	(Δ)		× 2 2	.468 .459 15.	<u>25</u> 40 80	GHz GHz MHz	(Δ)	3-3	Y .755 d .620 d -0.481	Bm dB	Fut	NCTIO		FUN	CTION W		FL	JNCTIO	DN VAL	JE *		FreqOf	ffset 0 Hz
MSG																		S	TATUS							

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11a 6Mbps (5745MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
149	5745.00	15400	>500	Pass

Figure Channel 149:

Agilen	nt Spe	ctrun	n Ana	alyzer - Sw	ept SA										
Cen	L nter	Fre	RF q (50 Ω 5.74500	AC 00000 G	Hz	_	SEI	SE:INT	Avş	ј Туре	ALIGNAUTO : Log-Pwr	06:31:41 P TRA	M May 14, 2015 CE 1 2 3 4 5 6 PE M 444444	Frequency
10 d	B/div	,	Ref Ref	Offset 1.6	5 dB d B m	PNO: Fast FGain:Lov	" "	#Atten: 30) dB			Mkr	2 5.737 2.	20 GHz 51 dBm	Auto Tun
Log 11.5 1.50							2	1 water to grand	naha-ha	wmmelling	3			2.83 dBm	Center Fre 5.745000000 G⊢
-18.5 -28.5 -38.5	luyu41	ሦላለም	wAP	unnapatha.	Al-ushown Ind	Berlealt					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	าฟฟลอาทางใ หา	twinghunghan	bankungun	Start Fre 5.720000000 G⊦
-48.5 -58.5 -68.5															Stop Fre 5.770000000 G⊦
Cen #Re	nter Is Bl	5.74 N 1	150 00	0 GHz kHz		#\	/BW	300 kHz			1	Sweep 4	Span 5 .800 ms (0.00 MHz 1001 pts)	CF Ste 5.000000 MH Auto Ma
1 2 3 4 5 6 7 8 9 9 10 11			f f f		× 5.742 5.737 5.752	50 GHz 20 GHz 60 GHz		Y 8.83 dl 2.51 dl 1.33 dl	3m 3m 3m	FUNCTION		ICTION WIDTH	FUNCTI	ON VALUE	Freq Offs
MSG												STATUS	5		

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11a 6Mbps (5785MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
157	5785.00	15800	>500	Pass

Figure Channel 157:

Agilent Spect	rum Analyzer	- Swept SA								
Center F	_R ⊧ req 5.78	50 Ω AC 50000000 GH	lz	SEN	SE:INT	Avg Type	ALIGNAUTO : Log-Pwr	06:33:29 Pl TRAC	May 14, 2015 E 1 2 3 4 5 6	Frequency
10 dB(div	Ref Offse	et 1.5 dB	NO: Fast 🕞 Gain:Low	#Atten: 30	dB		Mkr	2 5.776 2.	80 GHz	Auto Tune
11.5			2 Januar	portransellar	(1 3			3.44 dBm	Center Freq 5.785000000 GHz
-18.5 -28.5 -38.5	Munnelline	pritting proceedings					ท ¹ Ny บางอาหารุง	uhoymonyon	Kalimitana ang ang ang ang ang ang ang ang ang	Start Freq 5.760000000 GHz
-48.5 -58.5 -68.5										Stop Freq 5.810000000 GHz
Center 5 #Res BW	78500 GH 100 kHz	łz	#VBW	/ 300 kHz			Sweep 4	Span 5 .800 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MHz Auto Man
MKB MODE 1 1 N 2 N 3 N 4 5 6 7 7 5 6 7 7 8 9 10 11 11 4 4 5 4 10 11 11 4 4 5 10 11 <td>RC SCL 1 f 1 f 1 f</td> <td>× 5.790 0 5.776 8 5.792 6</td> <td>0 GHz 0 GHz 0 GHz</td> <td>¥ 9,44 dB 2,14 dB 1,83 dB</td> <td>FUNI Im Im</td> <td></td> <td>ICTION WIDTH</td> <td>FUNCTIO</td> <td></td> <td>Freq Offset 0 Hz</td>	RC SCL 1 f 1 f 1 f	× 5.790 0 5.776 8 5.792 6	0 GHz 0 GHz 0 GHz	¥ 9,44 dB 2,14 dB 1,83 dB	FUNI Im Im		ICTION WIDTH	FUNCTIO		Freq Offset 0 Hz
MSG							STATUS	;		

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11a 6Mbps (5825MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
165	5825.00	15200	>500	Pass

Figure Channel 165:

Agilen	it Spe	ctrum	n Ana	alyzer -	Swep	pt SA															
Cen	ter	Fre	RF q (5.825	50Ω	AC 000	0 GI	Ηz			SE	NSE:I	NT	Avg	Туре	ALIGNAUTO : Log-Pwr	Dt	5:35:32 P TRA TY	M May 14 CE 1 2 3	, 2015 4 5 6	Frequency
10 d	B/div		Ref Ref	Offse	t 1.5	dB Bm	IF	'NO: I Gain	Fast C Low	•	#Atten: 3	0 dB	3			Mk	r2 5	.817 3.	40 G 26 d	Hz	Auto Tune
Log 11.5 1.50									∳ ² -	~~~	muchanter) ¹ mhoba		3				3.	31 dBm	Center Freq 5.825000000 GHz
-18.5 -28.5 -38.5	annall	rushi	1000	. Arritan	MANA	n where	oo Marin								NV4	MIL MANY AND	L. M. M.	WMMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	mphasha	*MUN	Start Freq 5.80000000 GHz
-48.5 -58.5 -68.5												-									Stop Freq 5.85000000 GHz
Cen #Re	ter : s B\	5.82 N 1	250 00	0 GH kHz	z				#VB	w :	300 kHz	2			\$	Sweep 4	S 4.80	pan 5 0 ms (0.00 I 1001	VIHz pts)	CF Step 5.000000 MHz
MKE 1 2 3 4 5 6 7 8 9 10	N N N	1 1 1	f f f			555	.826 2 .817 4 .832 6	25 G 10 G 30 G	Hz Hz Hz		9.31 c 3.26 c 1.91 c	Bm Bm	FUNC	CTION	FUN	ICTION WIDTH		FUNCTI	ON VALUE		Freq Offset 0 Hz
11 MSG											Ш					STATU	s			>	

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412.00	17700	>500	Pass

Figure Channel 1:

RL RF	50Ω AC	SENSE:INT	ALIGNAU	TO 03:42:19 PM Apr 17, 2015	
Center Freq 2.41	2000000 GHz PNO: Fast G IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pv	VY TRACE 123456 TYPE MWWWWW DET PNNNNN	Frequency
Ref Offse 0 dB/div Ref 20.5	t0.5 dB 50 dBm		М	kr2 2.403 15 GHz -8.81 dBm	Auto Tune
-og 10.5 0.500 9.50	2 Submiles	Herton Mary water	nother sheet	-7.56 dBm	Center Free 2.412000000 GH:
19.5 29.5 39.5	and a second and a		and the second second	14 A	Start Free 2.387000000 GH:
49.5 59.5 69.5				Winder and a street and and	Stop Fre 2.437000000 GH
Center 2.41200 GH Res BW 100 kHz	z #VBV	/ 300 kHz	Swee	Span 50.00 MHz p 4.80 ms (1001 pts)	CF Step
MKR MODE THE SEL	2.417 00 GHz	-1.56 dBm	FUNCTION FUNCTION WI	DTH FUNCTION VALUE	<u>Auto</u> Mai
2 N 1 T 3 N 1 f 4	2.403 15 GHz 2.420 85 GHz	-8.37 dBm			Freq Offse 0 H
Product	:	Intel® Dual Band Wireless-AC 8260			
-----------	---	---			
Test Item	:	Occupied Bandwidth Data			
Test Site	:	No.3 OATS			
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band) (2437MHz)			

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437.00	17700	>500	Pass

Figure Channel 6:

The second se	03:58:28 PM Apr 17, 2015	ALIGNAUTO		SENSE:INT		IR AC	F 50		L	R
Frequency	TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N N	: Log-Pwr	Avg Typ	Trig: Free Run #Atten: 30 dB	GHz PNO: Fast 😱 IFGain:Low	000000 G	2.4370	Fre	ter	Cen
Auto Tun	2.428 15 GHz -8.29 dBm	Mkr2				0.5 dB) dBm	f Offset (f 20.50	F	B/div	0 di
Center Fre 2.437000000 GH	-6.98 dBm		1 Andrew (denillyndber portberdhyd	2 unit with wh					.og 10.5 1.500 9.50
Start Fre 2.412000000 GH		hindung in the offer allow			ward and a start of the start o	and a subscreen we				19.5 29.5 39.5
Stop Fre 2.462000000 GH	Norman Sector Sector Sector						and the second second	epiteiten s	hal	49.5 59.5 69.5
CF Step	Span 50.00 MHz 80 ms (1001 pts)	Sweep 4		00 kHz	#VBW		00 GHz kHz	2.43 N 10	ter : s Bl	Cen Re
Auto Ma	FUNCTION VALUE	NCTION WIDTH	NCTION III	-0.98 dBm	42 00 GHz	×		1	MODE	MKR 1
Freq Offse 0 H				-7.90 dBm	45 85 GHz	2.445		1	N	4 3456
										7 8 9 10 11

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462.00	17700	>500	Pass

Figure Channel 11:

Agilent Sp	ectrun	1 Analyz	er - Swept S	Ă.								
Cente	r Fre	RF	50 Ω AC	00 GH	Iz	SEN	ISE:INT	Avg Typ	ALIGNAUTO e: Log-Pwr	04:13:45 TRA	PM Apr 17, 2015 CE 1 2 3 4 5 6	Frequency
				PN	10: Fast G Gain:Low	Trig: Free #Atten: 30	Run dB			18		T Shaa
10 dB/d	iv I	Ref Off Ref 20	set 0.5 dB 0.50 dBn	n	1.5				Mkr	2 2.453 -8.	15 GHz 27 dBm	Auto Tune
10.5	1	-						1			1200	Center Fred
0.500		-		_	\$ 2 miles	the house and say	mount	(Justice line)	3		-6.82 dBm	2.462000000 GHz
-19.5					d.				16			Start Eroz
-29.5				world Autor Wat			_		All and a ferrar all a			2.437000000 GH
-39.5	Antha	model	a manate and							Thomasally and	Manadantha	
-59.5												Stop Frec 2.487000000 GHz
Center	2.46	200 0	GHz					1	2	Span :	50.00 MHz	CE Ster
#Res E	3W 1	00 kH	Z		#VBV	V 300 kHz			Sweep	4.80 ms	(1001 pts)	5.000000 MH:
	E TRC	f		× 2.467 00	0 GHz	-0.82 dE	3m	INCTION	JNCTION WIDTH	FUNCT	ION VALUE	<u>Auto</u> Mar
2 N 3 N 4 5	1	f		2.453 1	5 GHz	-8.27 de -8.04 de	3m 3m		1			Freq Offse 0 Hi
6 7 8												
9 10 11							-		_			
12												
MSG									STATUS			

