

EMC Test Report

Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15 Subpart C

Intel® Centrino® Advanced-N + WiMAX 6250, model 622ANXHMW

FCC ID(s): PD9622ANXH

PD9622ANXHU E2K625ANXH

APPLICANT: **Intel Corporation**

2111 NE 25th Avenue JF3-302

Hillsboro, OR 97124

Elliott Laboratories TEST SITE(S):

41039 Boyce Road.

Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-3; 2845B-4, 2845B-5

> REPORT DATE: September 17, 2009

Aug 5, Aug 7, Aug 11, Aug 19-21, Aug 24-27, FINAL TEST DATES:

Sept 2, Sept 3 and Sept 9, 2009

AUTHORIZED SIGNATORY:

Staff Engine

Elliott Laboratories.

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R76779 Page 1 of 22

Test Report Report Date: September 17, 2009

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	September 23, 2009	First release	

File: R76779 Page 2 of 22

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARYDIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)	7
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.3MHZ)	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERALANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	15
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONS	
BANDWIDTH MEASUREMENTSSPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	19
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO FIRP CONVERSION	22

Page 4 of 22

TABLE OF CONTENTS (Continued)

APPENDIX A TEST EQUIPMENT CALIBRATION DATA	1
APPENDIX B TEST DATA	
APPENDIX C PHOTOGRAPHS OF TEST CONFIGURATIONS	
APPENDIX D PROPOSED FCC ID LABEL & LABEL LOCATION	
APPENDIX E DETAILED PHOTOGRAPHS	
APPENDIX F OPERATOR'S MANUAL	
APPENDIX G BLOCK DIAGRAM	
APPENDIX H SCHEMATIC DIAGRAMS	
APPENDIX I THEORY OF OPERATION	9
APPENDIX J RF EXPOSURE INFORMATION	10

SCOPE

An electromagnetic emissions test has been performed on the Intel Corporation Intel® Centrino® Advanced-N + WiMAX 6250, model 622ANXHMW, pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC DTS Measurement Procedure KDB558074, March 2005

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

File: R76779 Page 5 of 22

Report Date: September 17, 2009

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Intel Corporation Intel® Centrino® Advanced-N + WiMAX 6250, model 622ANXHMW complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Intel Corporation Intel® Centrino® Advanced-N + WiMAX 6250, model 622ANXHMW and therefore apply only to the tested sample. The sample was selected and prepared by Steve Hackett of Intel Corporation.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

File: R76779 Page 6 of 22

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 - 2483.5MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM and DSSS techniques	-	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	> 10.3 MHz	>500kHz	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems) (Note 3)	802.11b: 16.6 dBm 802.11g: 15.7 dBm HT20: 15.7 dBm (0.0457 Watts) HT40: 15.8 dBm (0.038 Watts)	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density (Note 3)	b:-7.5dBm/3kHz g:-9.2dBm/3kHz HT20:-8.5dBm/3kHz HT40:-9.8dBm/3kHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	All emissions more than 30dB below highest in-band level.	< -30dBc Note 1	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	52.9dBμV/m @ 2389.0MHz Margin: 1.1dB (Note 2)	15.207 in restricted bands, all others < -30dBc Note 1	Complies

Note 1: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst) / RMS averaging over a time interval, as permitted under RSS 210 section A8.4(4).

Note 2: Spurious emissions below 1GHz were independent of the operating channel and operating mode. The highest emission below 1GHz complied with 15.209 limits.

Note 3: For 802.11b, 802.11g and HT20 modes the highest output power and PSD were measured in single-chain (MISO) mode. The highest power and psd in HT40 were measured in dual chain (2x2) mode.

File: R76779 Page 7 of 22

DIGITAL TRANSMISSION SYSTEMS (5725 -5850 MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM and DSSS techniques	-	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	> 16.3 MHz	>500kHz	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	802.11a: 15.3 dBm HT20: 15.2 dBm (0.034 Watts) HT40: 15.4 dBm (0.035 Watts)	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	a:-8.7dBm/3kHz HT20:-9.5dBm/3kHz HT40:- 12.8dBm/3kHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	All emissions more than 30dB below highest in-band level.	< -30dBc Note 1	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	43.4dBμV/m @ 11650MHz Margin: 10.6dB	15.207 in restricted bands, all others < -30dBc Note 1	Complies

Note 1: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst) / RMS averaging over a time interval, as permitted under RSS 210 section A8.4(4).

Note 2: Spurious emissions below 1GHz were independent of the operating channel and operating mode. The highest emission below 1GHz complied with 15.209 limits.

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	1	RF Connector	UFL connector	Unique connector required	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	38.6dBμV/m @ 114.111MHz	Refer to standard	Complies (- 4.9 dB)
15.207	RSS GEN Table 2	AC Conducted Emissions	43.3dBμV @ 1.906MHz	Refer to standard	Complies (-12.7dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11 and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Only applicable to Canada, not evaluated.	Statement required regarding non-interference	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Only applicable to Canada, not evaluated.	Statement for products with detachable antenna	Complies
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	802.11b: 13.7 MHz 802.11g: 17.2 MHz 802.11a: 16.3 MHz HT20: 18.5 MHz HT40: 36.9 MHz	Information only	N/A

File: R76779 Page 8 of 22

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	0.015 to 30	± 3.0
Radiated Emissions	30 to 1000	± 3.6
Radiated Emissions	1000 to 40000	± 6.0

File: R76779 Page 9 of 22

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intel Corporation Intel® Centrino® Advanced-N + WiMAX 6250, model 622ANXHMW is a PCI express form factor (half-mini) card that is designed to provide a 2x2 802.11abgn and 1x2 802.16e interfaces for host systems such as laptop PCs. The electrical rating of the EUT is 3.3Vdc (via mini PCI bus).

For module-level tests of the transceiver the card was installed into a test fixture that was controlled from a laptop PC. The test fixture exposed the card outside of a host system to meet the modular test requirements of FCC and Industry Canada.

The AC conducted emissions tests were performed with the card installed into the mini-PCI bus of a laptop, as would be the case in normal use.

The samples were received on August 3, 2009 and tested on Aug 5, Aug 7, Aug 11, Aug 19-21, Aug 24-27, Sept 2, Sept 3 and Sept 9, 2009. The EUT consisted of the following component(s):

Company	Model	Description	MAC Address	FCC ID
Intol		2x2 802.11abgn	001E6400E972	PD9622ANXH
Intel Corporation	622ANXHMW	PCIe card	00150059F1BC	PD9622ANXHU
			00150059F23C	E2K625ANXH

MAC address 001E6400E972 used for AC conducted emissions testing.

MAC address 00150059F1BC or 00150059F23C used for all transmitter and radiated spurious measurements. MAC address 00150059F23C used for all rf port measurements.

ANTENNA SYSTEM

The antenna system used with the Intel Corporation Intel® Centrino® Advanced-N + WiMAX 6250, model 622ANXHMW was a PIFA antenna.

ENCLOSURE

The EUT has no enclosure. It is designed to be installed within the enclosure of a host computer.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

File: R76779 Page 10 of 22

SUPPORT EQUIPMENT

The following support equipment was used for spurious radiated emissions and all rf port measurements:

Company	Model	Description	Serial Number	FCC ID
Intel	None	PCIe test fixture		N/A
Dell	-	Laptop PC	Prototype	None
Topward	-	DC Supply		N/A

The following equipment was used when measuring the conducted emissions from the AC power port:

Company	Model	Description	Serial Number	FCC ID		
Hewlett Packard	IP26000	Printer	QC2-6844- DB02-01	DoC		
Toshiba	PSAG8U- 04001W	Host Laptop	49290792Q	DoC		
Company	Model	Description	Serial Number	FCC ID		
Netgear FS108 Hub F518H2BCB092 554 -						
The ethernet hub v	The ethernet hub was located outside the test chamber.					

EUT INTERFACE PORTS

The I/O cabling configuration for spurious radiated emissions and all rf port measurements was:

Port	Connected To	Cable(s)			
Poit	Connected 10	Description	Shielded or Unshielded	Length(m)	
Test fixture PCI	Laptop PCI	Ribbon Cable	Unshielded	0.8	
Test fixture 3.3Vdc	Bench supply	2-wire	Unshielded	0.8	

The I/O cabling configuration for AC power port conducted emissions measurements was:

Port	Connected	Cable(s)		
1 011	То	Description	Shielded or Unshielded	Length(m)
Laptop Ethernet	Hub	Cat-5	Unshielded	10.0
Laptop USB	Printer	USB	Shielded	1.5
Laptop AC Power	AC Mains	3Wire	Unshielded	1.0

File: R76779 Page 11 of 22

EUT OPERATION

During AC conducted emissions testing the EUT was being controlled by the CRTU tool to operate in a continuous transmit mode on the center channel. In addition the laptop was displaying a scrolling 'H' pattern on the screen and had link enabled to both the ethernet and USB peripherals.

For measurements on the radiated spurious emissions generated by the receiver the EUT was being controlled by the Intel CRTU tool to operate in a continuous receive mode on the center channel.

During transmitter tests the EUT was being controlled by the Intel CRTU tool to operate in a continuous transmit mode on the top, bottom or center channel as required and in each of the different modulation modes. The data rates of 1Mb/s for 802.11b, 6Mb/s for 802.11g, 6.5Mb/s for HT20 and 13.0Mb/s for HT40 modes were selected based on preliminary testing that identified those data rates having the highest output power in each mode when the device is operated under EEPROM control, which reduces power as the data rate is increased to ensure signal integrity.

Spurious emissions at the band edges were made with the device operating on the top and bottom channels in each band for each operating mode (802.11a in the 5GHz bands, 802.11b and 802.11g in the 2.4GHz band and both HT20 and HT40 in all bands) for each operating chain (chain A and Chain B). Additionally measurements were made in HT20 and HT40 modes with both chains active simultaneously.

Spurious radiated emissions above 1GHz away from the band edges of the allocated bands were made in single chain mode for the legacy modes (both Chain A and Chain B separately) and with both chains active in HT20 and HT40 modes. In the MIMO modes the output power per chain was set to the highest single chain power setting to ensure both single- and dual-chain power levels were covered by the one set of measurements (the output power per chain is higher in single-chain mode to obtain the same total output power as MIMO mode).

Spurious emissions at the rf port were made in single chain mode (Chain A and Chain B separately) for the legacy and HT20 and HT40 modes. For HT20 and HT40 modes the limit of -27dBm eirp was adjusted to account for antenna gain and then by an extra -3dB to account for the fact that two chains may be active simultaneously.

Preliminary measurements for the spurious emissions below 1GHz indicated that emissions below 1Ghz were independent of the operating frequency and operating mode (transmit versus receive), therefore the final measurements were made with the device in transmit mode, both chains A and B active and tuned to 2437 MHz in HT20 mode.

File: R76779 Page 12 of 22

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on Aug 5, Aug 7, Aug 11, Aug 19-21, Aug 24-27, Sept 2, Sept 3 and Sept 9, 2009 at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	Registration Numbers		
Site	FCC	Canada		
Chamber 3	769238	2845B-3	41039 Boyce Road	
Chamber 4	211948	2845B-4	Fremont,	
Chamber 5	211948	2845B-5	CA 94538-2435	

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

File: R76779 Page 13 of 22

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Ouasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R76779 Page 14 of 22

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

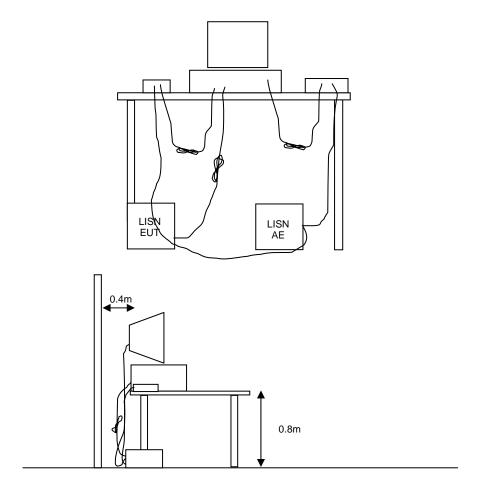
The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R76779 Page 15 of 22


TEST PROCEDURES

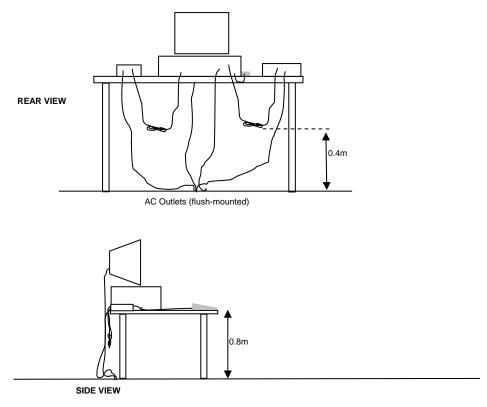
EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

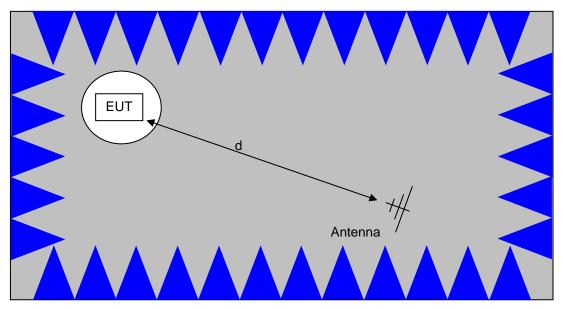
Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

File: R76779 Page 16 of 22

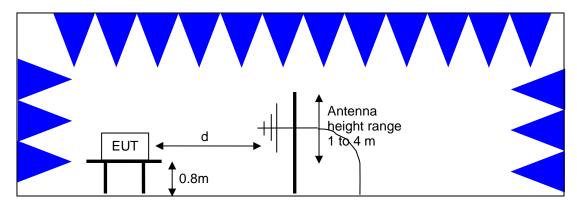

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.


Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.


Typical Test Configuration for Radiated Field Strength Measurements

File: R76779 Page 17 of 22

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

File: R76779 Page 18 of 22

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

File: R76779 Page 19 of 22

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 – 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 – 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS - FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

File: R76779 Page 20 of 22

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

File: R76779 Page 21 of 22

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

E =
$$\frac{1000000 \sqrt{30 P}}{3}$$
 microvolts per meter
3
where P is the eirp (Watts)

File: R76779 Page 22 of 22

Appendix A Test Equipment Calibration Data

			Accot	
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset <u>#</u>	<u>Cal Due</u>
AC Conducted Em				
EMCO	LISN, 10 kHz-100 MHz	3825/2	1293	18-Mar-10
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	1593	09-Jun-10
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	26-Feb-10
Fischer Custom	LISN, 25A, 150kHz to 30MHz, 25 Amp,	FCC-LISN-50-	2001	15-Oct-09
Comm	•	25-2-09		
Transmitter/Receiv	ver Spurious Emissions 30 – 1000 MHz			
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1548	13-Jun-10
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	26-Feb-10
Com-Power Corp.	Preamplifier, 30-1000 MHz	PA-103	1632	13-Apr-10
Receiver Spurious	Emissions 1,000 – 18,000 MHz			
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	263	09-Oct-09
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	02-Sep-10
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40)	8564E	1771	20-Oct-09
Hewiett i ackaid	Purple	(84125C)	1771	20-001-09
Transmitter Spurio	ous Emissions 1,000 – 40,000 MHz and ı	f Port measureme	nts	
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	263	09-Oct-09
Hewlett Packard	SpecAn 9 KHz-26.5 GHz, Non- Program	8563E	284	29-Dec-09
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	03-Jun-10
EMCO	Antenna, Horn, 1-18 GHz	3115	786	06-Dec-09
EMCO	Antenna, Horn, 1-18GHz	3115	868	10-Jun-10
Rohde & Schwarz	Power Sensor, 1 uW-100 mW, DC-18 GHz, 50ohms	NRV-Z51	1070	06-Apr-10
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	02-Sep-10
Hewlett Packard	High Pass filter, 8.2 GHz (Blu System)	P/N 84300- 80039 (84125C)	1392	22-Jun-10
Hewlett Packard	SpectAn 9 kHz - 40 GHz, FT (SA40)	8564E	1393	10-Apr-10
Rohde & Schwarz	Blue Power Meter, Single Channel	(84125C) NRVS	1422	06-Nov-09
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1539	12-Sep-09
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1555	28-Jan-10
Rohde & Schwarz	Attenuator, 20 dB, 50 ohm, 10W, DC-	20dB, 10W,	1556	28-Jan-10
	18 GHz	Type N		
Micro-Tronics	Band Reject Filter, 5725-5875 MHz	BRC50705-02	1728	07-Oct-09
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	1729	07-Oct-09
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02 8564E	1731	02-Dec-09
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	(84125C)	1771	20-Oct-09
Hewlett Packard	Head (Inc W1-W4, 1946, 1947) Purple	84125C	1772	6-May-10
A.H. Systems	Purple System Horn, 18-40GHz	SAS-574, p/n: 2581	2160	17-Mar-10

File: R76779 Appendix Page 1 of 10

Appendix B Test Data

T76369 (AC conducted emissions, transmitter spurious emissions 30 – 1000 MHz, receiver spurious emissions)
T76370 (Transmitter rf port measurements, transmitter radiated emissions 1 – 40GHz)

19 Pages

101 Pages

File: R76779 Appendix Page 2 of 10

Ellio AN AND AN AND AN AND AN AND AN AND AN AND AND	tt	Ei	MC Test Data
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76369
		Account Manager:	-
Contact:	S. Hackett		-
Emissions Standard(s):	RSS 210 / FCC 15.247	Class:	DTS
Immunity Standard(s):	N/A	Environment:	-

For The

Intel

Model

2x2 WiFi with WiMax MiniPCI

Date of Last Test: 8/25/2009

Client:	Intel	Job Number:	J75722
Model	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76369
Model.	ZXZ WIFI WILLI WIIVIAX WILLIPCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	DTS

Conducted Emissions - Module Installed in Laptop

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 8/7/2009 Config. Used: 1
Test Engineer: Peter Sales Config Change: None

Test Location: Chamber #3 Host Unit Voltage 230V/50Hz and 120V/Hz

General Test Configuration

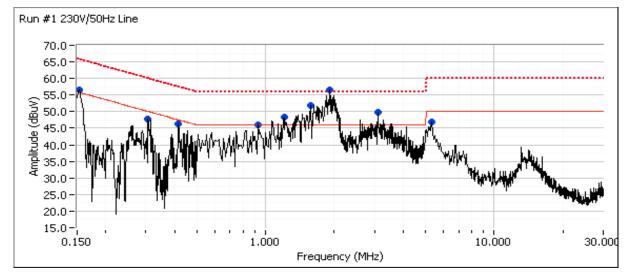
For tabletop equipment, the host system was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

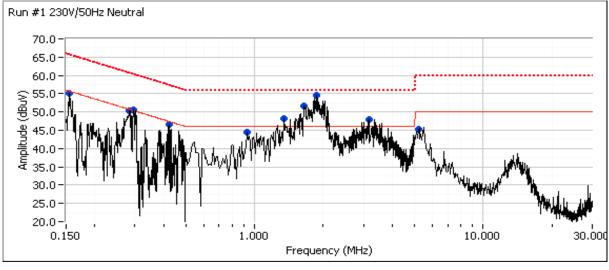
Ambient Conditions: Temperature: 23 °C

Rel. Humidity: 40 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power, 230V/50Hz	EN55022 Class B	Pass	49.6dBµV @ 1.916MHz (-6.4dB)
2	CE, AC Power,120V/60Hz	FCC 15.207 FCC Class B	Pass	43.3dBµV @ 1.906MHz (-12.7dB)

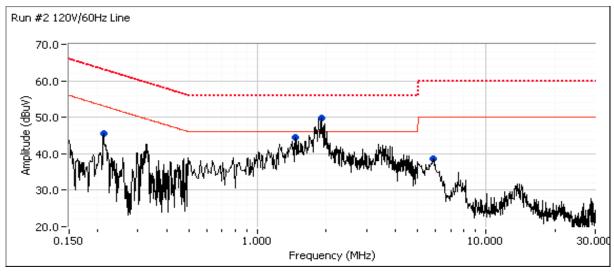

Modifications Made During Testing

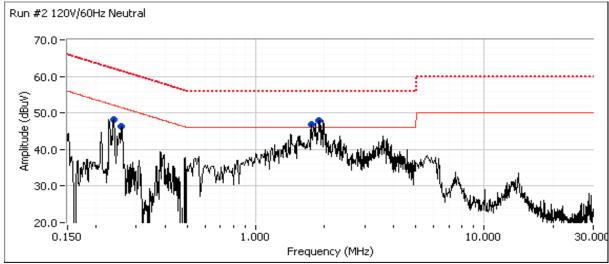

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	Eliott An DZES company	EMO	C Test Data
Client:		Job Number:	J75722
Madali	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76369
wouei.	ZXZ WIFI WIIII WIIVIAX WIIIIIPCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	DTS


	Ellic	ott		EMO	C Test Da			
Client:	An Z/L	ZAS company					Job Number:	J75722
			ID OI				T-Log Number:	T76369
Model:	2x2 WiFi wi	th WiMax Min	iPCI				Account Manager:	
	S. Hackett							
Standard:	RSS 210 / F	CC 15.247					Class:	DTS
oliminary	noak roadi	nas canturos	l during pro	scan (noak	roadings v	s. average limi	+\	
requency	Level	AC AC		2 Class B	Detector	Comments	<u>U</u>	
MHz	dΒμV	Line	Limit	Margin	QP/Ave	Comments		
1.916	56.6	Line	46.0	10.6	Peak			
1.584	52.0	Line	46.0	6.0	Peak	1		
3.111	49.8	Line	46.0	3.8	Peak			
1.186	48.4	Line	46.0	2.4	Peak			
0.153	56.4	Line	55.8	0.6	Peak			
0.296	50.5	Neutral	50.4	0.1	Peak			
0.940	45.9	Line	46.0	-0.1	Peak			
0.284	50.4	Neutral	50.7	-0.3	Peak			
0.151	55.1	Neutral	55.7	-0.6	Peak			
0.423	46.6	Neutral	47.4	-0.8	Peak			
0.415	46.2	Line	47.5	-1.3	Peak			
0.306	47.8	Line	50.1	-2.3	Peak			
5.373	47.0	Line	50.0	-3.0	Peak			
5.373	47.0	LIHE	50.0	-3.0	reak			
5.241	45.3	Neutral	50.0	-4.7	Peak			
5.241 nal quasi- requency	45.3 peak and a Level	Neutral verage readi AC	50.0 ngs EN 55022	-4.7 2 Class B	Peak Detector	Comments		
5.241 nal quasi- requency MHz	45.3 peak and a Level dBμV	Neutral verage readi AC Line	50.0 ngs EN 5502 Limit	-4.7 2 Class B Margin	Peak Detector QP/Ave			
5.241 nal quasi- requency MHz 1.916	45.3 peak and a Level dBμV 49.6	Neutral verage readi AC Line Line	50.0 ngs EN 5502. Limit 56.0	-4.7 2 Class B Margin -6.4	Peak Detector QP/Ave QP	QP (1.00s)		
5.241 nal quasi- requency MHz 1.916 1.916	45.3 peak and a Level dBμV 49.6 35.8	Neutral verage readi AC Line Line Line Line	50.0 ngs EN 5502: Limit 56.0 46.0	-4.7 2 Class B Margin -6.4 -10.2	Peak Detector QP/Ave QP AVG	QP (1.00s) AVG (0.10s)		
5.241 nal quasi- requency MHz 1.916 1.916 0.151	45.3 peak and a Level dBμV 49.6 35.8 55.6	Neutral verage readi AC Line Line Line Neutral	50.0 ngs EN 55022 Limit 56.0 46.0 65.9	-4.7 2 Class B Margin -6.4 -10.2 -10.3	Peak Detector QP/Ave QP AVG QP	QP (1.00s) AVG (0.10s) QP (1.00s)		
5.241 nal quasi- requency MHz 1.916 1.916 0.151 1.584	45.3 peak and a Level dBμV 49.6 35.8 55.6 45.3	Neutral verage readi AC Line Line Line Neutral Line	50.0 ngs EN 55022 Limit 56.0 46.0 65.9 56.0	-4.7 2 Class B Margin -6.4 -10.2 -10.3 -10.7	Peak Detector QP/Ave QP AVG QP QP	QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s)		
5.241 nal quasi- requency MHz 1.916 1.916 0.151 1.584 0.153	45.3 peak and a Level dBμV 49.6 35.8 55.6 45.3 52.6	Neutral verage readi AC Line Line Line Neutral Line Line Line Line	50.0 ngs EN 55022 Limit 56.0 46.0 65.9 56.0 65.8	-4.7 2 Class B Margin -6.4 -10.2 -10.3 -10.7 -13.2	Peak Detector QP/Ave QP AVG QP QP QP QP	QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)		
5.241 nal quasi- requency MHz 1.916 1.916 0.151 1.584 0.153 1.186	45.3 peak and a Level dBμV 49.6 35.8 55.6 45.3 52.6 41.8	Neutral verage readi AC Line Line Line Neutral Line Line Line Line Line Line Line Line	50.0 ngs EN 5502: Limit 56.0 46.0 65.9 56.0 65.8 56.0	-4.7 2 Class B Margin -6.4 -10.2 -10.3 -10.7 -13.2 -14.2	Peak Detector QP/Ave QP AVG QP QP QP QP QP	QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
5.241 nal quasi- equency MHz 1.916 1.916 0.151 1.584 0.153 1.186 0.296	45.3 peak and a Level dBμV 49.6 35.8 55.6 45.3 52.6 41.8 45.9	Neutral verage readi AC Line Line Line Neutral Line Line Line Line Neutral	50.0 ngs EN 55022 Limit 56.0 46.0 65.9 56.0 65.8 56.0 60.4	-4.7 2 Class B Margin -6.4 -10.2 -10.3 -10.7 -13.2 -14.2 -14.5	Peak Detector QP/Ave QP AVG QP QP QP QP QP QP	QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
5.241 nal quasi- requency MHz 1.916 1.916 0.151 1.584 0.153 1.186 0.296 0.284	45.3 peak and a Level dBμV 49.6 35.8 55.6 45.3 52.6 41.8 45.9 46.1	Neutral Verage readi AC Line Line Line Neutral Line Line Line Line Neutral Neutral Neutral	50.0 ngs EN 55022 Limit 56.0 46.0 65.9 56.0 65.8 56.0 60.4 60.7	-4.7 2 Class B Margin -6.4 -10.2 -10.3 -10.7 -13.2 -14.5 -14.6	Peak Detector QP/Ave QP AVG QP QP QP QP QP QP QP	QP (1.00s) AVG (0.10s) QP (1.00s)		
5.241 nal quasi- equency MHz 1.916 1.916 0.151 1.584 0.153 1.186 0.296 0.284 3.111	45.3 peak and a Level dBμV 49.6 35.8 55.6 45.3 52.6 41.8 45.9 46.1 41.3	Neutral verage readi AC Line Line Line Neutral Line Line Line Neutral Line Neutral Neutral Neutral Line	50.0 ngs EN 55022 Limit 56.0 46.0 65.9 56.0 65.8 56.0 60.4 60.7 56.0	-4.7 2 Class B Margin -6.4 -10.2 -10.3 -10.7 -13.2 -14.5 -14.6 -14.7	Peak Detector QP/Ave QP AVG QP QP QP QP QP QP QP QP QP	QP (1.00s) AVG (0.10s) QP (1.00s)		
5.241 nal quasi- equency MHz 1.916 1.916 0.151 1.584 0.153 1.186 0.296 0.284 3.111 1.584	45.3 peak and a Level dBμV 49.6 35.8 55.6 45.3 52.6 41.8 45.9 46.1 41.3 30.5	Neutral verage readi AC Line Line Line Neutral Line Line Line Neutral Neutral Neutral Neutral Line Neutral Line	50.0 ngs EN 5502 Limit 56.0 46.0 65.9 56.0 65.8 56.0 60.4 60.7 56.0 46.0	-4.7 2 Class B Margin -6.4 -10.2 -10.3 -10.7 -13.2 -14.2 -14.5 -14.6 -14.7 -15.5	Peak Detector QP/Ave QP AVG QP QP QP QP QP QP QP AVG	QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s)		
5.241 nal quasi- requency MHz 1.916 1.916 0.151 1.584 0.153 1.186 0.296 0.284 3.111 1.584 0.940	45.3 peak and a Level dBμV 49.6 35.8 55.6 45.3 52.6 41.8 45.9 46.1 41.3 30.5 40.5	Neutral verage readi AC Line Line Line Neutral Line Line Neutral Neutral Neutral Neutral Line Neutral Line Neutral Line	50.0 ngs EN 55022 Limit 56.0 46.0 65.9 56.0 65.8 56.0 60.4 60.7 56.0 46.0 56.0	-4.7 2 Class B Margin -6.4 -10.2 -10.3 -10.7 -13.2 -14.2 -14.5 -14.6 -14.7 -15.5 -15.5	Peak Detector QP/Ave QP AVG QP	QP (1.00s) AVG (0.10s) QP (1.00s)		
5.241 nal quasi- equency MHz 1.916 1.916 0.151 1.584 0.153 1.186 0.296 0.284 3.111 1.584 0.940 3.111	45.3 peak and a Level dBμV 49.6 35.8 55.6 45.3 52.6 41.8 45.9 46.1 41.3 30.5 40.5 30.1	Neutral Verage readi AC Line Line Line Neutral Line Line Neutral Neutral Neutral Neutral Line Line Neutral Line Line Line Line Line	50.0 ngs EN 55022 Limit 56.0 46.0 65.9 56.0 65.8 56.0 60.4 60.7 56.0 46.0 56.0 46.0	-4.7 2 Class B Margin -6.4 -10.2 -10.3 -10.7 -13.2 -14.2 -14.5 -14.6 -14.7 -15.5 -15.9	Peak Detector QP/Ave QP AVG QP QP QP QP QP QP QP QP QP AVG QP AVG	QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) AVG (0.10s)		
5.241 nal quasi- equency MHz 1.916 1.916 0.151 1.584 0.153 1.186 0.296 0.284 3.111 1.584 0.940 3.111 0.423	45.3 peak and a Level dBμV 49.6 35.8 55.6 45.3 52.6 41.8 45.9 46.1 41.3 30.5 40.5	Neutral verage readi AC Line Line Line Neutral Line Line Neutral Neutral Neutral Neutral Line Neutral Line Neutral Line	50.0 ngs EN 55022 Limit 56.0 46.0 65.9 56.0 65.8 56.0 60.4 60.7 56.0 46.0 56.0	-4.7 2 Class B Margin -6.4 -10.2 -10.3 -10.7 -13.2 -14.5 -14.6 -14.7 -15.5 -15.9 -16.0	Peak Detector QP/Ave QP AVG QP	QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s)		
5.241 nal quasi- equency MHz 1.916 1.916 0.151 1.584 0.153 1.186 0.296 0.284 3.111 1.584 0.940 3.111 0.423 0.415	45.3 peak and a Level dBμV 49.6 35.8 55.6 45.3 52.6 41.8 45.9 46.1 41.3 30.5 40.5 30.1 41.4 41.3	Neutral Verage readi AC Line Line Line Neutral Line Line Neutral Neutral Neutral Line Line Line Line Line Line Line Line	50.0 ngs EN 55022 Limit 56.0 46.0 65.9 56.0 65.8 56.0 60.4 60.7 56.0 46.0 56.0 46.0 57.4 57.5	-4.7 2 Class B Margin -6.4 -10.2 -10.3 -10.7 -13.2 -14.5 -14.6 -14.7 -15.5 -15.9 -16.0 -16.2	Peak Detector QP/Ave QP AVG QP QP QP QP QP QP QP AVG QP AVG QP AVG QP AVG QP	QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s)		
5.241 nal quasi- equency MHz 1.916 1.916 0.151 1.584 0.153 1.186 0.296 0.284 3.111 1.584 0.940 3.111 0.423 0.415 0.306	45.3 peak and a Level dBμV 49.6 35.8 55.6 45.3 52.6 41.8 45.9 46.1 41.3 30.5 40.5 30.1 41.4 41.3 43.6	Neutral verage readi AC Line Line Line Neutral Line Line Neutral Neutral Line Line Line Line Line Line Line Line	50.0 ngs EN 5502: Limit 56.0 46.0 65.9 56.0 65.8 56.0 60.4 60.7 56.0 46.0 56.0 46.0 57.4 57.5 60.1	-4.7 2 Class B Margin -6.4 -10.2 -10.3 -10.7 -13.2 -14.5 -14.6 -14.7 -15.5 -15.9 -16.0 -16.2 -16.5	Peak Detector QP/Ave QP AVG QP QP QP QP QP QP QP AVG QP AVG QP AVG QP	QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
5.241 nal quasi- equency MHz 1.916 1.916 0.151 1.584 0.153 1.186 0.296 0.284 3.111 1.584 0.940 3.111 0.423 0.415 0.306 0.151	45.3 peak and a Level dBμV 49.6 35.8 55.6 45.3 52.6 41.8 45.9 46.1 41.3 30.5 40.5 30.1 41.4 41.3 43.6 39.0	Neutral verage readi AC Line Line Line Neutral Line Line Neutral Neutral Line Line Neutral Line Line Line Line Line Line Line Line	50.0 ngs EN 5502: Limit 56.0 46.0 65.9 56.0 65.8 56.0 60.4 60.7 56.0 46.0 56.0 46.0 57.4 57.5 60.1 55.9	-4.7 2 Class B Margin -6.4 -10.2 -10.3 -10.7 -13.2 -14.5 -14.6 -14.7 -15.5 -15.9 -16.0 -16.2 -16.9	Peak Detector QP/Ave QP AVG QP QP QP QP QP QP QP AVG QP AVG QP AVG QP AVG QP AVG	QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s)		
5.241 nal quasi- requency MHz 1.916 0.151 1.584 0.153 1.186 0.296 0.284 3.111 1.584 0.940 3.111 0.423 0.415 0.306 0.151 0.153	45.3 peak and a Level dBμV 49.6 35.8 55.6 45.3 52.6 41.8 45.9 46.1 41.3 30.5 40.5 30.1 41.4 41.3 43.6 39.0 36.2	Neutral verage readi AC Line Line Line Neutral Line Line Neutral Neutral Line Line Line Line Line Line Line Line	50.0 ngs EN 5502: Limit 56.0 46.0 65.9 56.0 65.8 56.0 60.4 60.7 56.0 46.0 56.0 46.0 57.4 57.5 60.1	-4.7 2 Class B Margin -6.4 -10.2 -10.3 -10.7 -13.2 -14.5 -14.6 -14.7 -15.5 -15.9 -16.0 -16.2 -16.9 -19.6	Peak Detector QP/Ave QP AVG QP QP QP QP QP QP QP QP QP AVG QP AVG QP AVG QP AVG AVG AVG AVG	QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) AVG (0.10s)		
5.241 nal quasi- equency MHz 1.916 1.916 0.151 1.584 0.153 1.186 0.296 0.284 3.111 1.584 0.940 3.111 0.423 0.415 0.306 0.151 0.153 1.186	45.3 peak and a Level dBμV 49.6 35.8 55.6 45.3 52.6 41.8 45.9 46.1 41.3 30.5 40.5 30.1 41.4 41.3 43.6 39.0 36.2 25.2	Neutral Verage readi AC Line Line Line Neutral Line Line Neutral Line Line Line Line Line Line Line Line	50.0 ngs EN 55022 Limit 56.0 46.0 65.9 56.0 65.8 56.0 60.4 60.7 56.0 46.0 56.0 46.0 57.4 57.5 60.1 55.9 55.8 46.0	-4.7 2 Class B Margin -6.4 -10.2 -10.3 -10.7 -13.2 -14.5 -14.6 -14.7 -15.5 -15.9 -16.0 -16.2 -16.9	Peak Detector QP/Ave QP AVG QP QP QP QP QP QP QP AVG QP AVG QP AVG AVG AVG AVG AVG	QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
5.241 nal quasi- equency MHz 1.916 1.916 0.151 1.584 0.153 1.186 0.296 0.284 3.111 1.584 0.940 3.111 0.423 0.415 0.306 0.151 0.153	45.3 peak and a Level dBμV 49.6 35.8 55.6 45.3 52.6 41.8 45.9 46.1 41.3 30.5 40.5 30.1 41.4 41.3 43.6 39.0 36.2	Neutral verage readi AC Line Line Neutral Line Line Line Line Line Line Neutral Line Line Line Line Line Line Line Line	50.0 ngs EN 55022 Limit 56.0 46.0 65.9 56.0 65.8 56.0 60.4 60.7 56.0 46.0 56.0 46.0 57.4 57.5 60.1 55.9 55.8	-4.7 2 Class B Margin -6.4 -10.2 -10.3 -10.7 -13.2 -14.5 -14.6 -14.7 -15.5 -15.9 -16.0 -16.2 -16.5 -19.6 -20.8	Peak Detector QP/Ave QP AVG QP QP QP QP QP QP QP QP QP AVG QP AVG QP AVG QP AVG AVG AVG AVG	QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s)		
5.241 nal quasi- requency MHz 1.916 1.916 0.151 1.584 0.153 1.186 0.296 0.284 3.111 1.584 0.940 3.111 0.423 0.415 0.306 0.151 0.153 1.186 0.940	45.3 peak and a Level dBμV 49.6 35.8 55.6 45.3 52.6 41.8 45.9 46.1 41.3 30.5 40.5 30.1 41.4 41.3 43.6 39.0 36.2 25.2 24.3	Neutral verage readi AC Line Line Line Neutral Line Line Line Line Line Line Line Line	50.0 ngs EN 55022 Limit 56.0 46.0 65.9 56.0 65.8 56.0 60.4 60.7 56.0 46.0 57.4 57.5 60.1 55.9 55.8 46.0 46.0 46.0	-4.7 2 Class B Margin -6.4 -10.2 -10.3 -10.7 -13.2 -14.5 -14.6 -14.7 -15.5 -15.9 -16.0 -16.2 -16.5 -19.6 -20.8 -21.7	Peak Detector QP/Ave QP AVG QP QP QP QP QP QP QP AVG QP AVG AVG AVG AVG AVG AVG AVG	QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		