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band) (2467MHz)

Channel No. Frequency (MHz)		Measurement Level (kHz)	Required Limit (kHz)	Result
12	2467.00	15250	>500	Pass

Figure Channel 12:

🎉 Keysight S	pectrum Analyzer - Sw	ept SA								
Center I	RF 50 Ω Freq 2.46700	AC 0000 GH	lz	SENS	SE:INT		ALIGN AUTO	05:37:28 Pr TRAC	M May 15, 2015 CE 1 2 3 4 5 6	Frequency
10 dB/div	Ref Offset 0.f	5 dB	iO: Fast ⊊⊃ ain:Low	#Atten: 30	dB	Avginoiu.	<u>Σ>100/100</u>	/ikr3 15. 0	.25 MHz	Auto Tune
			2 /million	kaluaka di wa	1	<u>3∆2</u>	2		1.83 dBm	Center Freq 2.467000000 GHz
-19.5 -29.5 -39.5		- Uhphalthon Althon					the way with the state of the s	Huwhlang	WIT-VINANOVINA	Start Freq 2.442000000 GHz
-49.5										Stop Freq 2.492000000 GHz
Center 2 #Res BV	46700 GHz V 100 kHz		#VBW	/ 300 kHz	EUN		Sweep 4	Span 5 .800 ms (0.00 MHz (1001 pts)	CF Step 5.000000 MHz Auto Man
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 1 & f \\ 1 & f \\ 1 & f \\ 1 & f \\ \end{array}$	2.468 30 2.459 40 15.25) GHz) GHz 5 MHz (Δ)	4.223 dB -3.089 dB 0.037 d	m m iB 				E	Freq Offset 0 Hz
7 8 9 10 11 <										
MSG							STATUS	ŝ		

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-40BW_15Mbps(2.4G Band) (2422MHz)

Channel No. Frequency		Measurement Level	Required Limit	Result
(MHz)		(kHz)	(kHz)	
3	2422.00	36600	>500	Pass

Figure Channel 3:

RL RF 50 Q AC	SENSE:INT	ALIGNAUTO	04:29:20 PM Apr 17, 2015	
Center Freq 2.422000000 GHz PNO: Fast	Trig: Free Run	Avg Type: Log-Pwr	TRACE 123456 TYPE MWWWWWW	Frequency
Ref Offset 0.5 dB 10 dB/div Ref 20.50 dBm	#Atten: 30 dB	Atten: 30 dB DEFININN Mkr2 2.403 7 GH: -12.34 dBn		
-09 10.5 1.500 -9.50	and and the second states of t		-9.86 dBm	Center Fred 2.422000000 GH:
19.5 		the second	B)H Mananalada I	Start Free 2.372000000 GH:
49.5 59.5 69.5			The second s	Stop Free 2.472000000 GH
Center 2.42200 GHz #Res BW 100 kHz #VB	300 kHz	Sweep	Span 100.0 MHz 9.60 ms (1001 pts)	CF Step
MKR MODE TRC SCL X 1 N 1 F 2.433 3 GHz 2 403 7 GHz	-3.86 dBm	NCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Ma
Z N 1 T 2.403 / GHZ 3 N 1 f 2.440 3 GHZ 4 - - - 6 - - - 7 - - - 9 - - - 10 - - -	-12.34 gBm -10.76 dBm			Freq Offse 0H
11 12 1				

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-40BW_15Mbps(2.4G Band) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437.00	36600	>500	Pass

Figure Channel 6:

	PM Apr 17, 2015	04:45:09 Pl	ALIGNAUTO		ISE:INT	SEM		AC	50 Ω	RF	1	L	R
Frequency	CE 123456 /PE MWWWWWW DET P N N N N N	TRAC TYP DE	Avg Type: Log-Pwr] Trig: Free Run #Atten: 30 dB		HZ NO: Fast ♀ Gain:Low	0000 GI	43700	q 2.	Fre	ter	en
Auto Tur	Mkr2 2.418 7 GHz -10.82 dBm							Ref Offset 0.5 dB 0 dB/div Ref 20.50 dBm					
Center Fre 2.437000000 GH	-9,48 dBm		3	ruli	مەر	Mulhaday	€ ² . John Mar.						og 10.5 .500 9.50
Start Fre 2.387000000 GF	Muture an	"ILisemaisley	marg				<u>/</u>	Markanslowed	N. a. executed				19.5 29.5 39.5
Stop Fre 2.487000000 GH	a and a limble										redict/da	nort	49.5 59.5 69.6
CF Ste	100.0 MHz (1001 pts)	Span 1 9.60 ms (Sweep 9			300 kHz	#VBW		GHz Hz	8700 00 k	2.43 W 1	ter : s B	en Re
Auto Ma	ION VALUE	FUNCTIC	NCTION WIDTH	CTION	FUNI 3m	2.452 0 GHz -3.48 dBm				f		MODE	IKR I
Freq Offs 0 F					3m	-10.82 de -10.80 de	3 GHz	2.416		f	1	N	434567
													8 9 0

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-40BW_15Mbps(2.4G Band) (2452MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
9	2452.00	36600	>500	Pass

Figure Channel 9:

in an anal I		A STREET AND A STREET	-	and and and				pt an	yzer - swe	II Anal	pectran	an ap	
E 1 2 3 4 5 6	TRACE 1 2 3 4 5 6		Avg Type				Hz	0000 G	.45200	a 2	r Fre	nter	
TPNNNNN	PNO: Fast Trg: Free Run IVE IN WWWWWW IFGain:Low #Atten: 30 dB Det P N N N N												
37 GHz 36 dBm	2 2.433 -11.1	Mki				Ref Offset 0.5 dB 10 dB/div Ref 20.50 dBm							
	1.00 × 1.								1			5	
-9.97 dBm			July .	and and a fear land and	Autoballation	Jul hele	A					-	
	_	-					d	Burther				5	
NV ANT ANT ANT	pertain states	Politic Sec.						Manual	Wither and and	man		5	
											tim here	5	
00.0 MHz 1001 pts)	Span 1 .60 ms (Sweep 9		_	800 kHz	VBW	#		GHz Hz	5200 00 k	r 2.4: 3W 1	nter es B	
IN VALUE	FUNCTIO	ICTION WIDTH	TION	Y FUNC				×		SCL	DE TRC	MOD	
				m	-11.86 dE -11.02 dE	z	37 GH 03 GH	2.433		f f	-	NN	
					-	-							
	M Apr 17, 2015 E 1 2 3 4 5 6 M MAANANA T P NNNN N 3 7 GHz 36 dBm -9.97 dBm -9.97 dBm -9.97 dBm 00.0 MHz 1001 pts)	DS:00:15 PM Apr 17, 2015 TRACE 1: 2: 3: 4: 5: 6 TYPE MWWWWWW TYPE WWWWWWW T2 2:.433 7 GHz -11.86 dBm -9.97 d	ALIGNAUTO 05:00:15 PM Apr 17,2015 174 CE [1 2 3 4 5 6 TYPE MANNANA TYPE DETP NNNNN Mkr2 2.433 7 GHz -11.86 dBm -9.97 dBm -9.9	ALIGNAUTO DS:00:15 PM Apr 17,2015 Avg Type: Log-Pwr TRACE [1:2:3:4:5:6 Type: Dog-Pwr Trace [1:2:3:4:5:6 Mkr2 2.433 7 GHz -11.86 dBm -11.86 dBm Jump (1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:	Run dB Augnauro DS:00:15 PM Apr 17,2015 Run dB Trace 12:3:4:5:6 12:3:4:5:6 Run dB Trace 12:3:4:5:6 12:3:4:5:6 Mkr2 2.433 7 GHz -11.86 dBm -11:86 dBm -1 -9:97 dBm -9:97 dBm -9:97 dBm -1 -10:00 MHz Sweep 9:00 ms (1001 pts) 3m -10:00 Max -10:00 Max -10:00 Max -10:00 Max -10:00 Max -	SENSE:INT Augnauro DS:00:15 PM Apr 17, 2015 Trig: Free Run #Atten: 30 dB Trig: Free Run #Atten: 30 dB	SENSE:INT ALIGNAUTO DS:00:15 PM Apr 17, 2015 Intervention Trig: Free Run www. #Atten: 30 dB Trig: Free Run WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	SENSE INT ALIGNAUTO DS:00:15 PM Apr 17, 2015 PNO: Fast Trig: Free Run #Atten: 30 dB Avg Type: Log-Pwr Trig: Free Run Type: Log-Pwr Mkr2 2.433 7 GHz -11.86 dBm 1 Trig: Free Run Type: Log-Pwr Mkr2 2.433 7 GHz -11.86 dBm 2 1 - </td <td>AC SENSE:INT ALIGNAUTO DS:00:15 PM Apr 17, 2015 0000 GHz Frig: Free Run Avg Type: Log-Pwr TRACE 12.3 4 5 6 0B Trig: Free Run Mkr2 2.433 7 GHz -11.86 dBm dB -11.86 dBm -11.86 dBm 2 1 -9.97 dbm 2 1 -9.97 dbm 4 2 -1 4 -1 -9.97 dbm 5 -9.97 dbm -9.97 dbm 4 -1 -9.97 dbm 4 -1 -9.97 dbm 4 -1 -9.97 dbm 5 -9.97 dbm -9.97 dbm 4 -1 -9.97 dbm 5 -1 -9.97 dbm 5 -1 -9.97 dbm 5 -1 -9.97 dbm 5 -10.00 MHz Span 100.0 MHz 2.467 0 GHz -3.97 dBm -1.02 dBm 2.467 0 GHz -3.97 dBm -1.02 dBm 2.470 3 GHz -11.02 dBm -1.02 dBm -1</td> <td>Start Sweptish Start Start ALIGNAUTO DS:00:15 PM Apr 17, 2015 A452000000 GHz PN0: Fast IFGain:Low Trig: Free Run #Atten: 30 dB Avg Type: Log-Pwr Prei P NN NN Per P NN NN Per P NN NN N TRACE 12.2.3.45.6 Type IP NN NN N Diffset 0.5 dB 20.50 dBm Mkr2 2.433 7 GHz -11.86 dBm -11.86 dBm 2 1 -11.86 dBm 2 1 -9.97 dbm 4 2 -11.86 dBm 3 -9.97 dbm -9.97 dbm 4 4 -9.97 dbm 4 -9.97 dbm -9.97 dbm 5 -9.90 kHz Span 100.0 MHz 5 -11.86 dBm -11.96 dBm 2.467 0 GHz -3.97 dBm 2.470 3 GHz -11.02 dBm -11.02 dBm -11.02 dBm</td> <td>Manual Supplier Market II 23456 Senseint Autonia Disocitis PMApr 17,2015 ord 2.452000000 GHz PN0: Fast IFGain:Low Trig: Free Run #Atten: 30 dB Avg Type: Log-Pwr Type Trig: Free Run Type Ref Offset 0.5 dB Ref 20.50 dBm Mkr2 2.433 7 GHz -11.86 dBm -11.86 dBm 2 1 -9.97 dBm 2 1 -9.97 dBm 3 -9.97 dBm 4 2 1 4 4 -9.97 dBm 5200 GHz Span 100.0 MHz 5200 GHz Span 100.0 MHz 5200 GHz Span 100.0 MHz 5200 GHz 3.97 dBm 6 2.467 0 GHz 3.97 dBm -11.86 dBm 6 -11.86 dBm 7 2.467 0 GHz 3.97 dBm -11.86 dBm 7 2.467 0 GHz 3.97 dBm -11.02 dBm</td> <td>Bit Interference Server Serv</td>	AC SENSE:INT ALIGNAUTO DS:00:15 PM Apr 17, 2015 0000 GHz Frig: Free Run Avg Type: Log-Pwr TRACE 12.3 4 5 6 0B Trig: Free Run Mkr2 2.433 7 GHz -11.86 dBm dB -11.86 dBm -11.86 dBm 2 1 -9.97 dbm 2 1 -9.97 dbm 4 2 -1 4 -1 -9.97 dbm 5 -9.97 dbm -9.97 dbm 4 -1 -9.97 dbm 4 -1 -9.97 dbm 4 -1 -9.97 dbm 5 -9.97 dbm -9.97 dbm 4 -1 -9.97 dbm 5 -1 -9.97 dbm 5 -1 -9.97 dbm 5 -1 -9.97 dbm 5 -10.00 MHz Span 100.0 MHz 2.467 0 GHz -3.97 dBm -1.02 dBm 2.467 0 GHz -3.97 dBm -1.02 dBm 2.470 3 GHz -11.02 dBm -1.02 dBm -1	Start Sweptish Start Start ALIGNAUTO DS:00:15 PM Apr 17, 2015 A452000000 GHz PN0: Fast IFGain:Low Trig: Free Run #Atten: 30 dB Avg Type: Log-Pwr Prei P NN NN Per P NN NN Per P NN NN N TRACE 12.2.3.45.6 Type IP NN NN N Diffset 0.5 dB 20.50 dBm Mkr2 2.433 7 GHz -11.86 dBm -11.86 dBm 2 1 -11.86 dBm 2 1 -9.97 dbm 4 2 -11.86 dBm 3 -9.97 dbm -9.97 dbm 4 4 -9.97 dbm 4 -9.97 dbm -9.97 dbm 5 -9.90 kHz Span 100.0 MHz 5 -11.86 dBm -11.96 dBm 2.467 0 GHz -3.97 dBm 2.470 3 GHz -11.02 dBm -11.02 dBm -11.02 dBm	Manual Supplier Market II 23456 Senseint Autonia Disocitis PMApr 17,2015 ord 2.452000000 GHz PN0: Fast IFGain:Low Trig: Free Run #Atten: 30 dB Avg Type: Log-Pwr Type Trig: Free Run Type Ref Offset 0.5 dB Ref 20.50 dBm Mkr2 2.433 7 GHz -11.86 dBm -11.86 dBm 2 1 -9.97 dBm 2 1 -9.97 dBm 3 -9.97 dBm 4 2 1 4 4 -9.97 dBm 5200 GHz Span 100.0 MHz 5200 GHz Span 100.0 MHz 5200 GHz Span 100.0 MHz 5200 GHz 3.97 dBm 6 2.467 0 GHz 3.97 dBm -11.86 dBm 6 -11.86 dBm 7 2.467 0 GHz 3.97 dBm -11.86 dBm 7 2.467 0 GHz 3.97 dBm -11.02 dBm	Bit Interference Server Serv	

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-40BW_15Mbps(2.4G Band) (2457MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
10	2457.00	35200	>500	Pass

Figure Channel 10:

🊺 Keysight Spe	ectrum Analyzer - Swe	ept SA									
Center F	RF 50 Ω req 2.45700	AC 00000 GHz			SE:INT		ALIGN AUTO E: Log-Pwr ->100/100	05:40:36 PI TRAC	M May 15, 2015	Frequency	
10 dB(div	PN0: Fast THG. Free Kill Avginoid. 2 100 100 PETP NNNNN IFGain:Low #Atten: 30 dB AMkr3 35.20 MHz B/div. Ref Offset 0.5 dB 0.789 dB 0.789 dB										
10.5 0.500	2	10111	-haveless land	hallowing	1 emerhadere	hulmohan	witherhand	3∆2	-5.89 dBm	Center Freq 2.457000000 GHz	
-19.5 -29.5 -39.5	www.								WWWWWWWWWWWW	Start Freq 2.432000000 GHz	
-49.5 -59.5 -69.5										Stop Freq 2.482000000 GHz	
Center 2. #Res BW	45700 GHz 100 kHz		#VBW	300 kHz	ELINA		Sweep 4	Span 5 .800 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MHz <u>Auto</u> Man	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	f f f (Δ)	2.460 75 G 2.439 40 G 35.20 N	SHz SHz MHz (Δ)	0.111 dB -8.300 dB 0.789 c						Freq Offset 0 Hz	
0 7 8 9 10 11											
MSG							STATUS	5	- F		

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-20BW_7.2Mbps(5G Band) (5745MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
149	5745.00	15200	>500	Pass

Figure Channel 149:

Agilent Spect	trum Analyzer - S	wept SA								
Center F	RF 50	Ω AC 000000 GH;	z	SENS	SE:INT	Avg Type	ALIGNAUTO : Log-Pwr	06:38:25 PI	4 May 14, 2015 2 1 2 3 4 5 6	Frequency
10 dB/div	Ref Offset 1 Ref 21.50	PN0 IFGa 1.5 dB 0 dBm	D: Fast 🕞 ain:Low	#Atten: 30		Mkr	40 GHz 20 dBm	Auto Tune		
11.50			2	1 militar have been a start with the second s	1 Andredend	3			3.35 dBm	Center Freq 5.745000000 GHz
-0.50 -18.5 -28.5	manthalantin alight	Anna and an and an and an	ř			¥,	MANA BERT	Million Marca Marca	wyahryw y Wwyah	Start Freq 5.720000000 GHz
-48.5 -58.5 -68.5										Stop Freq 5.770000000 GHz
Center 5. #Res BW	.74500 GHz / 100 kHz	i	#VBW	/ 300 kHz			Sweep 4	Span 5 .800 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MHz Auto Man
MKB MODE 1 N 2 N 3 N 4 5 6 - 7 - 8 - 9 - 10 -	FRC SEL 1 f 1 f 1 f	5.748 75 5.737 40 5.752 60	GHZ GHZ GHZ	9.35 dBr 3.20 dBr 0.95 dBr						Freq Offset 0 Hz
MSG							STATUS	8	>	

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-20BW_7.2Mbps(5G Band) (5785MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
157	5785.00	15200	>500	Pass

Figure Channel 157:

Agilent	Spec	trun	n Ana	alyzer - Sw	/ept SA										
Cent	er	Fre	RF	50 s	2 AC	GH	7		SEI	ISE:INT	Avg Typ	ALIGNAUTO	06:40:27 P TRA	M May 14, 2015	Frequency
						PN IFGa	L O: Fast ain:Low	Ŧ	Trig: Free #Atten: 30	eRun)dB			TY C		Auto Tune
10 dB	/div		Ref Ref	Offset 1. 5 21.50	5 dB dBm							Mkr	2 5.777 3.	40 GHz 82 dBm	
11.5			+				∮ ²		al har how flate					3.83 dBm	Center Freq
1.50 -8.50							- prostan	sleener.			Control Control Starty				5.785000000 GHz
-18.5			-	multim	happhall	YNYNY	4°	_				Mr. Marthage	ardyd ard and		Start Freq
-28.5	-upple	And I	h Maria	9-4-F									1 100	AP-ID And	5.760000000 GHz
-48.5 -			_					_							Stop Frog
-58.5 -68.5															5.810000000 GHz
Cent	er 5	5.78	350	0 GHz									Span 5	50.00 MHz	CF Step
#Res	; BV	V 1	00	kHz			#VI	BW :	300 kHz			Sweep 4	.800 ms ((1001 pts)	5.000000 MHz Auto Man
MKR M	N N	1 1	f		5.7	88 75	GHz		9.83 di	3m 3m	ICTION FL	JNCTION WIDTH	FUNCTI	ON VALUE	
3	N	1	f		5.7	92 60	GHz		2.46 di	3m					Freq Offset
5 6 7							_								0112
8 9															
10									11					<u> </u>	
MSG												STATUS	5][]

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-20BW_7.2Mbps(5G Band) (5825MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
165	5825.00	15250	>500	Pass

Figure Channel 165:

Agilent Spect	rum Analyzer - S	wept SA								
Center F	RF 50	Ω AC DO0000 GH	z	SEN	SE:INT	Avg Type	ALIGNAUTO : Log-Pwr	06:42:51 PI TRAC	May 14, 2015	Frequency
	Ref Offset	PN IFG 1.5 dB	l0: Fast ⊆⊾ ain:Low	#Atten: 30	dB		Mkr	2 5.817	35 GHz	Auto Tune
10 dB/div Log	Ref 21.50) dBm	_					1.3	38 aBm	
11.5				bookookalan	mound	-4 A ³			3.13 dBm	Center Freq 5.825000000 GHz
-8.50		Adaptin to the North Marine	ð			- North	Windshill	tun .		Start Eron
-28.5	MYMMANIA	1444							- Bakarly with h	5.800000000 GHz
-48.5										Stop Freq
-68.5										5.85000000 GHz
Center 5. #Res BW	82500 GHz 100 kHz		#VBW	/ 300 kHz		:	Sweep 4	Span 5 .800 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MHz
MKR MODE T	RC SCL 1 f	× 5.828 75	5 GHz	Y 9.13 dB	FUNC	TION FUN	ICTION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u> Man
2 N 3 N 4 5	1 f 1 f	<u>5.817 36</u> 5.832 60	5 GHz) GHz	1.38 dB 0.99 dB	Sm Sm					Freq Offset 0 Hz
6 7 8										
9 10 11									<u> </u>	
MSG							STATUS	;	2	

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-40BW_15Mbps(5G Band) (5755MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
151	5755.00	34000	>500	Pass

Figure Channel 151:

Agilent Spect	rum Analyzer - Swept	t SA						
Center F	RF 50 Ω 5 req 5.755000	AC 0000 GHz	SENSE	INT Avg Typ	ALIGNAUTO e: Log-Pwr	06:45:58 PM TRAC	May 14, 2015	Frequency
	Ref Offset 1.5 d	PNO: Fast IFGain:Low	#Atten: 30 d	un B	Mk	r2 5.738		Auto Tune
10 aB)alv 11.5 1.50		2	and the s	1	3		0.77 dBm	Center Freq 5.755000000 GHz
-18.5 -28.5 -38.5	every along the tere	whathly what		`	and the stand and a los	chiland flore	mandensite	Start Freq 5.705000000 GHz
-48.5 -58.5 -68.5								Stop Freq 5.805000000 GHz
Center 5. #Res BW	75500 GHz 100 kHz	#VI	BW 300 kHz		Sweep 9.	Span 1 .600 ms (00.0 MHz 1001 pts)	CF Step 10.000000 MHz <u>Auto</u> Man
Autor Autor <th< td=""><td></td><td>5.758 7 GHz 5.738 6 GHz 5.772 6 GHz</td><td>6.77 dBm -1.00 dBm -0.70 dBm</td><td></td><td></td><td>FUNCTIC</td><td></td><td>Freq Offset 0 Hz</td></th<>		5.758 7 GHz 5.738 6 GHz 5.772 6 GHz	6.77 dBm -1.00 dBm -0.70 dBm			FUNCTIC		Freq Offset 0 Hz
MSG					STATUS			

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11n-40BW_15Mbps(5G Band) (5795MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
159	5795.00	34000	>500	Pass

Figure Channel 159:

Agilent Spectrum Analyzer - Swept SA				
LXIRL RF 50Ω AC	SENSE:INT	ALIGNAUTO	06:47:09 PM May 14, 2015	Frequency
Center Freq 5.795000000 GHz	Trig: Free Run	Avg Type: Log-Pwr	TYPE MMMMMM	Trequency
IFGain:Low	#Atten: 30 dB		DET P N N N N N	
		Mk	r2 5 778 6 GHz	Auto Tune
Ref Offset 1.5 dB 10 dB/div Ref 21.50 dBm		1111	-1.00 dBm	
11.5				Contor From
\wedge^2	LALAN LALAN	3	1.41 dBm	CenterFreq
1.50				5.795000000 GHz
-8.50				
-18.5		million		Otort From
28.5 Alustic Manual Manual And		- MM	the shappy many working of	StartFreq
S20.0 Contraction			- Contraction	5.745000000 GHz
-38.5				
-48.5				
-58.5				Stop Freq
.68.5				5.845000000 GHz
-00.0				
Center 5.79500 GHz			Span 100.0 MHz	CF Step
#Res BW 100 kHz #VBW	300 kHz	Sweep 9.	600 ms (1001 pts)	10.000000 MHz
MKR MODE TRC SCL X	Y I	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
1 N 1 f 5.798 7 GHz	7.41 dBm			
2 N 1 f 5.778 6 GHz	-1.00 dBm			Fred Offset
4 J.	-0.57 UBIII			
5			E	0 HZ
8				
9				
<.	iii ii	· · · · · ·	<u>></u>	
MSG		STATUS		

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1 SISO A: Transmit - 802.11ac-80BW_32.5Mbps(5G Band) (5775MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
155	5775.00	61600	>500	Pass

Figure Channel 155:

Agilen	nt Spec	strun	n An	alyzer -	Swep	t SA													
(X) RI	l	Fre	RF	5 775	0Ω 000	AC	GH	7			SENSE:	NT	Avg	Type	ALIGNAUTO : Log-Pwr	09:59:40 F TRA	M May 14, 2015 CE 1 2 3 4 5 6	5	Frequency
			<u>'</u> '				PN	2 10: Fasi ain:Lov	t⊶⊫- w	Trig: F	ree Ru : 40 dB	in	Avg	Hold:	100/100	די נ			
10 di	B/div		Ref R ef	Offset 5 24.5	1.5 d 0 dE	dB 3m									Δ	Mkr3 6 2	1.6 MHz 290 dB		
14.5	_		_		_		_		_	() ¹	_				▲ 3∆:	2			Center Freq
4.50 5.50			+	, Alta	Antropy	երեւ	Internet	~~~	datul-	ellynaalyt	איזע	እ . ቀይ ከተለጉም	4 motoral d	M. Anger	rt Hule Later	-	2.76 dBm		5.775000000 GHz
-5.50	. An Internet	Mag	p.	ł												۷ ا	4MIIIWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	╟	
-25.5																			Start Freq 5.725000000 GHz
-45.5	_						_												Stop Freg
-55.5 -65.5																			5.825000000 GHz
Cen #Re	ter : s BV	5.77 N 1	750 00	0 GH: kHz	z		1	#\	/BW	300 k	Hz			ę	Sweep 9	Span 1 .600 ms (00.0 MHz (1001 pts)		CF Step 10.000000 MHz
MKR 1	MODE	TRC	SCL F			×	770.0			Y 9.760	dDm	FU	NCTION	FUN	ICTION WIDTH	FUNCTI	ON VALUE	É	<u>luto</u> Man
2 3 4	Ν Δ2	1	f f	(Δ)		5.	.738 6 61.6	GHz MHz	(Δ)	-1.200	<u>6 dBm</u> 90 dB								Freq Offset
5 6 7																	=		0 H2
8 9																			
11										Ш				1			~		
MSG															STATUS	3			

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11b 1Mbps (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412.00	10200	>500	Pass

Figure Channel 1:

Agiler	nt Spe	ctrur	m An	alyzer - Swe	ept SA								
w Cer	iter	Fre	RF eq 2	50 Ω 2.41200	AC 10000 GH	Iz			Avg Ty	ALIGNAUTO De: Log-Pwr	11:16:06 TRAC	AMApr 17, 2015 E 1 2 3 4 5 6	Frequency
10 d	PN0: Fast U Mg. Free Kd. Der P NN NN N IFGain:Low #Atten: 30 dB Mkr2 2.406 90 GHz ↓ dB/div Ref 20.00 dBm -2.50 dBm									Auto Tune			
Log 10.0 0.00 -10.0						- Charly	2 - www.	1 <u>~~~~</u>	3 Muy			-1.22 dBm	Center Freq 2.412000000 GHz
-20.0 -30.0 -40.0				4 a J ^{um}	marsh f	Jan Marina Ma				palano	w, .		Start Freq 2.387000000 GHz
-50.0 -60.0 -70.0		للمعين	~~	- And A	¥						V Viller	And Antonia	Stop Freq 2.437000000 GHz
Cen #Re	nter Is Bi	2.4′ W 1	120 00	0 GHz kHz	X 0.444.5	#VB\	N 300 kHz	FU	INCTION	Sweep	Span 5 4.80 ms (0.00 MHz 1001 pts) NVALUE	CF Step 5.000000 MHz <u>Auto</u> Man
2 3 4 5 6 7 8 9	N N	1	f		2.411 5 2.406 9 2.417 1		4.78 dt -2.50 df -1.91 df	3m 3m 3m					Freq Offset 0 Hz
10 11 12 MSG										STATU	5		

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11b 1Mbps (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437.00	10200	>500	Pass

Figure Channel 6:

Agilen	it Spe	ctrun	n Ana	alyzer - Swe	ept SA								
Cen	ter	Fre	RF Q	50 Ω 2.43700	AC	Hz	SEI	NSE:INT	Avg T	ALIGN AUTO ype: Log-Pwr	11:26:19 TRA	AMApr 17, 2015 CE 1 2 3 4 5 6 PE MWWWWW	Frequency
10 di	B/div	, I	Ref	f 20.00 c	u JBm	NO: Fast Gain:Low	#Atten: 3	0 dB		Mk	ت <mark>r2 2.431</mark> -3.	90 GHz 42 dBm	Auto Tune
Log 10.0 0.00 -10.0						میں	2 www.	1 Murae	3 V.V.			-2.06.dBm	Center Freq 2.437000000 GHz
-20.0 -30.0 -40.0			+		houseau					he porters	lang a		Start Freq 2.412000000 GHz
-50.0 -60.0 -70.0	~~~~,	www	~							<u>W</u>		and the second sec	Stop Freq 2.462000000 GHz
Cen #Re: MKB	ter 2 s B\ MODE	2.43 N 10	;70 00 SEL	0 GHz kHz	×	#VB	W 300 kHz	FU	INCTION	Sweep	Span 5 4.80 ms (60.00 MHz (1001 pts)	CF Step 5.000000 MHz <u>Auto</u> Man
1 2 3 4 5 6	N N N	1 1	f f		2.436 5 2.431 9 2.442 1	0 GHz 0 GHz 0 GHz	3.94 dl -3.42 dl -2.43 dl	3m 3m 3m					Freq Offset 0 Hz
7 8 9 10 11													
MSG								1	1	STAT	US		