		ott Ær*company		EM	C Test Data			
Client:							Job Number:	J75722
Model	2v2 WiEi wit	h WiMax Mir	SIDCI				T-Log Number:	T76369
Model.	ZXZ VVIFI VVI	II VVIIVIAX IVIII	IIFCI				Account Manager:	-
Contact:	S. Hackett							
Standard:	RSS 210 / F	CC 15.247					Class:	DTS
Frequency	Level	AC	EN 5502	2 Class B	Detector	Comments		
MHz	dΒμV	Line	Limit	Margin	QP/Ave			
5.241	37.8	Neutral	60.0	-22.2	QP	QP (1.00s)		
0.415	24.4	Line	47.5	-23.1	AVG	AVG (0.10s)		
5.373	25.5	Line	50.0	-24.5	AVG	AVG (0.10s)		
5.241	25.5	Neutral	50.0	-24.5	AVG	AVG (0.10s)		
0.423	22.8	Neutral	47.4	-24.6	AVG	AVG (0.10s)		
0.306	24.2	Line	50.1	-25.9	AVG	AVG (0.10s)		

	· · · · · · · · · · · · · · · · · · ·		
Client:	Intel	Job Number:	J75722
Madalı	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76369
Model.	ZXZ WIFI WILLI WIIVIdX WILLIPCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	DTS

Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz

	Ellic	JJC					EM	C Test Da
Client:	Intel	(A) company					Job Number:	J75722
Marilal	00 M/IE!!	U- \A(!\A\A'	'DOL				T-Log Number:	T76369
Model:	2x2 WiFi Wif	th WiMax Mir	NPCI				Account Manager:	-
Contact:	S. Hackett							
	RSS 210 / F	CC 15.247					Class:	DTS
	1					•		•
Preliminary	peak readii	ngs capture	d during pre	e-scan (peak	readings v	s. average limit)	
Frequency	Level	AC	EN 5502	2 Class B	Detector	Comments		
MHz	dΒμV	Line	Limit	Margin	QP/Ave			
1.906	49.9	Line	46.0	3.9	Peak			
1.898	47.8	Neutral	46.0	1.8	Peak			
1.744	46.9	Neutral	46.0	0.9	Peak			
1.465	44.5	Line	46.0	-1.5	Peak			
0.238	48.1	Neutral	52.2	-4.1	Peak			
0.259	46.3	Neutral	51.5	-5.2	Peak			
0.212	45.4	Line	53.1	-7.7	Peak			
5.852	38.5	Line	50.0	-11.5	Peak			
inal augai	nook and a	uorogo rood	inac					
Frequency	Level	verage read AC		2 Class B	Detector	Comments		
MHz	dBμV	Line	Limit	Margin	QP/Ave	Comments		
	43.3	Line	56.0	-12.7	QP	QP (1.00s)		
1 900	43.1	Neutral	56.0	-12.9	QP	QP (1.00s)		
1.906 1.898								
1.898		Line	46.0	-16.0	I AVG	IAVG (0.10s)		
1.898 1.906	30.0	Line Neutral	46.0 56.0	-16.0 -16.1	AVG OP	AVG (0.10s) OP (1.00s)		
1.898 1.906 1.744	30.0 39.9	Neutral	56.0	-16.1	QP	QP (1.00s)		
1.898 1.906	30.0					QP (1.00s) AVG (0.10s)		
1.898 1.906 1.744 1.898	30.0 39.9 29.5	Neutral Neutral	56.0 46.0	-16.1 -16.5	QP AVG	QP (1.00s) AVG (0.10s) AVG (0.10s)		
1.898 1.906 1.744 1.898 1.744	30.0 39.9 29.5 28.1	Neutral Neutral Neutral	56.0 46.0 46.0	-16.1 -16.5 -17.9	QP AVG AVG	QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s)		
1.898 1.906 1.744 1.898 1.744 1.465	30.0 39.9 29.5 28.1 37.9	Neutral Neutral Neutral Line	56.0 46.0 46.0 56.0	-16.1 -16.5 -17.9 -18.1	QP AVG AVG QP	QP (1.00s) AVG (0.10s) AVG (0.10s)		
1.898 1.906 1.744 1.898 1.744 1.465 0.238	30.0 39.9 29.5 28.1 37.9 44.1	Neutral Neutral Neutral Line Neutral	56.0 46.0 46.0 56.0 62.2	-16.1 -16.5 -17.9 -18.1	QP AVG AVG QP QP	QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s)		
1.898 1.906 1.744 1.898 1.744 1.465 0.238 0.259	30.0 39.9 29.5 28.1 37.9 44.1 42.4	Neutral Neutral Neutral Line Neutral Neutral Neutral	56.0 46.0 46.0 56.0 62.2 61.5	-16.1 -16.5 -17.9 -18.1 -19.1	QP AVG AVG QP QP QP	QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)		
1.898 1.906 1.744 1.898 1.744 1.465 0.238 0.259 1.465	30.0 39.9 29.5 28.1 37.9 44.1 42.4 26.2	Neutral Neutral Neutral Line Neutral Neutral Neutral Line	56.0 46.0 46.0 56.0 62.2 61.5 46.0	-16.1 -16.5 -17.9 -18.1 -18.1 -19.1 -19.8	QP AVG AVG QP QP QP AVG	QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s)		
1.898 1.906 1.744 1.898 1.744 1.465 0.238 0.259 1.465 0.212	30.0 39.9 29.5 28.1 37.9 44.1 42.4 26.2 40.4	Neutral Neutral Neutral Line Neutral Neutral Line Line Line	56.0 46.0 46.0 56.0 62.2 61.5 46.0	-16.1 -16.5 -17.9 -18.1 -18.1 -19.1 -19.8 -22.7	QP AVG AVG QP QP QP AVG AVG	QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s)		
1.898 1.906 1.744 1.898 1.744 1.465 0.238 0.259 1.465 0.212 0.259	30.0 39.9 29.5 28.1 37.9 44.1 42.4 26.2 40.4 26.7	Neutral Neutral Neutral Line Neutral Neutral Line Line Line Neutral	56.0 46.0 46.0 56.0 62.2 61.5 46.0 63.1 51.5	-16.1 -16.5 -17.9 -18.1 -18.1 -19.1 -19.8 -22.7 -24.8	QP AVG AVG QP QP QP AVG AVG	QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
1.898 1.906 1.744 1.898 1.744 1.465 0.238 0.259 1.465 0.212 0.259 0.238	30.0 39.9 29.5 28.1 37.9 44.1 42.4 26.2 40.4 26.7 25.9	Neutral Neutral Line Neutral Neutral Line Line Line Line Neutral Line Neutral	56.0 46.0 46.0 56.0 62.2 61.5 46.0 63.1 51.5 52.2	-16.1 -16.5 -17.9 -18.1 -18.1 -19.1 -19.8 -22.7 -24.8 -26.3	QP AVG AVG QP QP QP AVG AVG AVG AVG	QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		

	An ZAZZZ Company		
Client:	Intel	Job Number:	J75722
Madal	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76369
Model.	ZXZ WIFT WILL WINIAX WILLIFCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: See runs Config. Used: Module - installed in fixture

General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 22.4 °C Rel. Humidity: 43 %

Summary of Results

Sample #2 MAC Address: 00150059F23C; CRTU Tool Version 5.199.36.999, Driver Version 13.0.0.91

Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
1	Tx and RX	Note 1	-	-	Radiated Emissions 30 - 1000 MHz	RSS 210 / FCC 15.209	38.6dBµV/m @ 114.111MHz (-4.9dB)
Receive Chain A		#6 2437 MHz	-	-	Radiated Emissions,	RSS 210	47.7dBµV/m @ 3000.4MHz (-6.3dB)
2	Receive Chain A+B	#6 2437 MHz	-	-	1 -7.5 GHz	K33 210	47.8dBµV/m @ 3000.4MHz (-6.2dB)
	Receive - Chain A	#40 5200MHz	-	-			45.9dBµV/m @ 6000.7MHz (-8.1dB)
	Receive - Chain A	#60 5300 MHz	-	-	Radiated Emissions,	FCC 15.209 / 15 E	47.2dBµV/m @ 3000.4MHz (-6.8dB)
	Receive - Chain A	#120 5600MHz	-	-	1 - 18 GHz		47.1dBµV/m @ 3000.4MHz (-6.9dB)
2	Receive - Chain A	#157 5785 MHz	-	-			47.0dBµV/m @ 3000.4MHz (-7.0dB)
3		#40 5200MHz	-	-			46.8dBµV/m @ 3000.4MHz (-7.2dB)
	Receive	#60 5300 MHz	-	-	Radiated Emissions,	FOC 1F 200 / 1F F	45.4dBµV/m @ 6000.8MHz (-8.6dB)
	Chain A+B	#120 5600MHz	-	-	1 - 18 GHz	FCC 15.209 / 15 E	Not tested, single chain
		#157 5785 MHz	-	-			was worst case for all other channels

^{1:} Scans indicated that emissions below 1Ghz were independent of operating channel and operating mode (transmit versus receive).

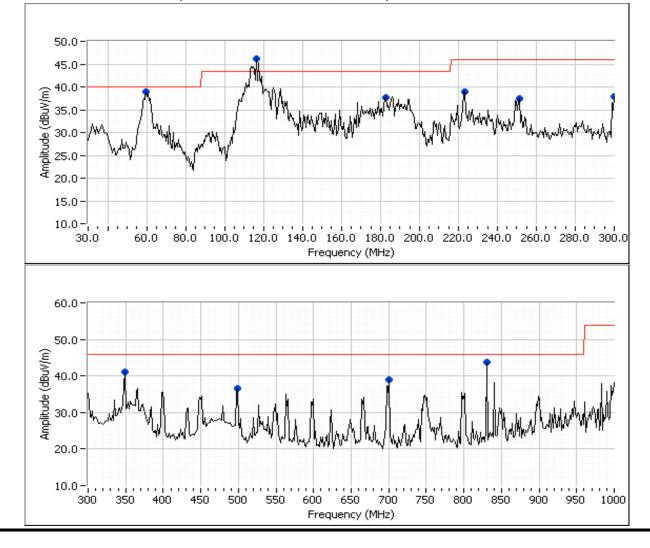
	An ZAZE3 company		
Client:	Intel	Job Number:	J75722
Madal	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76369
wouei.	ZXZ WIFI WILLI WIIVIAX WILLIPCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.


Run #1: Preliminary Radiated Emissions, 30 - 1000 MHz

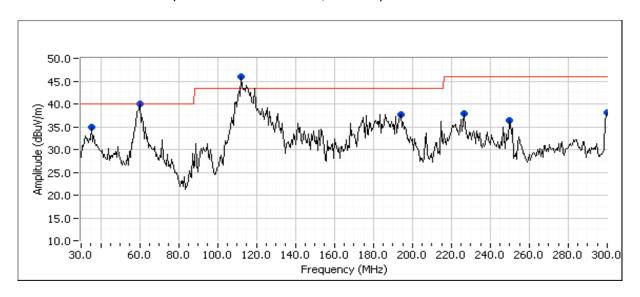
Date of Test: 8/17/2009 Test Engineer: Suhaila Test Location: FT Chamber #4

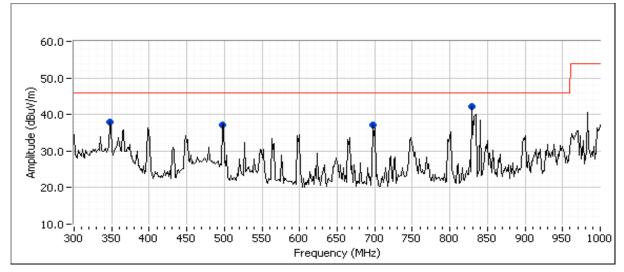
Config Change: none

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor	
30 - 1000 MHz	3	3	0.0	

Run #1a: Device in transmit mode (Chains A and B at 2437 MHz, 802.11n20)

	An 2022 Company		
Client:	Intel	Job Number:	J75722
Model	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76369
iviouei.	ZXZ WIFT WILL WINIAX WITHE	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A


Preliminary peak readings captured during pre-scan


i rommar j	pour roughings deptared denning pro souri							
Frequency	Level	Pol	FCC C	Class B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
117.044	46.1	Н	43.5	2.6	Peak	116	1.5	
59.084	38.9	V	40.0	-1.1	Peak	112	3.0	
823.821	43.8	V	46.0	-2.2	Peak	18	1.0	
348.972	41.2	Н	46.0	-4.8	Peak	139	1.0	
185.004	37.7	Н	43.5	-5.8	Peak	343	1.0	
221.440	38.9	Н	46.0	-7.1	Peak	232	2.0	
699.113	38.9	Н	46.0	-7.1	Peak	119	1.0	
299.318	37.8	Н	46.0	-8.2	Peak	89	1.0	
250.778	37.4	Н	46.0	-8.6	Peak	55	1.0	
497.978	36.7	V	46.0	-9.3	Peak	5	1.0	
								·

	All Deed Company		
Client:	Intel	Job Number:	J75722
Model	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76369
wodei.	ZXZ WIFI WIIII WIIVIdX WIIIIIFCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Run #1b: Device in transmit mode (Chains A and B at 5600 MHz, 802.11n20)

	All Dates Company		
Client:	Intel	Job Number:	J75722
Model	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76369
iviouei.	ZXZ WIFT WILL WINIAX WILLIFCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

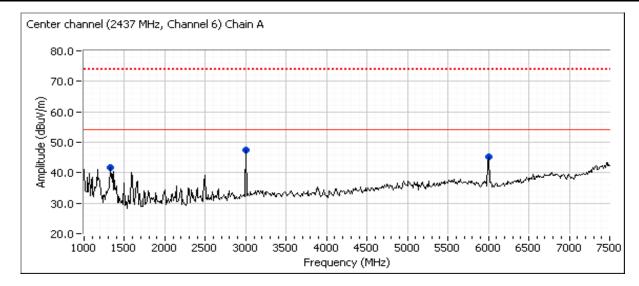
Preliminary peak readings captured during pre-scan

i reminiai j	pour rouan	igs captaic	a aaring pro	Journ				
Frequency	Level	Pol	FCC C	Class B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
114.111	45.9	Н	43.5	2.4	Peak	108	1.5	
59.733	39.9	V	40.0	-0.1	Peak	101	2.5	
827.133	42.1	V	46.0	-3.9	Peak	22	4.0	
37.191	35.0	V	40.0	-5.0	Peak	155	1.0	
195.133	37.6	Н	43.5	-5.9	Peak	10	1.5	
299.102	38.0	Н	46.0	-8.0	Peak	104	1.0	
226.148	37.9	Н	46.0	-8.1	Peak	235	1.5	
349.533	37.8	Н	46.0	-8.2	Peak	148	1.0	
499.662	37.2	V	46.0	-8.8	Peak	0	1.0	
699.000	37.0	Н	46.0	-9.0	Peak	121	1.0	
249.555	36.4	Н	46.0	-9.6	Peak	230	1.0	

Run #1c: Maximized quasi-peak readings - worst case from 1a and 1b

Frequency	Level	Pol	FCC C	Class B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
114.111	38.6	Н	43.5	-4.9	QP	126	1.5	QP (1.00s)
59.733	30.0	V	40.0	-10.0	QP	65	2.0	QP (1.00s)
349.533	35.4	Н	46.0	-10.6	QP	127	1.0	QP (1.00s)
37.191	29.1	V	40.0	-10.9	QP	113	1.0	QP (1.00s)
299.102	35.0	Н	46.0	-11.0	QP	83	1.0	QP (1.00s)
499.662	34.6	V	46.0	-11.4	QP	10	1.1	QP (1.00s)
699.000	34.3	Н	46.0	-11.7	QP	112	1.2	QP (1.00s)
226.148	32.7	Н	46.0	-13.3	QP	233	1.4	QP (1.00s)
195.133	29.9	Н	43.5	-13.6	QP	27	1.0	QP (1.00s)
249.555	32.3	Н	46.0	-13.7	QP	219	1.0	QP (1.00s)
827.133	16.5	V	46.0	-29.5	QP	0	3.5	QP (1.00s)

	An ZAZES company		
Client:	Intel	Job Number:	J75722
Model	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76369
Model.	ZXZ WIFT WILL WINIAX WILLIFCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

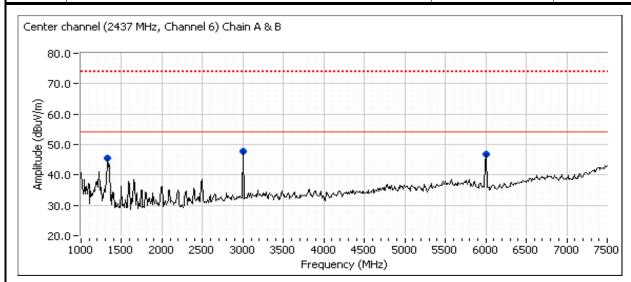

Run #2, Receiver Radiated Spurious Emissions, 1,000 - 7,500 MHz. Operation in the 2.4 GHz Band

Date of Test: 8/25/2009 Test Location: FT Chamber #4

Test Engineer: Rafael Varelas Config Change: none

Run #2a: Center channel (2437MHz, channel 6), Chain A

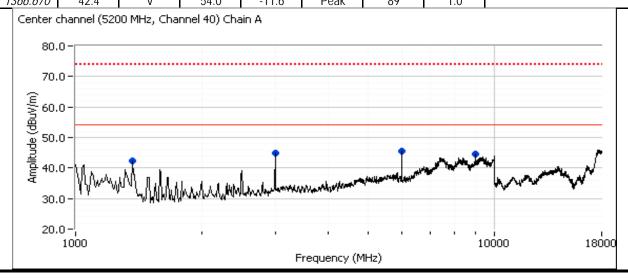
Frequency	Level	Pol	RSS	210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3000.380	47.7	V	54.0	-6.3	AVG	267	1.0	MHz; VB: 10 Hz
3000.300	51.2	V	74.0	-22.8	PK	267	1.0	MHz; VB: 1 MHz
6000.730	45.2	V	54.0	-8.8	AVG	147	1.0	MHz; VB: 10 Hz
6000.560	49.6	V	74.0	-24.4	PK	147	1.0	MHz; VB: 1 MHz
1327.640	26.9	V	54.0	-27.1	AVG	141	1.0	MHz; VB: 10 Hz
1327.240	48.9	٧	74.0	-25.1	PK	141	1.0	MHz; VB: 1 MHz



Run #2b: Center channel (2437MHz, channel 6), Chain A and B

Frequency	Level	Pol	RSS	210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3000.440	47.8	V	54.0	-6.2	AVG	265	1.0	MHz; VB: 10 Hz
3000.400	50.8	V	74.0	-23.2	PK	265	1.0	MHz; VB: 1 MHz
1329.540	32.1	V	54.0	-21.9	AVG	110	1.0	MHz; VB: 10 Hz
1327.800	55.1	V	74.0	-18.9	PK	110	1.0	MHz; VB: 1 MHz
6000.870	46.7	V	54.0	-7.3	AVG	102	1.0	MHz; VB: 10 Hz
6000.770	50.3	V	74.0	-23.7	PK	102	1.0	MHz; VB: 1 MHz

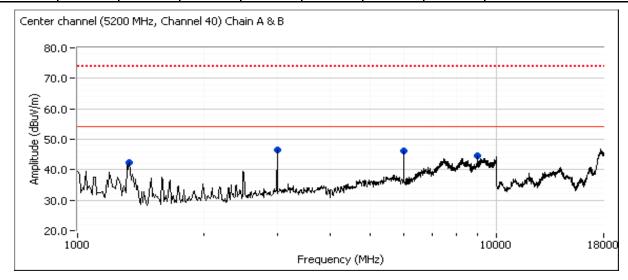
	An 2022 company								
Client:	Intel	Job Number:	J75722						
Madali	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76369						
Model.	ZXZ WIFI WILLI WIIVIdX WILLIPCI	Account Manager:	-						
Contact:	S. Hackett								
Standard:	RSS 210 / FCC 15.247	Class:	N/A						


Run #3, Receiver Radiated Spurious Emissions, 1,000 - 18,000 MHz. Operation in the 5GHz Bands

Date of Test: 8/25/2009 Test Location: FT Chamber #4

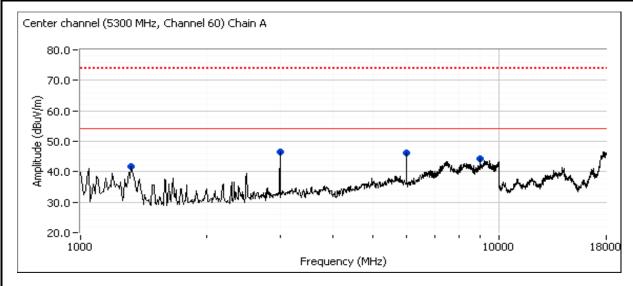
Test Engineer: Rafael Varelas Config Change: none

Run #3a: Center channel 5150 - 5250 MHz (5200MHz, channel 40), Chain A


	\mathcal{L}									
Frequency	Level	Pol	RSS	210	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
6000.720	45.9	٧	54.0	-8.1	AVG	102	1.0	MHz; VB: 10 Hz		
6000.730	49.5	V	74.0	-24.5	PK	102	1.0	MHz; VB: 1 MHz		
3000.360	44.8	V	54.0	-9.2	AVG	99	1.6	MHz; VB: 10 Hz		
3000.420	48.8	V	74.0	-25.2	PK	99	1.6	MHz; VB: 1 MHz		
9001.080	43.1	V	54.0	-10.9	AVG	132	1.0	MHz; VB: 10 Hz		
9000.930	50.2	V	74.0	-23.8	PK	132	1.0	MHz; VB: 1 MHz		
1366.670	42.4	V	54.0	-11.6	Peak	89	1.0			

	All Diffe Company		
Client:	Intel	Job Number:	J75722
Modol:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76369
iviouei.	ZXZ WIFT WILL WINIAX WILLIFCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

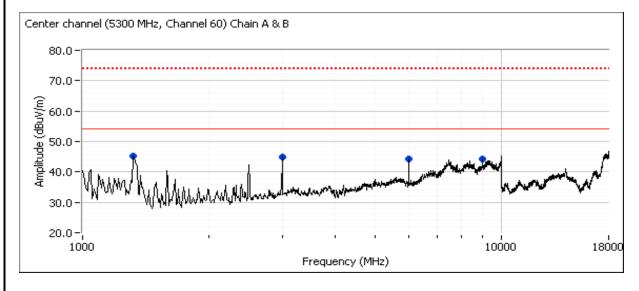
	(020011112)									
Frequency	Level	Pol	RSS	210	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
3000.360	46.8	V	54.0	-7.2	AVG	263	1.0	MHz; VB: 10 Hz		
3000.360	50.8	V	74.0	-23.2	PK	263	1.0	MHz; VB: 1 MHz		
6000.740	46.1	V	54.0	-7.9	AVG	98	1.0	MHz; VB: 10 Hz		
6000.580	49.4	V	74.0	-24.6	PK	98	1.0	MHz; VB: 1 MHz		
9001.030	42.1	V	54.0	-11.9	AVG	135	1.0	MHz; VB: 10 Hz		
9000.940	49.5	V	74.0	-24.5	PK	135	1.0	MHz; VB: 1 MHz		
1330.000	42.4	V	54.0	-11.6	Peak	97	1.9			



	All Diffe Company		
Client:	Intel	Job Number:	J75722
Modol:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76369
iviouei.	ZXZ WIFT WILL WINIAX WILLIFCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Run #3c: Center channel 5250 - 5350 MHz (5300MHz, channel 60), Chain A

rtan # oor o	tan #001 Conton Charmon Cook Mine (Cookinne) Charmon Coji Chamini										
Frequency	Level	Pol	RSS	5 210	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
3000.360	47.2	V	54.0	-6.8	AVG	261	1.0	MHz; VB: 10 Hz			
3000.290	51.1	V	74.0	-22.9	PK	261	1.0	MHz; VB: 1 MHz			
9001.080	43.8	V	54.0	-10.2	AVG	132	1.0	MHz; VB: 10 Hz			
9001.050	51.0	V	74.0	-23.0	PK	132	1.0	MHz; VB: 1 MHz			
6000.750	45.8	V	54.0	-8.2	AVG	270	1.7	MHz; VB: 10 Hz			
6000.590	50.9	V	74.0	-23.1	PK	270	1.7	MHz; VB: 1 MHz			
1320.830	41.8	V	54.0	-12.2	Peak	108	1.6				



	All 2022 Company		
Client:	Intel	Job Number:	J75722
Model	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76369
Model.	2XZ WIFI WILLI WIIVIdX WIILIIPCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Run #3d: Center channel 5250 - 5350 MHz (5300MHz, channel 60), Chain A and B

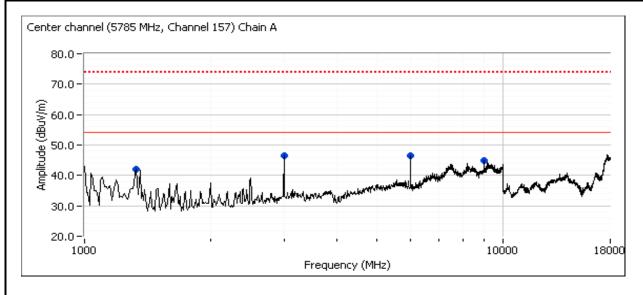
Frequency	Level	Pol	RSS	210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
6000.750	45.4	V	54.0	-8.6	AVG	270	1.8	MHz; VB: 10 Hz
6000.850	49.6	V	74.0	-24.4	PK	270	1.8	MHz; VB: 1 MHz
1328.170	32.1	V	54.0	-21.9	AVG	109	1.0	MHz; VB: 10 Hz
1328.510	57.3	V	74.0	-16.7	PK	109	1.0	MHz; VB: 1 MHz
9001.080	43.2	V	54.0	-10.8	AVG	133	1.0	MHz; VB: 10 Hz
9001.030	50.6	V	74.0	-23.4	PK	133	1.0	MHz; VB: 1 MHz
3000.390	44.5	Н	54.0	-9.5	AVG	215	1.3	MHz; VB: 10 Hz
3000.230	49.0	Н	74.0	-25.0	PK	215	1.3	MHz; VB: 1 MHz

	All 2022 Company		
Client:	Intel	Job Number:	J75722
Madal	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76369
Model.	2X2 WIFT WILL WINDAX WILLIPCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Run #3e: Center channel 5470 - 5725 MHz (5600MHz, channel 120), Chain A

Frequency	Level	Pol	RSS	210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3000.360	47.1	٧	54.0	-6.9	AVG	267	1.0	MHz; VB: 10 Hz
6000.720	45.7	V	54.0	-8.3	AVG	268	1.8	MHz; VB: 10 Hz
9001.050	41.8	V	54.0	-12.2	AVG	190	1.0	MHz; VB: 10 Hz
1320.830	41.3	V	54.0	-12.7	Peak	120	1.9	
3000.400	50.7	V	74.0	-23.3	PK	267	1.0	MHz; VB: 1 MHz
6000.690	50.8	V	74.0	-23.2	PK	268	1.8	MHz; VB: 1 MHz
9000.880	49.6	V	74.0	-24.4	PK	190	1.0	MHz; VB: 1 MHz

Run #3f: Center channel 5470 - 5725 MHz (5600MHz, channel 120), Chain A and B


Not performed - previous measurements in 5150 - 5350 MHz frequency range demonstrated that emissions with the single chain active were representative of the emissions with both chains active.