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11b 1Mbps (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462.00	10200	>500	Pass

Figure Channel 11:

Agilent Spectrum Analyzer - Swept SA									
Image: Name RF 50 Ω AC AC Center Freq 2.462000000 GHz AC AC		ALIGNAUTO Avg Type: Log-Pwr	11:32:47 AMApr 17, 2015 TRACE 1 2 3 4 5 6 TYPE MUMANANANA	Frequency					
PN0: Fast IFGain:Low	PN0: Past → #Atten: 30 dB IFGain:Low #Atten: 30 dB Mkr2 2.456 90 GHz -3.67 dBm								
10.0	2 convergence	3	2.30 dBm	Center Freq 2.462000000 GHz					
-20.0 -30.0 -40.0		- Contraction		Start Freq 2.437000000 GHz					
-50.0				Stop Freq 2.487000000 GHz					
Center 2.46200 GHz #Res BW 100 kHz #VE	3W 300 kHz	S Sweep 4.8	Span 50.00 MHz 0 ms (1001 pts)	CF Step 5.000000 MHz Auto Man					
1 N 1 f 2.461 50 GHz 2 N 1 f 2.456 90 GHz 3 N 1 f 2.467 10 GHz 4	3.70 dBm -3.67 dBm -2.67 dBm			Freq Offset 0 Hz					
8 9 10 11 12 MSG		STATUS							

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11b 1Mbps (2467MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
12	2467.00	10200	>500	Pass

Figure Channel 12:

🊺 Key	/sight	Spect	rum	Analyz	er - Sv	wept S	5A																					×
Cen	ter	Fre	RF Pq	2.40	50 s 570	000	4C DOO) G	Hz	Faat	_	Ţ	ria: F	SENS	E:IN	T		Avg 1 AvalH	Type lold:	ALIGN AU : Log-P >100/10	TO Wr)0	05:4	4:10 P TRAC TY	M May CE 1 2 PE M ¥	15,20 345 www	15 5 6 ₩	Frequency	/
10 df	3/div	,	Ref Re	Off:	set 0	.5 d dB	B m	IF	Gai	n:Low	, ``	#.	Atter	1: 30	dB		-				ΔN	lkr3	□ 10. 0	=⊤∣₽ № .20 .29:	MH 2 dl	ZB	Auto T	une
Log 10.5 0.500										J.V.	~~\/	2 1.00	ւլսյա	un j	1 ມ _{ັນປ}	ռուն		2⊆ ⁻							1.93 dE	ðm.	Center F 2.467000000	F req GHz
-19.5 -29.5 -39.5				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	مري يوميان مري يومي	ar level	ելու	~~~	<i>ک</i> ر بر	, ^{, , ,}									2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	WWW	WUM	Whyne	ww.		<u>ጉላካ</u> ኔ -	-	Start F 2.442000000	Freq GHz
-49.5 -59.5 -69.5			-																							_	Stop F 2.492000000	Freq GHz
Cen #Res	ter : s B\	2.40 N 1	670 00	0 G kHz	Hz					#V	в₩	/ 30	10 k	Hz					ş	Sweep) 4.	Sp .800	an 5 ms (0.00 100) MH 1 pts	iz s)	CF S 5.000000 Auto	Step MHz Man
MKR 1 1 2 3 4 5 6 7 8 9 10 11 <			f f				× 2.4 2.4	168 (161 <u>9</u> 10.2	00 C 00 C 20 N	GHz GHz MHz	(Δ)	-(Y 7.933 0.604 0.2	dBr dBr 92 d	m m B 	FUN			FUN	CTION WI	DTH	F	UNCTI	ON VA	LUE		Freq Of	ffset 0 Hz
MSG																				ST	ATUS							

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11g 6Mbps (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412.00	16650	>500	Pass

Figure Channel 1:

Agilent Spectrum Analyzer - Swept SA	
UX RL RF 50 Ω AC SENSE:INT ALIGNAUTO 11:40:19 AMApr 17,201	5 Erequency
Center Freq 2.412000000 GHz Avg Type: Log-Pwr TRACE 12345 (Frequency
PNO: Fast PNNNN IEGain: I nw #Atten: 30 dB	1
Mk-0.0.402.70.011-	Auto Tune
10 dB/div Ref 20.00 dBm -0.07 dBm	
100	
	Center Freq
0.00	2.412000000 GHz
	41
	1i
-20.0	Start Freq
-30.0	2 387000000 GHz
-40.0	2.00100000000
an mound marked and a second	
	Stop Fred
-60.0	Sichered
-70.0	2.437000000 GHz
	1
Center 2.41200 GHz Span 50.00 MHz	CE Sten
#Res BW 100 kHz #VBW 300 kHz Sweep 4.80 ms (1001 pts)	5.000000 MHz
	Auto Man
2 N 1 f 2.403 70 GHz -6.07 dBm	//
3 N 1 f 2.420 35 GHz -8.64 dBm	Freq Offset
	0 Hz
	ſſ
7	
8	4
	4

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11g 6Mbps (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437.00	16650	>500	Pass

Figure Channel 6:

Agiler	nt Spe	ctrum	Anal	yzer - Sv	vept !	SA											
LXI R	L	_	RF	50 \$	2 A				SE	NSE:INT	A	/	ALIGN AUTO	11:49:42	2 AMApr 17, 2015	Freque	ncv
Cen	nter	Frec	12.	.4370	000	000 0		Fact (Tria: Fre	e Run	Avg	ype:	: Log-Pwr	Th	CE 1 2 3 4 5 6 (PE M WWWWW		
							IFGain	Fast 🕞	#Atten: 3	0 dB				C	PNNNN		
											Auto	o Tune					
10 d	Dialiu		of	20.00	dB	m							141131	-6.	50 dBm		
Log		N		20.00													
10.0			_				_	~1				_				Cente	er Frea
0.00								_ 2∑				3				2 4370000	
40.00			-					myropore	* كالمحدول ساليدور	and mark	man and and and	\mathcal{Y}			-6.20 dBm	2.4070000	00 0112
-10.0										1		ί					
-20.0			-								-					Sta	rt Eroa
-30.0						~	<u>A</u> _					_	N. N.			0.4400000	
-40.0					N	معممها							W.			2.4120000	JUU GHZ
40.0	m	Mongert	MAN	W.C.	1								To -	and working	An uning		
-50.0																01-	
-60.0	-		-		-						-	-				Sto	preq
-70.0					_		_				_					2.4620000	000 GHz
Cen	ter 2	2.437	700	GHz										Span :	50.00 MHz	C	F Sten
#Re	s Bl	N 10	0 k	Hz				#VBW	300 kHz	:			Sweep	4.80 ms	(1001 pts)	5.0000	00 MHz
MKB	MODE	TRC S	CL			×			Y	F	UNCTION	FUN	CTION WIDTH	FUNCTI	ON VALUE	Auto	Man
1	Ν	1	f			2.430	15 G	Hz	-0.20 d	Bm						1	
2	N	1	f			2.428	70 G	Hz	-6.50 d	Bm						_	
	N	1	г			2.445	35 G	HZ	-8./6 a	Bm						Freq	Offset
5																	0 Hz
6																1	
8			+														
9																	
10		_						_									
12		-	+														
MSG													STATUS	5			

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11g 6Mbps (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462.00	16650	>500	Pass

Figure Channel 11:

Agiler	nt Spe	ctrur	n Ana	alyzer - S	Swep	ot SA																		
Cen	L Iter	Fre	RF q 2	50 2.462	ιΩ 000	AC 200	0 G	Hz		_]	SEN	VSE:I	VT	Avç	ј Туре	ALIGN AU : Log-P	ito 'wr	11:5	6:14. TRAC	AMAp CE 1 2 PE MA	r 17, 20: 2 3 4 5	15 6	Frequency
10 d	B/div	IFGain:Low #Atten: 30 dB Det IP NNNN Mkr2 2.453 70 GHz -6.32 dBm															Auto Tune							
Log 10.0 0.00 -10.0									∮ ²	مع کر ا	าราสาราย	Marlin a		ᡙᠬ᠆ᢣ᠆ᢞᠬ᠕ᡔᡮᡟ		⊘ 3						-6.11 dBr	-	Center Freq 2.462000000 GHz
-20.0 -30.0 -40.0	w	W	ะางไม่	Unito physical	roo d	~~	Nesterne		/								Mr. Of the good	<u> </u>	مرسانه الم	Ang	mm	ዂኯዅኯኯ		Start Freq 2.437000000 GHz
-50.0 -60.0 -70.0								-							-									Stop Freq 2.487000000 GHz
Cen #Re	ter: sB	2.46 N 1	620 00	0 GHz kHz		×	100		#VE	sw	300 Y	kHz		FUN	CTION	FUN	Swee	ep 4	Spa 4.80 n	in 5 1s (0.0 100	0 MH: 1 pts	z)	CF Step 5.000000 MHz <u>Auto</u> Man
1 3 4 5 6 7 8 9 9 10 11 12			f			 	468 2 453 453 470 3	25 G 70 G 35 G			0.^ 6.: 	11 dE 32 dE 36 dE	3m 3m 3m											Freq Offset 0 Hz
MSG																	ST	TATUS						

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11g 6Mbps (2467MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
12	2467.00	15250	>500	Pass

Figure Channel 12:

🊺 Key	/sight S	pectru	ım A	nalyzer - S	Swept	SA														
Cent	ter I	rec	RF q2	50 2.4670	Ω)00	AC 00	0 Gł	-Iz			ENSE:		Avg	/ Fype Iold:	LIGN AUTO	05:45:49 TF	PM May 15, RACE 1 2 3	2015 4 5 6	Fi	requency
10 45	2/410		Ref	Offset (0.5 c	iB B	IF	NO: F Gain:I	ast ∟ _ow	#Atten:	30 dE	3			ΔΝ	/kr3 1	5.25 M			Auto Tune
10.5 10.5				20.30		<u>, , , , , , , , , , , , , , , , , , , </u>			2 	Logoflagesle	n for) harthadhad	Langle of the	3∆2			0.01	dBm	(2.46	Center Freq 7000000 GHz
-19.5 -29.5 -39.5	ant	Arter Har	win	MAN PANAN	pat Clarg	Y ^{ylaw}	ⁿ howen								Mangar Phone	nnan	11 July Marine	างปุ่มปุ	2.44	Start Freq 2000000 GHz
-49.5 -59.5 -69.5	-																	_	2.49	Stop Freq 2000000 GHz
Cent #Res	ter 2 s BV	.46 10	700 10	0 GHz kHz				3	#VBN	/ 300 kH	z			s	Sweep 4	Span .800 ms	50.00 M s (1001 p	IHz ots)	Auto	CF Step 5.000000 MHz Map
MKR 1 1 2 3 4 5 6 7 8 9 10 11 <			SCL f f f	(Δ)		× 2. 2.	468 2 459 4 15.2	25 GH 10 GH 25 MH	iz iz iz iz (Δ)	Y 6.006 (-1.290 (0.05	dBm iBm 2 dB	FUNC		FUN	CTION WIDTH	FUNC	CTION VALUE			Freq Offset 0 Hz
MSG															STATUS	5			<u>.</u>	

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11a 6Mbps (5745MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
149	5745.00	15450	>500	Pass

Figure Channel 149:

Agiler	nt Spect	rum A	nalyzer - Sw	vept SA								
Cen	ter F	R req	50 Ω 5.7450	2 AC 00000 GH	z	SEI		Avg Type	ALIGNAUTO e: Log-Pwr	07:31:33 P TRA	M May 14, 2015 CE 1 2 3 4 5 6	Frequency
10 d	B/div	Re	f Offset 1. ef 21.50	5 dB dBm	NO: Fast G Gain:Low	#Atten: 3	0 dB		Mkr	2 5.737 -0.	15 GHz 06 dBm	Auto Tune
Log 11.5 1.50					2	pilmorordondes.	1 ml.mlmmn	3			1.61 dBm	Center Freq 5.745000000 GHz
-18.5 -28.5 -38.5	harry Mt	ordenly	- Martin Martin	Wester Religion	and a state				WWWWWWWWWWWW	WWWWWWWW	an why have	Start Freq 5.720000000 GHz
-48.5 -58.5 -68.5												Stop Freq 5.770000000 GHz
Cen #Re	ter 5 s BW	.745 / 100	00 GHz kHz		#VB۱	N 300 kHz			Sweep 4	Span 5 .800 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MHz Auto Man
1 2 3 4 5 6 7	MODE N N N	1 f 1 f 1 f		× 5.746 20 5.737 10 5.752 60	0 GHz 5 GHz 0 GHz	Y 7.61 dl -0.06 dl 0.61 dl	Bm Bm Bm Bm		NCTION WIDTH		DN VALUE	Freq Offset 0 Hz
8 9 10 11 <									STATU	s	V	

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11a 6Mbps (5785MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
157	5785.00	15250	>500	Pass

Figure Channel 157:

Agilen	it Spectr	um Ar	nalyzer - Sw	ept SA								
Cen	ter F	RF req	50 Ω 5.78500	AC	z	SEI		Avg Type	ALIGNAUTO : Log-Pwr	07:32:52 Pl TRAC	M May 14, 2015	Frequency
,10 di	B/div	Re Re	f Offset 1.9	5 dB	NO: Fast 🕞 Gain:Low	#Atten: 3	D dB		Mkr	2 5.777 0.	35 GHz 11 dBm	Auto Tune
Log 11.5 1.50 -8.50					2 	for whether	n-mhalm	3			2.12 dBm	Center Freq 5.785000000 GHz
-18.5 -28.5 -38.5	internation (N	hijvw	allentulwand	WARMIN ARMA	1 m. m.			1 ⁷⁸⁶ 1	www.and.www.anary	MAN WILLAND	Mayly Marro	Start Freq 5.76000000 GHz
-48.5 -58.5 -68.5												Stop Freq 5.810000000 GHz
Cen #Re	ter 5. s BW	7850 100)0 GHz kHz		#VBV	V 300 kHz			Sweep 4	Span 5 .800 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MHz
MKR 1 2 3 4 5 6 7 8 9 10 11	MODE THE N 1 N 1 N 1 N 1			× 5.788 7 5.777 3 5.792 6	0 GHz 5 GHz 0 GHz	Y 8.12 d 0.11 d 0.21 d	FUNC 3m 3m 3m		ICTION WIDTH	FUNCTIO		Freq Offset 0 Hz
MSG									STATUS			<u>ı. </u>

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11a 6Mbps (5825MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
165	5825.00	15200	>500	Pass

Figure Channel 165:

Agilen	t Spec	strun	n Ani	alyzer - S	wept	SA											
Cen	ter	Fre	RF	50 5.8250	Ω # 0000	ic)00 GI	Ηz		SEN		Avg	gType	ALIGNAUTO : Log-Pwr	07:35:12 P TRA	M May 14, 2015		Frequency
10 de	3/div		Ref Ref	Offset 1 f 21.50	1.5 di) dB	B m	'NO: Fas Gain:Lo	t 🗣	#Atten: 30) dB			Mkr	2 5.817 0.	35 GHz 37 dBm		Auto Tune
Log 11.5 1.50								2	whenha	monidum		2 ³			2.41 dBm	ŧ	Center Freq 5.825000000 GHz
-18.5 -28.5 -38.5	www	hany	Modul	what Month	minA	ASP IN THE REAL PARTY INTERNES. THE REAL PARTY INTERNES PARTY						S. And	nonnantas	mnunmun	the month and	ŧ	Start Freq 5.800000000 GHz
-48.5 -58.5 -68.5																ę	Stop Freq 5.85000000 GHz
Cen #Res	ter : s BV	5.82 N 1	250 00	0 GHz kHz			#\	/BW	/ 300 kHz			;	Sweep 4	Span 5 .800 ms (0.00 MHz 1001 pts)	Au	CF Step 5.000000 MHz to Man
1 1 2 3 4 5 6 7 8 9 10	MODE N N N	TRC 1 1	f f f			× 5.8287 5.8173 5.8325	75 GHz 35 GHz 55 GHz		¥ 8.41 df 0.37 df 0.57 df	3m 3m 3m 3m	UNCTION		ICTION WIDTH	FUNCTI			Freq Offset 0 Hz
11 K MSG									IIII			-	STATUS	5	>		

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412.00	17850	>500	Pass

Figure Channel 1:

X RL RF 50 Ω AC SENSE:INT ALIGN AUTO 12:02:43 AMApr 17,2015 Frequencies	
Center Freq 2.412000000 GHz	uency
PN0: Fast Trig: Free Run Urre IN WWWWWWW	
Il-Gain:Low #Atten: 30 gb	
Mkr2 2.403 10 GHz	
10 dB/div Ref 20.00 dBm -6.44 dBm	
	nton Enor
	nter - req
0.00)0000 GHz
10.0	
	tart Freq
-30.0	00000 GHz
50 0 Munduland Ministration	
	ton Fred
	-top Freq
-70.0	J0000 GHZ
Center 2.41200 GHz Span 50.00 MHz Span 50.00 MHz	CE Sten
#Res BW 100 kHz #VBW 300 kHz Sweep 4.80 ms (1001 pts) 5.00	00000 MHz
	Man
2 N 1 F 2.403 10 GHz - 6.44 dBm	
3 N 1 f 2.420 95 GHz -6.98 dBm Fri	eq Offset
	0 Hz
7	
MSG STATUS	

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437.00	17850	>500	Pass

Figure Channel 6:

Agiler	it Specti	rum Ar	alyzer - Swe	ept SA								
lxi R	L	RF	50 Ω	AC		SEI	NSE:INT		ALIGN AUTO	12:10:38	AMApr 17, 2015	Frequency
Cen	ter F	req	2.43700	0000 GH	z		- Dun	Avg Typ	e: Log-Pwr	TRAC TY	E 1 2 3 4 5 6	Frequency
				E'	AO: Fast 🕞 Gain:Low	J Ing. nee #Atten: 3	3 Kun 0 dB			D	ETPNNNNN	
		—			Jameon				MLz	0 0 400	40.00-	Auto Tune
		_		-					IVINI	2 2.420		
10 di	3/div	Ref	f 20.00 d	<u>/Bm</u>						-0.		
10.0												O - mton From
10.0					12 (<u>γ</u>						CenterFreq
0.00				<u> </u>	mon	mountown			<u>ا</u>	+	-6.04 dBm	2.437000000 GHz
-10.0												
-20.0					d la							
-20.0				تى	ſ	T	Γ	· ۲	ч Гу	Γ		Start Freq
-30.0				MM	<u> </u>	+	<u> </u>	+	- Martin	<u> </u>		2.412000000 GHz
-40.0	<u> </u>		- and share when	pppp/	──	+	<u> </u>		- What	www.www.	ALL BURN	
-50.0	where	dalarma	Mall Manager		<u> </u>		L			a contration of	1 prover allowed	
50.0												Stop Fred
-60.0												2 462000000 GHz
-70.0	<u> </u>	-+		<u> </u>	<u> </u>	+				+	I	2.402000000 0.12
	Ļ									<u> </u>		
Cen	ter 2.4	4370	0 GHz						_	Span 5	0.00 MHz	CF Step
#Re	s BW	100	<u>kHz</u>		#VBV	/ 300 KHZ			Sweep	<u>4.80 ms (</u>	1001 pts)	5.000000 MHz
MKB	MODE TI	RCI SCI		×		Y	FU	NCTION FU	NCTION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u> Man
1	N 1	f		2.431 6	5 GHz	-0.04 dl	Зm					
2	N 1	∏f	—	2.428 1	0 GHz	-6.08 dF	3m					
	N 1	4 <u> </u>		2.445 9	5 GHz	-7.22 at	<u>3m</u>					Freq Offset
5		+										0 H:
6		\square										
7	-+	+					—					
9	+	+										
10												
11	-+	+			-+		——					
121			<u> </u>									
MSG									STATUS	5		

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462.00	17850	>500	Pass

Figure Channel 11:

Agiler	nt Spe	ctrum	Ana	lyzer - Sw	vept S	A														
Cer	ter	Fre	RF q 2	50 ຊ . 4620	2 AC	00 G	Hz		_			INT	Avg	, Type	ALIGN AUTO : Log-Pwr	12:1	L8:30. TRAC	AMApr 17, 2 E 1 2 3 4	2015 5 6	Frequency
10 d	B/div		Ref	20.00	dBr	 n	PNO: FGai	: Fast in:Low	-	#Atten: 3	30 dE	3			Mkr	2 2.4	53 -6.0	10 GH	IZ m	Auto Tune
Log 10.0 0.00 -10.0					-			2 2	3	1 VrvVienne		www	مرار میران میر مرابع	<mark>.√</mark> 3				-5.45 c	зBrn	Center Freq 2.462000000 GHz
-20.0 -30.0 -40.0	www	YANIN	•	Janserater							+				Mar March May	anter had	MM	manne		Start Freq 2.437000000 GHz
-50.0 -60.0 -70.0			+		+		+				+									Stop Freq 2.487000000 GHz
Cen #Re	s B	2.46: W 10	200)0 k) GHz (Hz		×	25.4	#VE	зw	300 kH:	Z	FUNC	TION	FUN	Sweep chonwidth	Spa 4.80 n	an 5 ns (Nome	0.00 MI 1001 pt N VALUE	Hz ts)	CF Step 5.000000 MHz <u>Auto</u> Man
1 3 4 5 6 7 8 9 10 11 12						<u>2.456</u> <u>2.453</u> <u>2.470</u> 		3Hz 3Hz 3Hz		 6.02 c 5.66 c 										Freq Offset 0 Hz
MSG		·													STATUS	6				

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-20BW_7.2Mbps(2.4G Band) (2467MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
12	2467.00	15200	>500	Pass

Figure Channel 12:

🎉 Keysight Sp	oectrum Analyzer - Sw	ept SA								
Center F	RF 50 Ω Feq 2.46700	AC 0000 GH	lz	SENS	SE:INT	Avg Type	ALIGN AUTO	05:47:26 PI TRAC	M May 15, 2015	Frequency
10 dB(diu	Ref Offset 0.5	5 dB	VO: Fast Jain:Low	Atten: 30	dB	Avginoid.	<u>Δ</u> Ν	Akr3 15.	20 MHz	Auto Tune
			production			3D2	2		-0.49 dBm	Center Freq 2.467000000 GHz
-19.5 -29.5 -39.5	HALWWARDON AN PORT	WWW WWW				`\	www.showww.	withmotherwhited	Magnowinglan	Start Freq 2.442000000 GHz
-49.5										Stop Freq 2.492000000 GHz
Center 2 #Res BW	.46700 GHz / 100 kHz		#VBW	/ 300 kHz	EUN		Sweep 4	Span 5 .800 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MHz <u>Auto</u> Man
1 N 2 N 3 Δ2 4 5 6 7	1 f 1 f 1 f 1 f (Δ)	2.468 2 2.459 4 15.2	5 GHz 0 GHz 0 MHz (Δ)	4.509 dB -2.887 dB 0.743 c	m m jB				E	Freq Offset 0 Hz
8 9 10										

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-40BW_15Mbps(2.4G Band) (2422MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
3	2422.00	36800	>500	Pass

Figure Channel 3:

Agilent	Spectrun	n Ana	lyzer - Swe	ept <mark>SA</mark>								
IXI RL		RF	50 Ω	AC		SEI	NSE:INT		ALIGNAUTO	12:28:45	AMApr 17, 2015	Erequency
Cent	er Fre	q 2	.42200	0000 GI	-Iz	Trig: Fre	- Dun	Avg Ty	ype: Log-Pwr	TRA(TY	CE 1 2 3 4 5 6	Frequency
				ч IF	NO: Fast Gain: Low	#Atten: 3/	0 dB			D	ET P N N N N N	
									MI		2 6 6 4 7	Auto Tune
									IVIT	15 _15\ 15_	30 G [] 71 d B m	
10 dB/	div I	Ret	20.00 a	Bm						-10.		
10.0												
10.0												CenterFreq
0.00 -		+			- mento		mananan	-t-X-		+	247.40-	2.422000000 GHz
-10.0		+		<u> </u>	₩ 2==				₩	+	-9.15 0bm	
-20.0		\perp			Ţ		*		Ľ			
-20.0				Γ	7	Τ	Γ		_√	Т		Start Freq
-30.0		-			1	+	+	+	- N.	+	<u> </u>	2.372000000 GHz
-40.0	-	+		Share Part				_		a martine		
-50.0	manhorn	الجمرامهما	eleventer -	م ال در الح						and a subscription of the	Allow Bland Wrongs	
										T		Stop Freg
-6U.U					1	+	1	-				2 47200000 GHz
-70.0 -		+			+	+				+		2.47200000 6112
L												
Cente	er 2.42	200) GHz							Span 1	00.0 MHz	CF Step
#Res	BW 1	00 I	(Hz		#VB	N 300 kHz			Sweep	9.60 ms (1001 pts)	10.000000 MHz
MKR M	IDEL TRO	SCL		×		Y	FU	NCTION	FUNCTION WIDTH	L FUNCTIO	IN VALUE	Auto Man
	v 1	f		2.435	4 GHz	-3.15 di	3m					
2 1	v 1	f		2.403	6 GHz	-15.71 dF	3m					
3 1	1	f		2.440	4 GHz	-13.65 dE	3m					Freq Offset
4	+	+					_					0 Hz
6												
7		_	_				_					
8	++	+										
10												
11												
12												
MSG									STATU	s		

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-40BW_15Mbps(2.4G Band) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437.00	36700	>500	Pass

Figure Channel 6:

Agilent Spectrum Analyzer - Swept SA		
UX RL RF 50 Ω AC SENSE:INT ALIGN AUTO 12:36:18 A	MApr 17, 2015	Frequency
Center Freq 2.437000000 GHz Avg Type: Log-PWr	= 1 2 3 4 5 6 E M WWWW	i requeite;
IFGain:Low #Atten: 30 dB	TPNNNNN	
MLr2 2 410	7 6 4 7	Auto Tune
10 dB/div Ref 20.00 dBm -9.5		
Log		
10.0		Center Freq
		2.437000000 GHz
-10.0	-9.25 dBm	
-20.0		Start Fred
-30.0		2 39700000 CH-
		2.367000000 6112
······································	under party	
		Oton Erog
-60.0	I	StopFreq
-70.0		2.487000000 GHz
Center 2.43700 GHz Span 10	00.0 MHz	CE Stop
#Res BW 100 kHz #VBW 300 kHz Sweep 9.60 ms (1	1001 pts)	10 000000 MH;
		uto Mar
2 N 1 f 2.4187 GHz -9.56 dBm		
3 N 1 f 2.455 4 GHz -13.57 dBm		Freq Offset
		0 Hz
7		
8		
12		

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-40BW_15Mbps(2.4G Band) (2452MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
9	2452.00	36700	>500	Pass

Figure Channel 9:

nt Spe	ctrum	Ana	lyzer - Swe	pt SA												
ter	Fre	RF q 2	50 Ω . 45200	AC 0000 (GHz			SENSE:II	.NT	Avg	AL Type:	.IGN AUTO Log-Pwr	12:42:5 TR	5 AMApr 17 ACE 1 2 3	7,2015 4 5 6	Frequency
B/div	 , I	Ref	20.00 c	JBm	PNO IFGai	:Fast ⊂ in:Low	₽ Trig:r #Atter	1:30 dB	in }			Mł	(r2 2.4; -9	33 7 G	Hz	Auto Tune
						2	Ungenerierierierierieri		1 					-9.3	 39 dBm	Center Freq 2.452000000 GHz
 	L. how 9		Margan	and the state of the	7		<u> </u>					What we want	and water and the	Mangana		Start Freq 2.402000000 GHz
	Thurst				_						+					Stop Freq 2.502000000 GHz
nter : s B1	2.45 N 10	200)0 k) GHz (Hz	X	_	#VB1	W 300 k	Hz	FUNC	TION	FUNC	Sweep	Span 9.60 ms	100.0 F (1001	VIHz pts)	CF Step 10.000000 MHz <u>Auto</u> Man
N N N	1	f f		2.45 2.43 2.47	5420 3370 7040	GHz GHz	-3.39 -9.55 -13.76	dBm dBm dBm								Freq Offset 0 Hz
	nt Spee	B/div F B/div	It Spectrum Analus RF Iter Freq 2 RF B/div Ref Image: state stat	nt Spectrum Analyzer - Swe L RF 50 0 Iter Freq 2.45200 B/div Ref 20.00 d B/div Ref 20.00 d L RF 100 k Ref 20.00 d L RF 2.45200 d Ref 20.00 d	at Spectrum Analyzer - Swept SA L RF 50 @ AC itter Freq 2.452000000 (B/div Ref 20.00 dBm Image: Spectrum Analyzer - Swept SA B/div Ref 20.00 dBm Image: Spectrum Analyzer - Swept SA Image: Spectrum Analyzer - Swept SA	nt Spectrum Analyzer - Swept SA ter Freq 2.452000000 GHz PNO IFGa B/div Ref 20.00 dBm div Ref 20.00 dBm B/div Ref 20.00 dBm ter 2.45200 GHz s BW 100 kHz M003 TRC SCL X N 1 f 2.45421 N 1 f 2.4337 N 1 f 2.4337 N 1 f 2.4337	nt Spectrum Analyzer - Swept SA ter Freq 2.452000000 GHz PN0: Fast C IFGain:Low B/div Ref 20.00 dBm B/div Ref 20.00 dBm B/div Ref 20.00 dBm B/div Ref 20.00 dBm	nt Spectrum Analyzer - Swept SA L RF 50 Ω AC hter Freq 2.452000000 GHz PN0: Fast IFGain:Low B/div Ref 20.00 dBm	ht Spectrum Analyzer - Swept SA hter Freq 2.452000000 GHz PN0: Fast IFGain:Low Trig: Free Ru #Atten: 30 dE B/div Ref 20.00 dBm Image: Spectrum Analyzer - Swept SA Image: Swept SA Image: Spectrum Analyzer - Swept SA Image: Swept Sa	Inter Freq 2.452000000 GHz If an inter Freq 2.452000000 GHz PNO: Fast Inter So dB B/div Ref 20.00 dBm Image: Colspan="2">Image: Colspan="2" Image: Colspa="2" Image: Colspan="2" Image: Colspan="2" I	nt Spectrum Analyzer - Swept SA L RF 50 Q AC SENSE:INT Avg i PNO: Fast Trig: Free Run #Atten: 30 dB B/div Ref 20.00 dBm B/div Ref 20.00 dBm B/div Ref 20.00 dBm B/div Ref 20.00 dBm B/div Ref 20.00 dBm	Int Spectrum Analyzer - Swept SA L RF 50 Q AC SENSE:IVIT Aug Type: I Trig: Free Run IFGain:Low Trig: Free Run Aug Type: I PN0: Fast Trig: Free Run Joint Colspan="2">Aug Type: I PN0: Fast Trig: Free Run Aug Type: I PN0: Fast Trig: Free Run Aug Type: I PN0: Fast Trig: Free Run Aug Type: I Aug Type: I PN0: Fast Trig: Free Run Aug Type: I Aug Type: I </td <td>nt Spectrum Analyzer - Swept SA L RF 50 & AC ALIGNAUTO hter Freq 2.452000000 GHz PN0: Fast Trig: Free Run #Atten: 30 dB MMB B/div Ref 20.00 dBm</td> <td>Int Spectrum Analyzer - Swept SA ALIGNAUTO 12:42:5 Inter Freq 2.452000000 GHz Trig: Free Run Avg Type: Log-Pwr Trig B/div Ref 20.00 dBm -9 Image: Spectrum Analyzer - Swept SA -9 -9 B/div Ref 20.00 dBm -9 Image: Spectrum Analyzer - Swept SA -9 -9 Image: Swept SA -9 -9 -9 Image: Swept Sector Swe</td> <td>nt.Spectrum Analyzer - Swept SA L RF 50 Q AC SENSE:INT ALIGNAUTO 12:42:55AMArr 12 hter Freq 2.45200000 GHz PNO: Fast Trig: Free Run HAtten: 30 dB MCR 2.433 7 G B/div Ref 20.00 dBm -9,55 dI -9,55 dI -9,55 dI -9,55 dI -0,55 dI -</td> <td>nt Spectrum Analyzer - Swept SA L RF 50 2 AC SENSEINT ALIGNAUTO 12:42:55 AMAPT 17, 2015 Avg Type: Log-Pwr TrACE [12:34:56 TYPE [MWWWWWW Det PINNINN Mkr2 2.433 7 GHz -9.55 dBm -9.55 dBm Autonou data and a sense sens</td>	nt Spectrum Analyzer - Swept SA L RF 50 & AC ALIGNAUTO hter Freq 2.452000000 GHz PN0: Fast Trig: Free Run #Atten: 30 dB MMB B/div Ref 20.00 dBm	Int Spectrum Analyzer - Swept SA ALIGNAUTO 12:42:5 Inter Freq 2.452000000 GHz Trig: Free Run Avg Type: Log-Pwr Trig B/div Ref 20.00 dBm -9 Image: Spectrum Analyzer - Swept SA -9 -9 B/div Ref 20.00 dBm -9 Image: Spectrum Analyzer - Swept SA -9 -9 Image: Swept SA -9 -9 -9 Image: Swept Sector Swe	nt.Spectrum Analyzer - Swept SA L RF 50 Q AC SENSE:INT ALIGNAUTO 12:42:55AMArr 12 hter Freq 2.45200000 GHz PNO: Fast Trig: Free Run HAtten: 30 dB MCR 2.433 7 G B/div Ref 20.00 dBm -9,55 dI -9,55 dI -9,55 dI -9,55 dI -0,55 dI -	nt Spectrum Analyzer - Swept SA L RF 50 2 AC SENSEINT ALIGNAUTO 12:42:55 AMAPT 17, 2015 Avg Type: Log-Pwr TrACE [12:34:56 TYPE [MWWWWWW Det PINNINN Mkr2 2.433 7 GHz -9.55 dBm -9.55 dBm Autonou data and a sense sens

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-40BW_15Mbps(2.4G Band) (2457MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
10	2457.00	35200	>500	Pass

Figure Channel 10:

🊺 Key	/sight S	Spectr	um /	Analyzer -	Swep	t SA													
Cent	ter	Fre	RF q	₅ 2.457	000 000	AC)00	0 GI	Hz		Tria: F	SENSE:		Avg	Type Hold:	ALIGN AUTO : Log-Pwr >100/100	05:42:55 F TRA	MMay 15, 2015 CE 1 2 3 4 5 6 PE M WWWW		Frequency
10 d5	Ref Offset 0.5 dB ΔMkr3 35.20 MHz B/div Ref 20.50 dBm																Auto Tune		
10.5 10.5 0.500 -9.50	5/014			20.3	Annte	ىرىلەرمە ئىرىمالەرمە	holy	nnyellar	hulm	Locharten	<u>_</u>	1 mahulur	lmhmh	an Anana	withultung	holten (2	2.4	Center Freq 457000000 GHz
-19.5 -29.5 -39.5	r ^{ancod}	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	NVI	John March							*						white the second	2.4	Start Freq 432000000 GHz
-49.5 -59.5 -69.5																		2.4	Stop Freq 482000000 GHz
Cent #Res	ter 2 s BV	2.45 № 1	670 00	0 GHz kHz	Z			#	VBW	/ 300 kH	lz			ę	Sweep 4	\$pan 800 ms	50.00 MHz (1001 pts)	Auto	CF Step 5.000000 MHz
MKR 0 1 2 3 4 5 6 7 8 9 10 11 <		1 1 1	SCL f f	(Δ)		× 2. 2.	460 7	75 GH2 10 GH2 20 MH2	z z z (Δ)	Y 0.509 -8.070 1.64	dBm dBm 8 dB		TION	FUN		FUNCT	ON VALUE		Ereq Offset
MSG															STATUS	5			

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-20BW_7.2Mbps(5G Band) (5745MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
149	5745.00	15250	>500	Pass

Figure Channel 149:

Agilent Spect	rum Analyzei	- Swept SA								
(XIRL	RF	50 Ω AC	I	SENS	E:INT	Aug Type		07:36:52 Pf	4 May 14, 2015	Frequency
Center F	req 5.74	1000000 GH	IZ NO: Fast 🕞	Trig: Free	Run	718 I 1964	. Log-Fwi	TY	E MWWWWW	
		IFG	Gain:Low	#Atten: 30	dB			DI		
10 dB/div	Ref Offs Ref 21	et 1.5 dB .50 dBm			Mkr2 5.737 35 GF -0.30 dB					Auto Tune
Log 11.5					1					Center Freg
1.50			- Anna - Anna	hallowhallow	alamater	the former			1.81 dBm	5.745000000 GHz
-8.50			J ^m	¥						
-18.5		- Marina	A ^P			44.	howale			
-28.5	mann	pallachip (hit H to -)					ا بر م	W- HAMAND	blo	Start Freq
20.5 MALAN	M								1 Mr Mary	5.720000000 GHz
-30.5										
-48.5										Stop Freq
-58.5										5.770000000 GHz
-68.5										
Center 5	74500 G	Hz						Span 5	0.00 MHz	CE Sten
#Res BW	100 kHz		#VBW	300 kHz		9	Sweep 4	.800 ms (1001 pts)	5.000000 MHz
MKR MODE T	RC SCL	×		Y	FUN	CTION FUN	ICTION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u> Man
1 N	1 f	5.746 2	0 GHz	7.81 dB	m					
2 N 3 N	1 F	5.752 6	0 GHZ	-0.30 dB -0.08 dB	m m					Freq Offset
4					_					0 Hz
6										
7					_					
9										
10					_				~	
<										
MSG							STATUS	6		

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2 SISO B: Transmit - 802.11n-20BW_7.2Mbps(5G Band) (5785MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
157	5785.00	15750	>500	Pass

Figure Channel 157:

Agilent	t Spec	trum	i Ana	ilyzer - Sw	vept SA												
LXI RL			RF	50 s	2 AC				SEI	NSE:INT		/	LIGN AUTO	07:38:09 F	M May 14, 2015	5	Frequency
Cent	ter	Fre	q 5	.7850	00000	GH	Z	_	Tria Fre	Run	Avg	Туре	Log-Pwr	T\	CE 1 2 3 4 5 (PE M WWWWW	5 4	Trequency
						PN IFG	l0: ⊦ast ain:Low	မ	#Atten: 3	0 dB				1	ET P N N N N I	Ň	
							um			BAL of					40.04-	1	Auto Tune
Ref Offset 1.5 dB													IVINI	2 5.111	40 GH2		
10 dE	3/div		Ref	21.50	dBm						- T			υ.		11	
11 5										1		2					a
11.5							A ²	2	بمالير فريبالير	.XA	-	$^{>}$			2.26 dBm		Center Freq
1.50					+	-	printe	-front	and and a little of the	All the Contract of the Contract	man and a start	1mg			4.40 mon		5.785000000 GHz
-8.50										[4				┨┝	
10.5					n_alady	adon	rV"					×4	manne			lt	
-10.5				. spathar	appen -								ANA ANA	Mrs. Wylen		11	Start Freq
-28.5	- M	WNW	yan	N 11 - 1	+			-						1.4.0	Wand Shan I.		5.76000000 GHz
-38.5	Autor.														" "Wildy		
-48.5					+											1	Stop Fred
-58.5					+												Stop Freq
-68.5																	5.810000000 GHZ
Icent	ter :	5.78	50	0 GHz						1		· · · ·		Span (0.00 MHz	1	CE Sten
#Res	s BV	V 1	00 1	kHz			#V	вw	300 kHz			S	weep 4	.800 ms	(1001 pts)		5 000000 MHz
												_			(•••••	-	Auto Man
MKR	IODE	TRC	SCL		×				Y OOD II	F	UNCTION	FUN	CTION WIDTH	FUNCT	ON VALUE		
2	N	1	F		5.7	<u>36 25</u> 77 / C			0.58 d	Bm						Ib	
3	Ň	1	f		5.79	93 15	GHZ		1.94 d	Bm							Freq Offset
4																	0 Hz
5		-	_														
7		-	-							_							
8																	
9																	
10		-+	_		-					_							
<		-	-						1111	-					>		
MEC													CTATIK	,			
Mag													STATUS	>			