All Date Company					
Client:	Intel	Job Number:	J75722		
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76369		
	ZXZ VVIF1 WIII1 VVIIVIAX IVIIIIIPCI	Account Manager:	-		
Contact:	S. Hackett				
Standard:	RSS 210 / FCC 15.247	Class:	N/A		

Run #3g: Center channel 5725 - 5850 MHz (5785MHz, channel 157), Chain A

itaii #og. o	tan "egi center charmer 6726" eese mitz (6700mitz) charmer 107/1 cham71							
Frequency	Level	Pol	RSS	210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3000.390	47.0	V	54.0	-7.0	AVG	264	1.0	MHz; VB: 10 Hz
3000.370	50.7	V	74.0	-23.3	PK	264	1.0	MHz; VB: 1 MHz
6000.740	45.8	V	54.0	-8.2	AVG	269	1.8	MHz; VB: 10 Hz
6000.440	50.0	V	74.0	-24.0	PK	269	1.8	MHz; VB: 1 MHz
9001.040	41.3	V	54.0	-12.7	AVG	176	1.1	MHz; VB: 10 Hz
9001.110	49.3	V	74.0	-24.7	PK	176	1.1	MHz; VB: 1 MHz
1330.000	42.1	V	54.0	-11.9	Peak	98	1.0	

Run #3h: Center channel 5725 - 5850 MHz (5785MHz, channel 157), Chain A and B

Not performed - previous measurements in 5150 - 5350 MHz frequency range demonstrated that emissions with the single chain active were representative of the emissions with both chains active.

Ellio AN AN AND AND	Company	El	MC Test Data
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
		Account Manager:	-
Contact:	S. Hackett		-
Emissions Standard(s):	RSS 210 / FCC 15.247	Class:	DTS
Immunity Standard(s):	N/A	Environment:	-

For The

Intel

Model

2x2 WiFi with WiMax MiniPCI

Date of Last Test: 9/9/2009

	An 2023 company					
Client:	Intel	Job Number:	J75722			
Madal	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370			
woden.		Account Manager:	-			
Contact:	S. Hackett					
Standard:	RSS 210 / FCC 15.247	Class:	N/A			

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions - 2.4GHz

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 8/26/2009 Config. Used: 1
Test Engineer: Suhaila Khushzad/R. Varelas Config Change: None
Test Location: Chamber # 3 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 23 °C

Rel. Humidity: 45 %

Summary of Results

Sample #2 MAC Address: 00150059F23C (except where noted); CRTU Tool Version 5.199.36.999, Driver Version 13.0.0.91

• a		30. 00.0000	71 200 (0x100pt 1111010 11010 u), 0111 0	1001101011011	,,, 2	0101011 10101017 1
Run #	Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin
	20	16.8				802.11b: 16.6 dBm
1	24	16.8	Output Power	15.247(b)	Pass	802.11g: 15.7 dBm
· ·	24	16.5	output i ower	10.247(6)	1 033	HT20: 15.7 dBm
	24	16.5				HT40: 15.5 dBm
	19.5	16.4				802.11b:-7.5dBm/3kHz
2	24.0	15.3	Power spectral Density (PSD)	15.247(d)	Pass	802.11g:-9.2dBm/3kHz
۷	24.0	15.7	r ower spectral bensity (1 3b)	. 5.2 . / (4)	1 433	HT20:-8.5dBm/3kHz
	21.0	15.5				HT40:-11.8dBm/3kHz
	20.0	16.6			Pass	802.11b: 10.3 MHz
3	24.0	15.6	Minimum 6dB Bandwidth	15.247(a)		802.11g: 16.5 MHz
3	24.0	15.7		10.2 17 (a)		HT20: 17.8 MHz
	24.0	15.5				HT40: 36.7 MHz
	20.0	16.6				802.11b: 13.7 MHz
3	23.5	14.2	99% Bandwidth	RSS GEN	_	802.11g: 17.2 MHz
3	24.0	15.6	7770 Banawati	NOO OLIV	-	HT20: 18.5 MHz
	24.0	15.5				HT40: 36.9 MHz
4			Spurious emissions	15.247(b)	Pass	All Emissions less than
4		Spanous emission			. 400	30dBc

Modifications Made During Testing

No modifications were made to the EUT during testing

	An 2022 Company		
Client:	Intel	Job Number:	J75722
Madal	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
iviouei.		Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

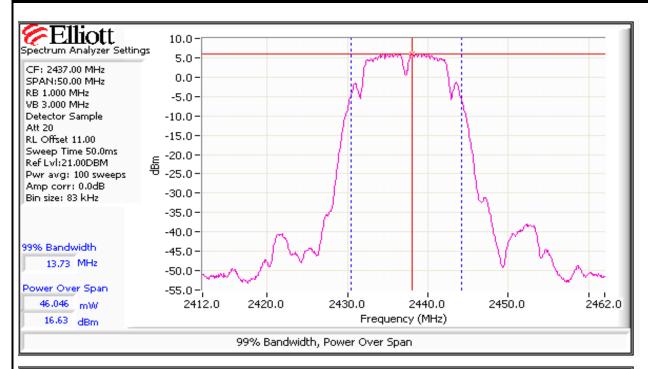
Deviations From The Standard

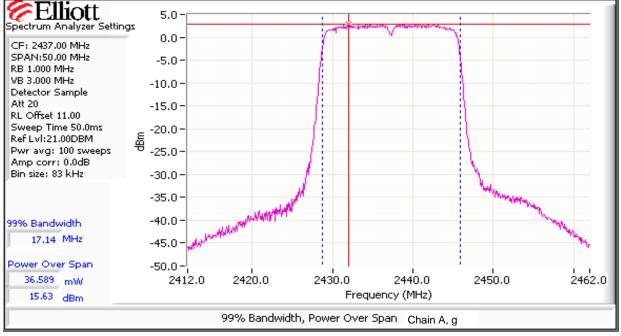
No deviations were made from the requirements of the standard.

Run #1: Output Power

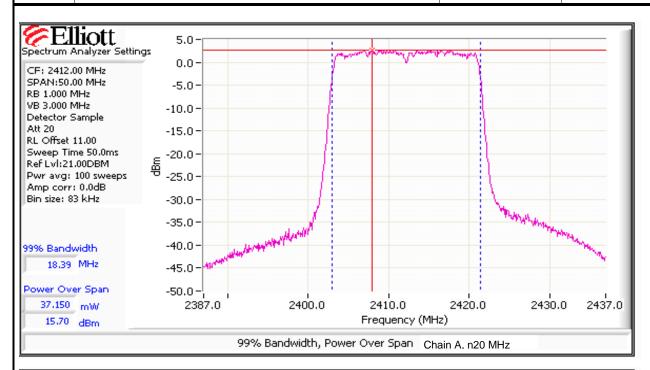
Power	Frequency (MHz)	Output	Power	Antenna	Result	EIRP	Note 2	Output	Power
Setting ²	Frequency (MHZ)	$(dBm)^{1}$	mW	Gain (dBi)	Result	dBm	W	$(dBm)^3$	mW
20	Chain A: 802.11b - #1	16.6	45.6	3.2	Pass	19.8	0.095	16.7	46.8
20	Chain A: 802.11b - #6	16.6	45.7	3.2	Pass	19.8	0.095	16.8	47.9
20	Chain A: 802.11b - #11	16.2	41.4	3.2	Pass	19.4	0.086	16.6	45.7
19.5	Chain B: 802.11b - #1	16.4	43.4	3.2	Pass	19.6	0.091	16.7	46.8
19.5	Chain B: 802.11b - #6	16.4	43.5	3.2	Pass	19.6	0.091	16.7	46.8
20.5	Chain B: 802.11b - #11	16.2	41.7	3.2	Pass	19.4	0.087	16.6	45.7
24	Chain A: 802.11g - #1	15.7	37.2	3.2	Pass	18.9	0.078	16.8	47.9
24	Chain A: 802.11g - #6	15.6	36.6	3.2	Pass	18.8	0.076	16.8	47.9
23	Chain A: 802.11g - #11	14.3	26.7	3.2	Pass	17.5	0.056	15.7	37.2
21.5	Chain B: 802.11g - #1	13.2	20.7	3.2	Pass	16.4	0.043	14.9	30.9
23.5	Chain B: 802.11g - #6	15.3	34.0	3.2	Pass	18.5	0.071	16.5	44.7
24.5	Chain B: 802.11g - #11	15.1	32.7	3.2	Pass	18.3	0.068	16.3	42.7
23.5	Chain B: 802.11g - #11	14.2	26.1	3.2	Pass	17.4	0.055	15.4	34.7
24	Chain A: HT20 - #1	15.7	37.2	3.2	Pass	18.9	0.078	16.5	44.7
24	Chain A: HT20 - #6	15.7	36.7	3.2	Pass	18.9	0.077	16.7	46.8
23.5	Chain A: HT20 - #11	15.2	33.1	3.2	Pass	18.4	0.069	15.9	38.9
20.5	Chain B: HT20 - #1	12.9	19.7	3.2	Pass	16.1	0.041	13.7	23.4
24	Chain B: HT20 - #6	15.6	36.6	3.2	Pass	18.8	0.076	16.5	44.7
23.5	Chain B: HT20 - #11	14.7	29.2	3.2	Pass	17.9	0.061	15.1	32.4
22	Chain A: HT40 - #3	13.6	22.8	3.2	Pass	16.8	0.048	14.8	30.2
24	Chain A: HT40 - #6	15.5	35.4	3.2	Pass	18.7	0.074	16.7	46.8
20.5	Chain A: HT40 - #9	12.4	17.4	3.2	Pass	15.6	0.036	13.6	22.9
17	Chain B: HT40 - #3	8.9	7.7	3.2	Pass	12.1	0.016	10.8	12.0
24	Chain B: HT40 - #6	15.5	35.8	3.2	Pass	18.7	0.075	16.5	44.7
22	Chain B: HT40 - #9	13.3	21.5	3.2	Pass	16.5	0.045	14.6	28.8

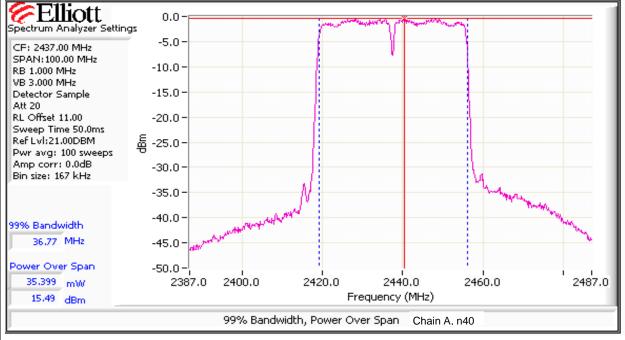
Output power measured using a spectrum analyzer (see plots below):


RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over >=80 MHz for n40 mode and >=40MHz for b, g and n20 modes. Spurious limit is -30dBc because this method was used.

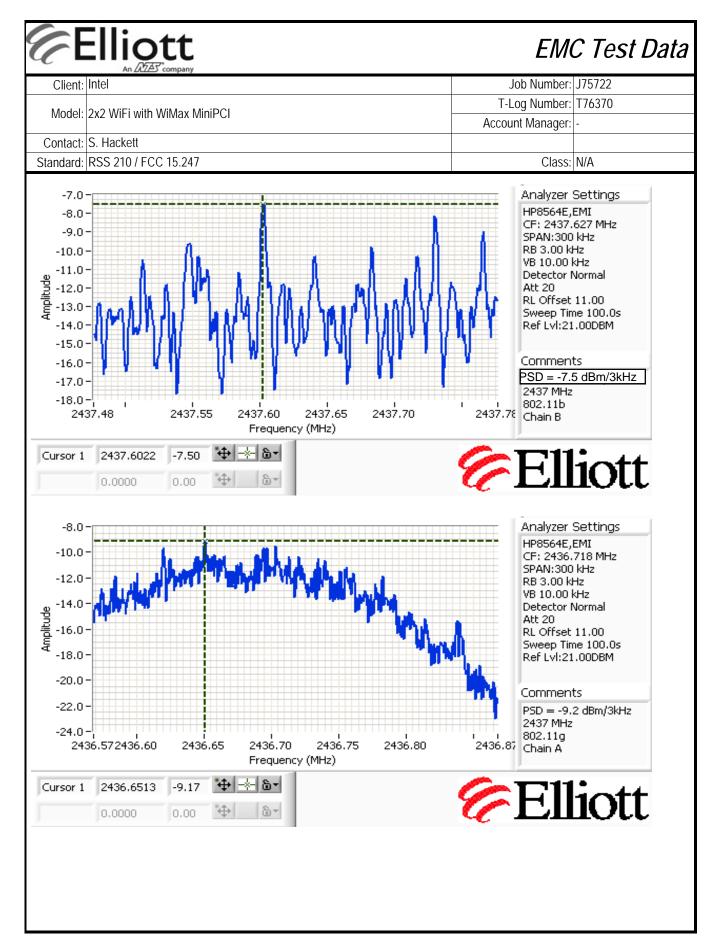

Note 2: Power setting - the software power setting used during testing, included for reference only.

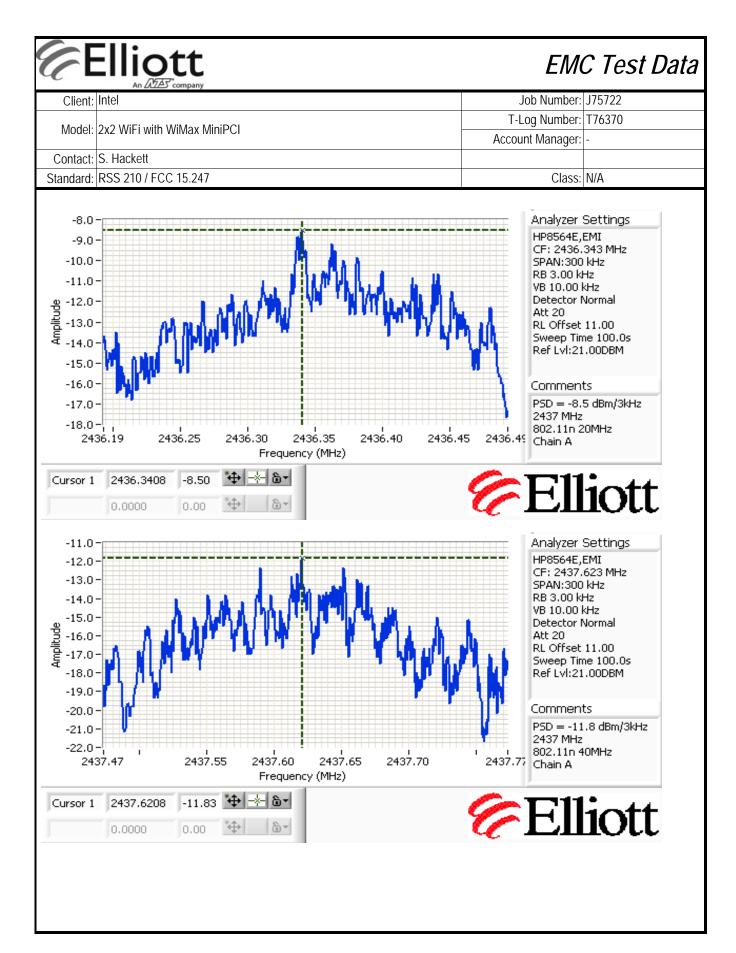
Note 3: Power measured using average power meter and is included for reference only.


All Date Company					
Client:	Intel	Job Number:	J75722		
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370		
	2X2 WIFT WILL WINDAX WILLIPCI	Account Manager:	-		
Contact:	S. Hackett				
Standard:	RSS 210 / FCC 15.247	Class:	N/A		



All Balls Company				
Client:	Intel	Job Number:	J75722	
Madal	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370	
iviodei:		Account Manager:	-	
Contact:	S. Hackett			
Standard:	RSS 210 / FCC 15.247	Class:	N/A	

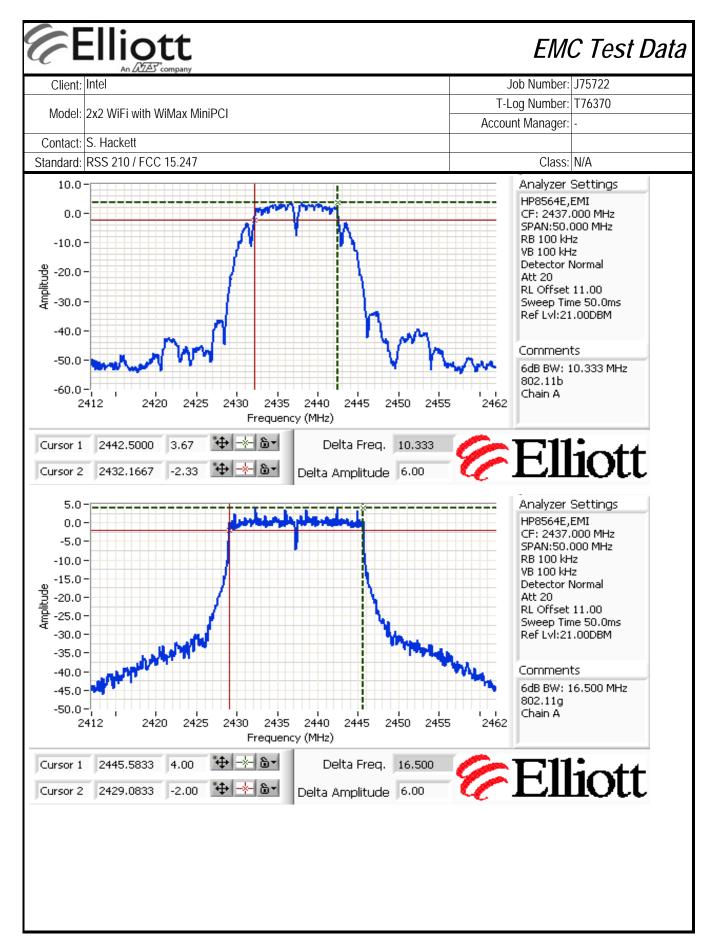


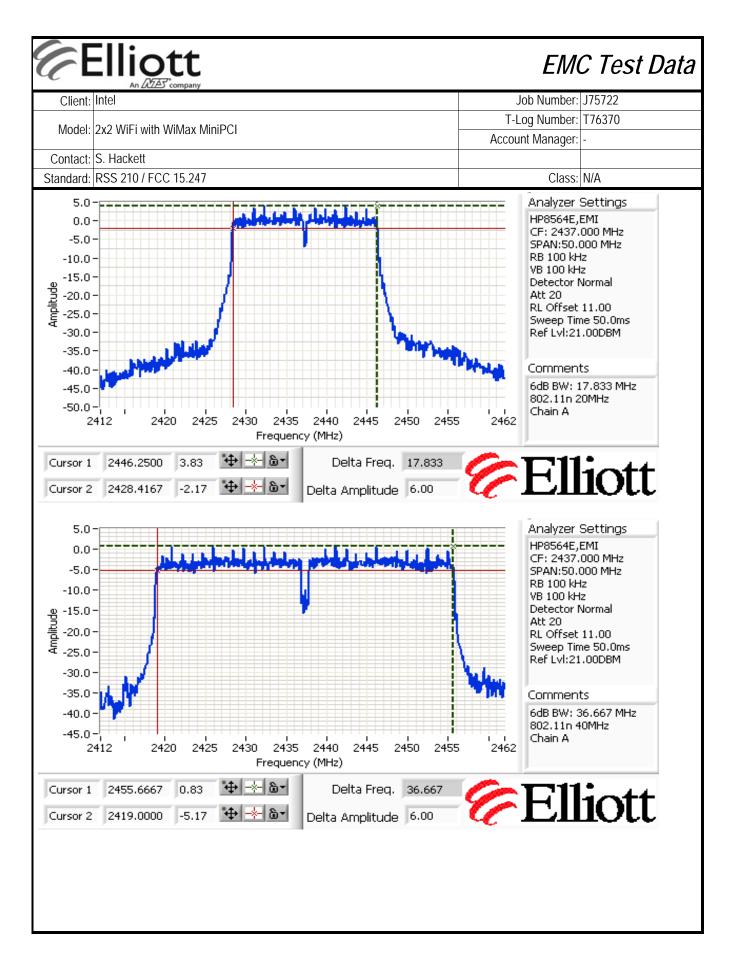

Client:	Intel	Job Number:	J75722
Madal	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
woden.	ZXZ VVIF1 WIII1 VVIIVIAX IVIII IIPCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Run #2: Power spectral Density

Power	Frequency (MHz)	PSD	Limit	Result
Setting	. 3	(dBm/3kHz) Note 1	dBm/3kHz	
20	Chain A: 802.11b - #1	-8.0	8.0	Pass
20	Chain A: 802.11b - #6	-7.7	8.0	Pass
20	Chain A: 802.11b - #11	-8.3	8.0	Pass
24	Chain A: 802.11g - #1	-9.7	8.0	Pass
24	Chain A: 802.11g - #6	-9.2	8.0	Pass
23	Chain A: 802.11g - #11	-10.2	8.0	Pass
24	Chain A: HT20 - #1	-9.5	8.0	Pass
24	Chain A: HT20 - #6	-8.5	8.0	Pass
23	Chain A: HT20 - #11	-8.5	8.0	Pass
22	Chain A: HT40 - #3	-12.5	8.0	Pass
24	Chain A: HT40 - #6	-11.8	8.0	Pass
21	Chain A: HT40 - #9	-15.8	8.0	Pass
19.5	Chain B: 802.11b - #1	-8.5	8.0	Pass
19.5	Chain B: 802.11b - #6	-7.5	8.0	Pass
20.5	Chain B: 802.11b - #11	-8.7	8.0	Pass
22.5	Chain B: 802.11g - #1	-10.5	8.0	Pass
22.5	Chain B: 802.11g - #6	-10.5	8.0	Pass
23.5	Chain B: 802.11g - #11	-10.7	8.0	Pass
19.5	Chain B: HT20 - #1	-12.7	8.0	Pass
24	Chain B: HT20 - #6	-9.0	8.0	Pass
21.5	Chain B: HT20 - #11	-12.3	8.0	Pass
18.5	Chain B: HT40 - #3	-17.8	8.0	Pass
24	Chain B: HT40 - #6	-12.5	8.0	Pass
22	Chain B: HT40 - #9	-15.3	8.0	Pass

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

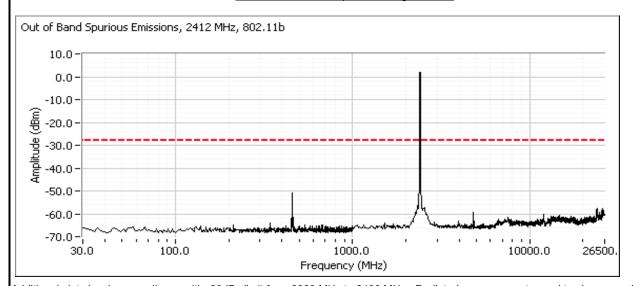

	An ZAZZO Company		
Client:	Intel	Job Number:	J75722
Madal	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
woden.	2X2 WIFI WILLI WINIAX MILLIPOL	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

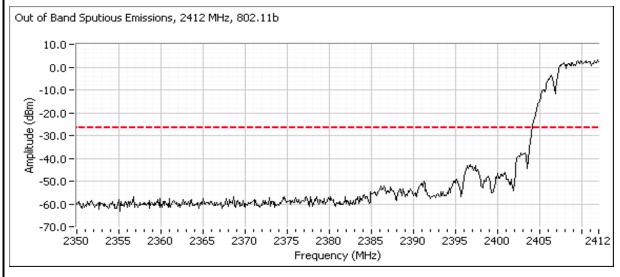

Run #3: Signal Bandwidth

Note - only measure Chain A for 6dB bandwidth

Power	Fragueros (MILT)	Resolution	Bandwid	th (MHz)
Setting	Frequency (MHz)	Bandwidth	6dB	99%
20	Chain A: 802.11b - #1	100kHz	10.3	13.64
20	Chain A: 802.11b - #6	100kHz	10.3	13.73
20	Chain A: 802.11b - #11	100kHz	10.3	13.64
24	Chain A: 802.11g - #1	100kHz	16.5	17.14
24	Chain A: 802.11g - #6	100kHz	16.5	17.14
23	Chain A: 802.11g - #11	100kHz	16.6	17.14
24	Chain A: HT20 - #1	100kHz	17.8	18.4
24	Chain A: HT20 - #6	100kHz	17.8	18.4
23	Chain A: HT20 - #11	100kHz	17.9	18.4
22	Chain A: HT40 - #3	100kHz	36.7	36.8
24	Chain A: HT40 - #6	100kHz	36.7	36.8
21	Chain A: HT40 - #9	100kHz	36.7	36.8
19.5	Chain B: 802.11b - #1			13.64
19.5	Chain B: 802.11b - #6			13.64
20.5	Chain B: 802.11b - #11			13.64
22.5	Chain B: 802.11g - #1			17.14
22.5	Chain B: 802.11g - #6			17.14
23.5	Chain B: 802.11g - #11			17.2
19.5	Chain B: HT20 - #1			18.4
24	Chain B: HT20 - #6			18.5
21.5	Chain B: HT20 - #11			18.4
18.5	Chain B: HT40 - #3			36.8
24	Chain B: HT40 - #6			36.9
22	Chain B: HT40 - #9			36.8

Note 1:	99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB		
IMOIE 7.	Requirement is that the 6dB bandwidth be greater than 500kHz. Only chain A bandwidth was measured as representative of		
	both chains given that the signal bandwidth far exceeds the minimum required and the similarity of the signal on each chain.		

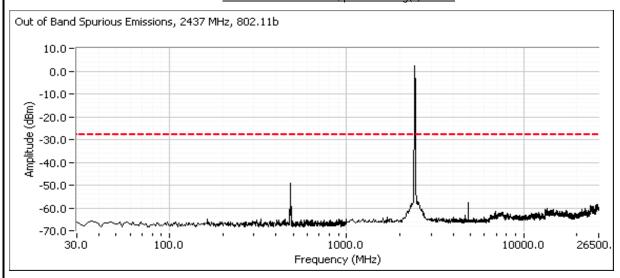

	All Date Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
	2X2 WIFI WILLI WINIAX MILLIPOL	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

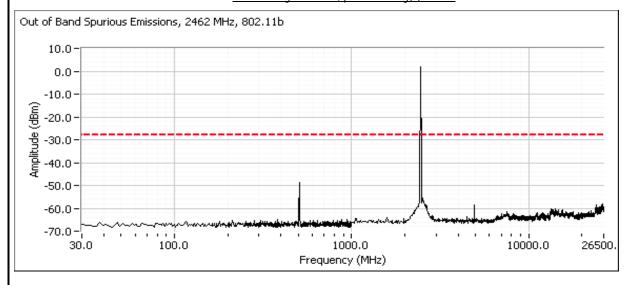

Run #4: Out of Band Spurious Emissions

Frequency (MHz)	Limit	Result
2412, 2422	-30dBc	Pass
2437	-30dBc	Pass
2452, 2462	-30dBc	Pass

802.11b Mode Chain A

Plots for low channel, power setting(s) = 20.0

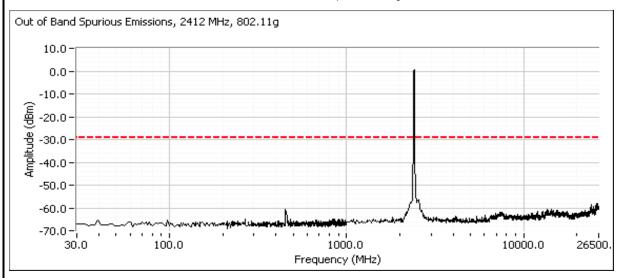


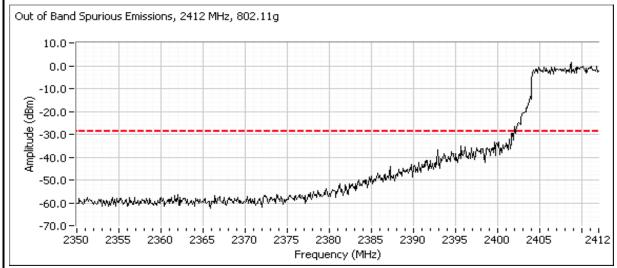


	All Date Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number: T763	T76370
	2X2 WIFT WILL WINDAX WILLIPCT	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Plots for center channel, power setting(s) = 20.0

Plots for high channel, power setting(s) = 20.0

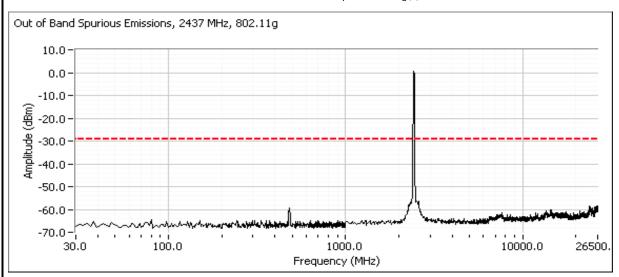


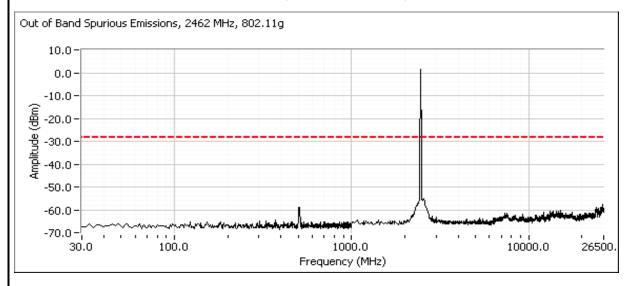


	An 2023 company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
	2X2 WIFT WILL WINDAX MILLIPOT	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

802.11g Mode Chain A

Plots for low channel, power setting(s) = 24.0

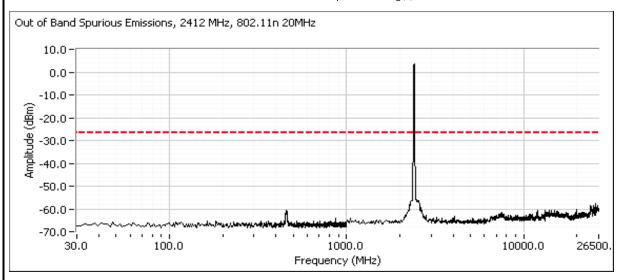


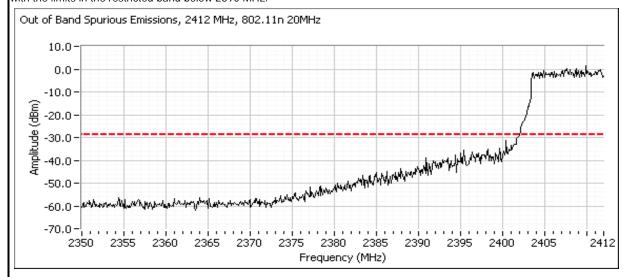


	The state of the s		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
	ZXZ WIFT WITH WIIVIAX WITHPCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Plots for center channel, power setting(s) = 24.0

Plots for high channel, power setting(s) = 23.0

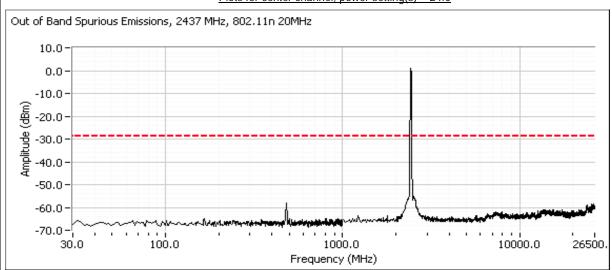


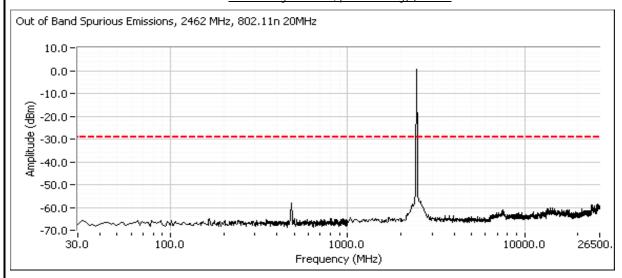


All Zuzz Company			
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
		Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

HT20 Mode Chain A

Plots for low channel, power setting(s) = 24.0

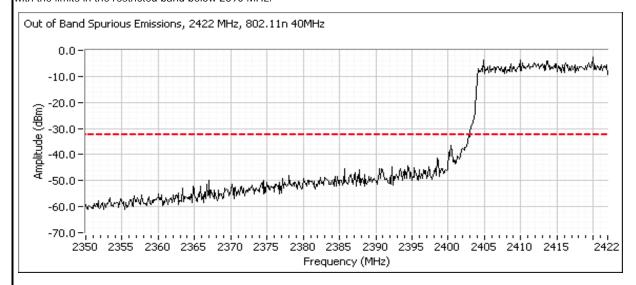




	All Date Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
		Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Plots for center channel, power setting(s) = 24.0

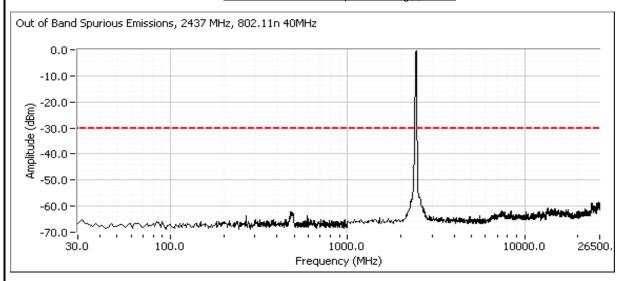
Plots for high channel, power setting(s) = 23.0

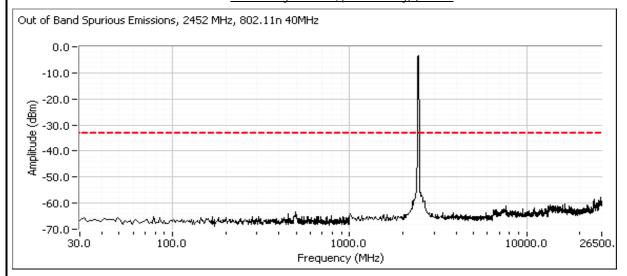


	All 2022 Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number: T76370	T76370
	XZ WIFI WIIII WIIVIAX WIIIIIPCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

HT40 Mode Chain A

Plots for low channel, power setting(s) = 22.0

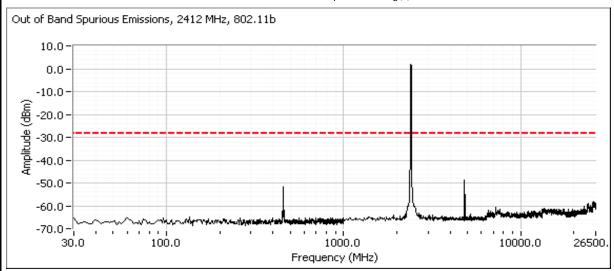


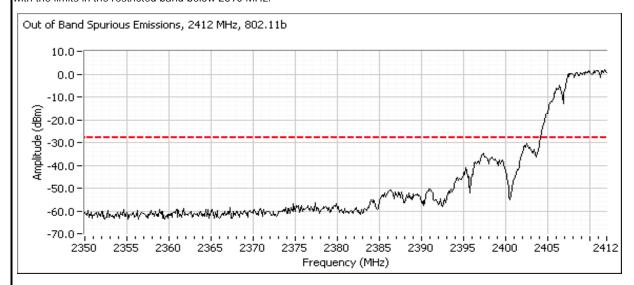


	The state of the s		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
		Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Plots for center channel, power setting(s) = 24.0

Plots for high channel, power setting(s) = 21.0

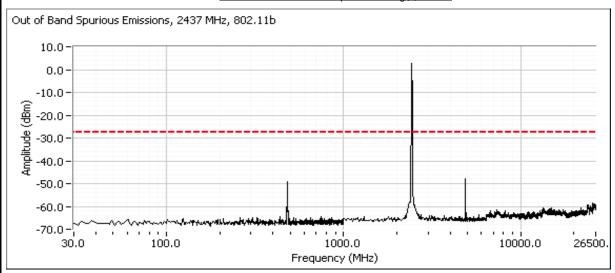


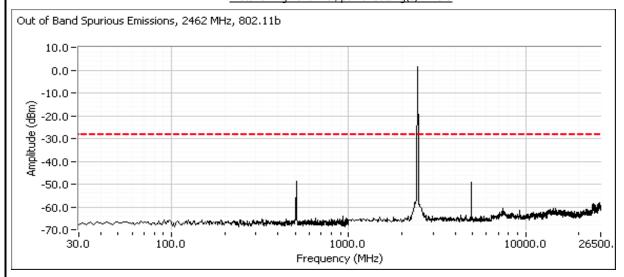


	All Dates Company				
Client:	Intel	Job Number:	J75722		
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370		
		Account Manager:	-		
Contact:	S. Hackett				
Standard:	RSS 210 / FCC 15.247	Class:	N/A		

802.11b Mode Chain B

Plots for low channel, power setting(s) = 19.5

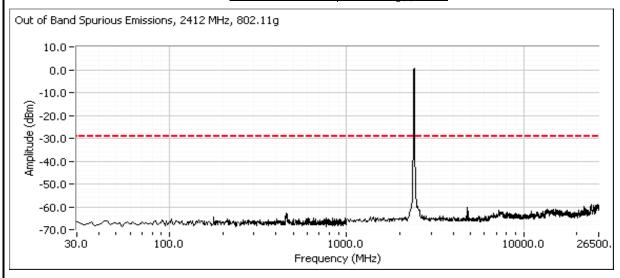


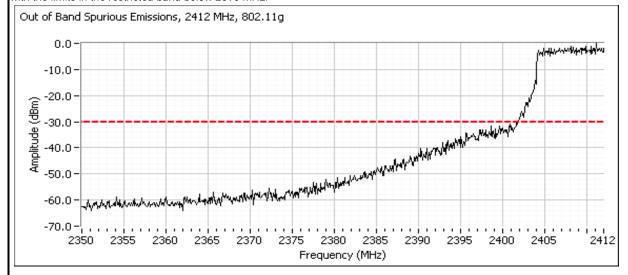


	All Dazz Company				
Client:	Intel	Job Number:	J75722		
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370		
		Account Manager:	-		
Contact:	S. Hackett				
Standard:	RSS 210 / FCC 15.247	Class:	N/A		

Plots for center channel, power setting(s) = 19.5

Plots for high channel, power setting(s) = 20.5

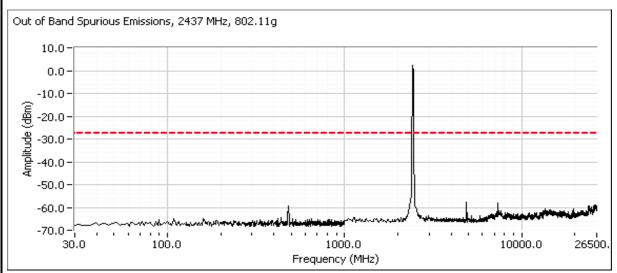


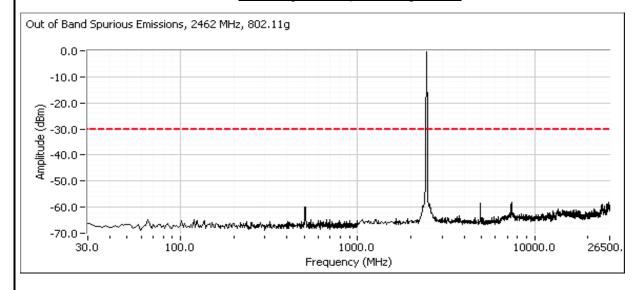


	All Dazz Company				
Client:	Intel	Job Number:	J75722		
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370		
		Account Manager:	-		
Contact:	S. Hackett				
Standard:	RSS 210 / FCC 15.247	Class:	N/A		

802.11g Mode Chain B

Plots for low channel, power setting(s) = 22.5

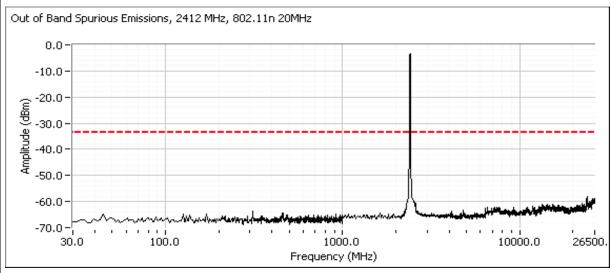


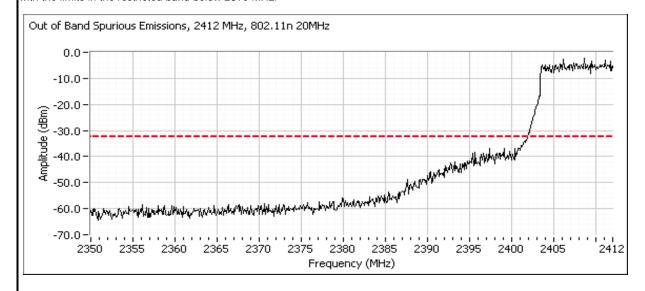


	All Dates Company				
Client:	Intel	Job Number:	J75722		
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370		
		Account Manager:	-		
Contact:	S. Hackett				
Standard:	RSS 210 / FCC 15.247	Class:	N/A		

Plots for center channel, power setting(s) = 23.5

Plots for high channel, power setting(s) = 23.5

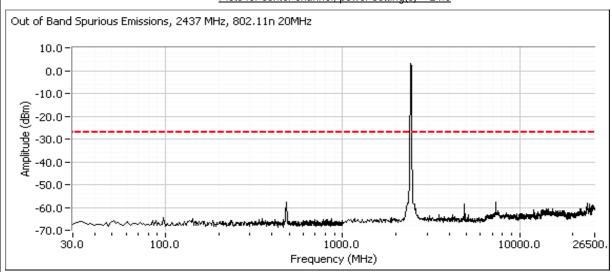




	All 2022 Company				
Client:	Intel	Job Number:	J75722		
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370		
		Account Manager:	-		
Contact:	S. Hackett				
Standard:	RSS 210 / FCC 15.247	Class:	N/A		

HT20 Mode Chain B

Plots for low channel, power setting(s) = 19.5

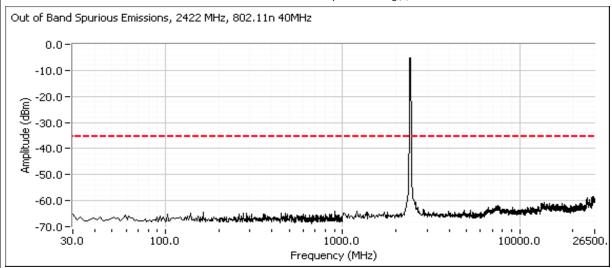


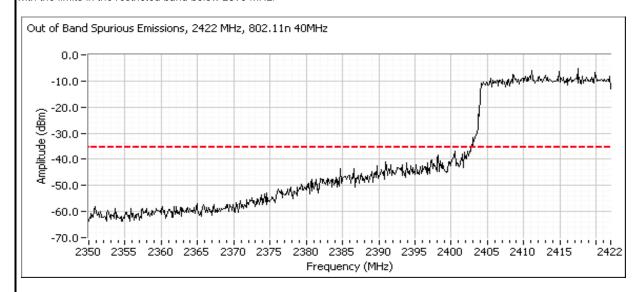


	All 2022 Company				
Client:	Intel	Job Number:	J75722		
Madal	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370		
Model.		Account Manager:	-		
Contact:	S. Hackett				
Standard:	RSS 210 / FCC 15.247	Class:	N/A		

Plots for center channel, power setting(s) = 24.0

Plots for high channel, power setting(s) = 21.5

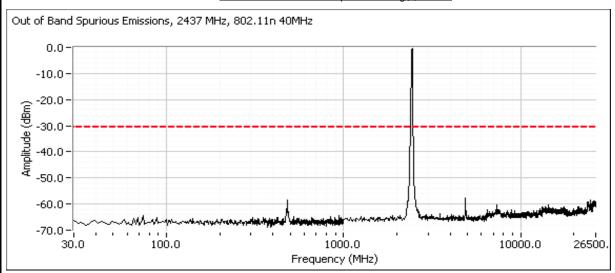


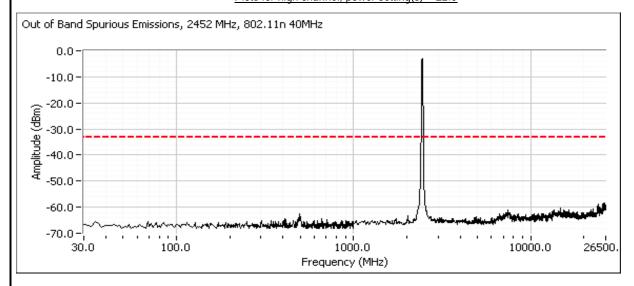


	All Dates Company				
Client:	Intel	Job Number:	J75722		
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370		
		Account Manager:	-		
Contact:	S. Hackett				
Standard:	RSS 210 / FCC 15.247	Class:	N/A		

HT40 Mode Chain B

Plots for low channel, power setting(s) = 18.5





	The state of the s		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
		Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Plots for center channel, power setting(s) = 24.0

Plots for high channel, power setting(s) = 22.0

	An ZAZZS company				
Client:	Intel	Job Number:	J75722		
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370		
		Account Manager:	-		
Contact:	S. Hackett				
Standard:	RSS 210 / FCC 15.247	Class:	N/A		

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements MIMO and Smart Antenna Systems - Power and PSD

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 9/3/2009 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #3 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 21.7 °C

Rel. Humidity: 42 %

Summary of Results

Sample #2 MAC Address: 00150059F23C (except where noted); CRTU Tool Version 5.199.36.999, Driver Version 13.0.0.91

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power Chain A + B	15.247(b)	Pass	HT20: 15.6 dBm
I	Output Fower Chain A + B	13.247(b)	F 455	HT40: 15.8 dBm
າ	Power spectral Density (PSD) Chain	15.247(d)	Pass	HT20: -9.4 dBm/3kHz
2	A + B	13.247(u)	F 455	HT40:-9.8 dBm/3kHz
-	6dB Bandwidth	15.247(a)		Covered by single-chain
-	99% Bandwidth	RSS GEN	-	measurements at higher power per
-	Spurious emissions	15.247(b)		chain

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

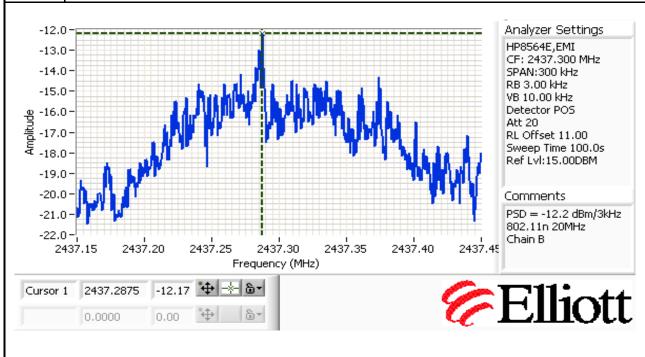
Elliott An AZAS company						EM	C Test	Data
Client: Intel						ob Number:	J75722	
					T-L	og Number:	T76370	
Model: 2x2 WiFi with WiMax M	INIPCI				Accou	nt Manager:	-	
Contact: S. Hackett								
Standard: RSS 210 / FCC 15.247						Class:	N/A	
Run #1: Output Power - Chain A	+ B							
Ope Transmitted signal on chain	erating Mode: is coherent?							
2412 MHz HT20	Chain 1	Chain 2	Chain 3	Chain 4	Total Across	All Chaine	Lin	nit .
Power Setting/Average power ^{Note 3}	13.6	13.5			Total Across	S All Challis	Lin	III
Output Power (dBm) Note 1	12.25	11.8			15.0 dBm	0.032 W	30.0 dBm	1.000 W
Antenna Gain (dBi) Note 2	3.2	3.2				3.2 dBi	Pas	cc
eirp (dBm) Note 2	15.45	15			18.2 dBm	0.067 W	ı a.	
2437 MHz HT20	Chain 1	Chain 2	Chain 3		31		1	
Power Setting/Average power ^{Note 3}	13.7	13.8	Chain 3	CARGINA 4	Total Across	s All Chains	Lin	nit
Output Power (dBm) Note 1	12.6	12.5			15.6 dBm	0.036 W	30.0 dBm	1.000 W
Antenna Gain (dBi) Note 2	3.2	3.2			13.0 dBiii	3.2 dBi	30.0 dbiii	1.000 W
eirp (dBm) Note 2	15.8	15.7			18.8 dBm		Pass	
clip (ubili)	10.0	10.7			10.0 dBiii	0.070 11		
2462 MHz HT20	Chain 1	Chain 2	Chain 3	Chain 4	Total Across	All Chaine	Lin	oit
Power Setting/Average power Note 3	13.6	13.6			Total Across All Chains		Limit	
Output Power (dBm) Note 1	12.5	12.0			15.3 dBm	0.034 W	30.0 dBm	1.000 W
Antenna Gain (dBi) Note 2	3.2	3.2				3.2 dBi	Pas	22
eirp (dBm) Note 2	15.7	15.2			18.5 dBm	0.070 W	T u.	
2422 MHz HT40	Chain 1	Chain 2	X hain 3	Chain 4	1			
Power Setting/Average power ^{Note 3}	13.2	13.1			Total Across	s All Chains	Lin	nit
Output Power (dBm) Note 1	11.7	12.2			15.0 dBm	0.031 W	30.0 dBm	1.000 W
Antenna Gain (dBi) Note 2	3.2	3.2				3.2 dBi		
eirp (dBm) Note 2	14.9	15.4			18.2 dBm	0.066 W	Pas	SS
. , ,	-						•	
2437 MHz HT40	Chain 1	Chain 2	Chain 3	Chain 4	Total Across	s All Chains	Lin	nit
Power Setting/Average power ^{Note 3}	13.8	13.9						
Output Power (dBm) Note 1	12.9	12.6			15.8 dBm	0.038 W	30.0 dBm	1.000 W
Antenna Gain (dBi) Note 2	3.2	3.2				3.2 dBi	Pas	SS
eirp (dBm) Note 2	16.1	15.8			19.0 dBm	0.079 W		
2452 MHz HT40	Chain 1	Chain 2	Chain 3	Chain 4	1			
	Onuill I		- Common of the	T AMANY	Total Across	s All Chains	Lin	nit
	13.8	13.6	Million Marie Contraction of the	[[[[[[[[]]]]]]]]]	41			
Power Setting/Average powerNote 3		13.6			15.6 dBm	0.036 W	30.0 dBm	1.000 W
	13.8 13.0 3.2				15.6 dBm	0.036 W 3.2 dBi	30.0 dBm	

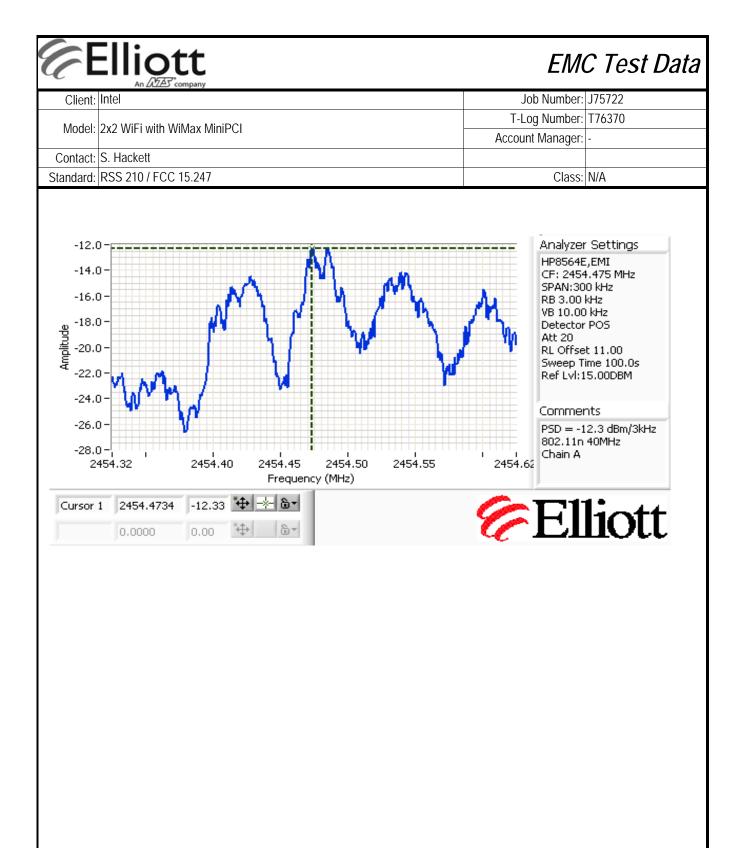
	All Diff. Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
	2XZ WIFI WILLI WIIVIdX WIILIIPCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Output power measured using a spectrum analyzer (see plots below):

Note 1: RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over >=80 MHz for n40 mode and >=40MHz for b, g and n20 modes. Spurious limit is -30dBc because this method was used.

Note 2: Antenna gain in dBi


Note 3: Power measured using average power meter and is included for reference only.


Run #2: Power spectral Density

Power Setting	Frequency (MHz)	Chain 1	PSD Chain 2	(dBm/3kHz) Note 1	Total	Limit dBm/3kHz	Result
22.0/22.0	2412 HT20	-13.8	-13.3		-10.5	8.0	Pass
22.0/22.5	2437 HT20	-12.7	-12.2		-9.4	8.0	Pass
22.0/23.0	2467 HT20	-13.2	-12.5		-9.8	8.0	Pass
23.5/24.0	2422 HT40	-14.3	-12.7		-10.4	8.0	Pass
23.5/24.0	2437 HT40	-13.8	-13.0		-10.4	8.0	Pass
23.0/24.0	2452 HT40	-12.3	-13.3		-9.8	8.0	Pass

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

EI	liott
	An ATAT company

	All Diff. Company		
Client:	Intel	Job Number:	J75722
Madalı	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
iviouei.	ZXZ WIFT WILL WINIAX WITHE	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

RSS 210, FCC 15.247 (DTS) Band Edge Field Strength

Summary of Results

Sample #2 MAC Address: 00150059F23C (except where noted); CRTU Tool Version 5.199.36.999, Driver Version 13.0.0.91
Sample #1's Chain B connector was damaged during testing which is why some measurements are made with sample 2. Comparison testing at a couple of spot frequencies showed no significant difference in results between samples.

Band edge levels measured for adjacent channels if the output power at the lowest/highest channels has to be dropped by more than 3dB from the nominal target power of 16.5dBm. Chain B, channel 5 complied with the band edge at a power level of 13.6dBm in n40 mode with 0.7dB margin, data below shows the power level to obtain a margin of 1dB or more.

Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
Run #1	802.11n 40MHz	#3 2422MHz	14.5	14.7	Restricted Band Edge at 2390 MHz	15.209	49.8dBµV/m @ 2390.0MHz (-4.2dB)
Rull#1	40IVIHZ A	#9 2452MHz	13.5	13.6	Restricted Band Edge at 2483.5 MHz	15.209	52.8dBµV/m @ 2483.5MHz (-1.2dB)
Run # 2	802.11n 40MHz	#3 2422MHz	12.5	10.8	Restricted Band Edge at 2390 MHz	15.209	52.3dBµV/m @ 2389.8MHz (-1.7dB)
Run # 2	40MHZ B	#9 2452MHz	14.0	14.6	Restricted Band Edge at 2483.5 MHz	15.209	51.0dBµV/m @ 2483.5MHz (-3.0dB)
Run # 3	n40 A	#4, #8	16.5	NA	Restricted Band Edges	15.209	N/A #3 & #9 >13.5dBm
Run # 4	802.11n 40MHz	#4 2427MHz	16.5	12.7	Restricted Band Edge at 2390 MHz	15.209	52.9dBµV/m @ 2389.0MHz (-1.1dB)
	В	#8	16.5	NA	Restricted Band Edge	15.209	N/A - # 9 > 13.5dBm
Run # 5	n40 A	#5, #7	16.5	NA	Restricted Band Edge	15.209	N/A - #8& 9 > 13.5dBm
Run # 6	802.11n 40MHz	#5 2432MHz	16.5	13.1	Restricted Band Edge at 2390 MHz	15.209	52.0dBµV/m @ 2390.0MHz (-2.0dB)
	В	#7	16.5	NA	Restricted Band Edge	15.209	N/A - # 9 > 13.5dBm
Run # 7	n40 A	#6	16.5	NA	Restricted Band Edges	15.209	N/A - #8& 9 > 13.5dBm
Run # 8	n40 B	#6	16.5	NA	Restricted Band Edges	15.209	N/A - # 5& 7 > 13.5dBm
Run # 9	802.11n 40MHz	#3 2422MHz	16.5 13.5/13.5	13.2/13.1	Restricted Band Edge at 2390 MHz	15.209	52.9dBµV/m @ 2390.0MHz (-1.1dB)
Rull# 9	401VIH2 A + B	#9 2452MHz	16.5 13.5/13.5	13.7/13.6	Restricted Band Edge at 2483.5 MHz	15.209	52.6dBµV/m @ 2483.5MHz (-1.4dB)
Run # 10	802.11n 20MHz	#1 2412MHz	16.5	16.6	Restricted Band Edge at 2390 MHz	15.209	51.2dBµV/m @ 2390.0MHz (-2.8dB)
Rull# 10	A	#11 2462MHz	16.5	15.9	Restricted Band Edge at 2483.5 MHz	15.209	52.9dBµV/m @ 2483.5MHz (-1.1dB)
Run # 11	802.11n	#1 2412MHz	14.5	14.6	Restricted Band Edge at 2400 MHz	15.209	52.3dBµV/m @ 2390.0MHz (-1.7dB)
Kull# 11	20MHz B	#11 2462MHz	16.5	15.1	Restricted Band Edge at 2483.5 MHz	15.209	50.4dBµV/m @ 2483.5MHz (-3.6dB)
						continued	on the following page

	All Balls Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
	ZXZ WIFI WILLI WIIVIdX WIILIFCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
Run # 12	802.11n 20MHz	#1 2412MHz	16.5 13.5/13.5	18.2 15.1/15.3	Restricted Band Edge at 2390 MHz	15.209	50.1dBµV/m @ 2389.4MHz (-3.9dB)
Rull# 12	A+B	#11 2462MHz	16.5 13.5/13.5	17.7 14.7/14.8	Restricted Band Edge at 2483.5 MHz	15.209	50.3dBµV/m @ 2483.7MHz (-3.7dB)

General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Rel. Humidity: 15-65 % Temperature: 15-25 °C

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Marker Delta Measurements

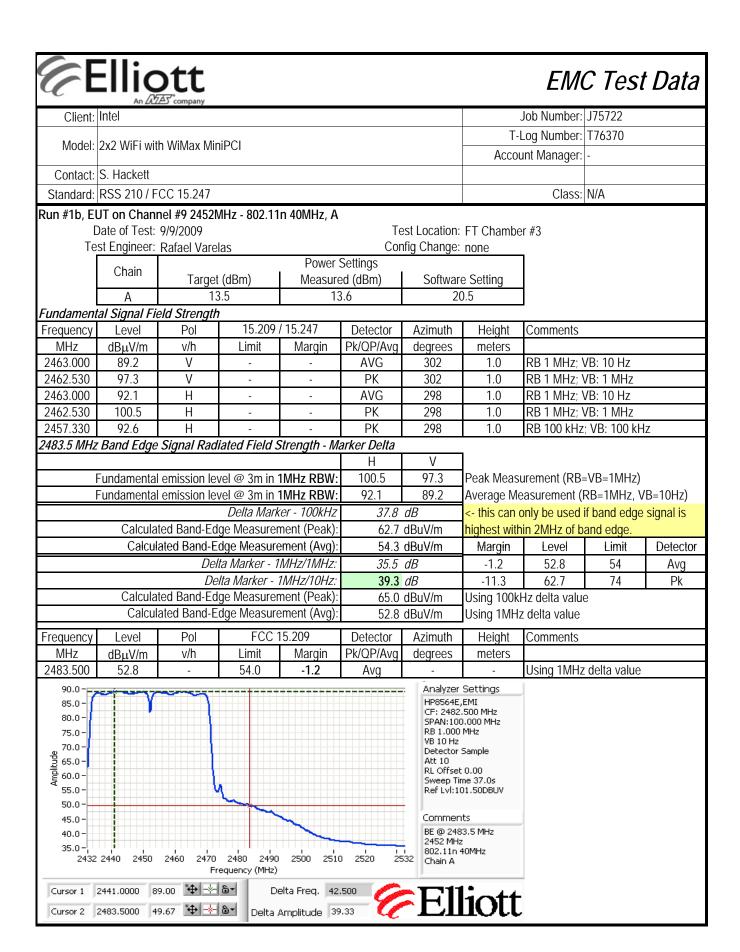
Three sets of marker deltas are measured using the following settings: RB=VB=100kHz; RB=1MHz,VB=1MHz; RB=1MHz, VB=10Hz. Marker deltas are made conducted (analyzer connected to EUT rf port a 20dB pad) for single chain operation. For MIMO operation the delta measurement is made in a radiated manner with the measurement antenna located approximately 50cm from the EUT's antennas. The fundamental field strength is always measured at a 3m test distance.

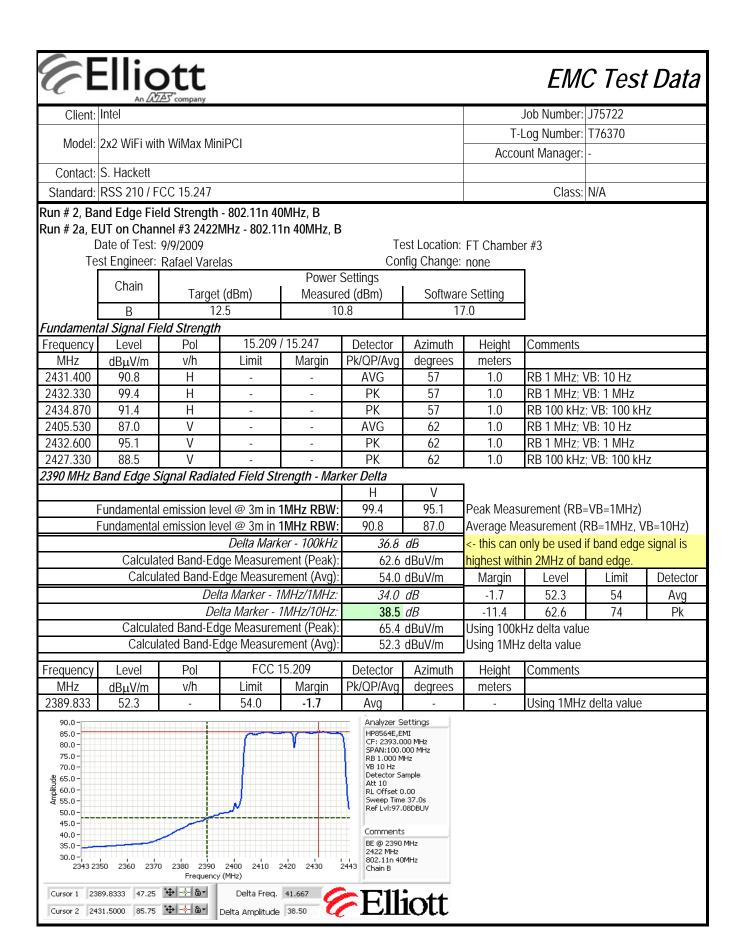
Elliott EMC Test Data Client: Intel Job Number: J75722 T-Log Number: T76370 Model: 2x2 WiFi with WiMax MiniPCI Account Manager: Contact: S. Hackett Standard: RSS 210 / FCC 15.247 Class: N/A Run #1, Band Edge Field Strength - 802.11n 40MHz, A Date of Test: 8/21/2009 Test Location: FT Chamber #4 Test Engineer: Rafael Varelas Config Change: none Run #1a, EUT on Channel #3 2422MHz - 802.11n 40MHz, A Power Settings Chain Target (dBm) Measured (dBm) Software Setting 14.5 14.7 22.0 Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz v/h Limit Margin Pk/QP/Avq meters $dB\mu V/m$ degrees 2412.470 91.2 ٧ **AVG** 226 1.0 RB 1 MHz; VB: 10 Hz 99.7 ٧ PK 1.0 2414.400 226 RB 1 MHz; VB: 1 MHz 2424.870 91.4 ٧ PK 226 1.0 RB 100 kHz; VB: 100 kHz 2412.470 93.5 Н AVG 63 1.0 RB 1 MHz; VB: 10 Hz 2414.400 PK 1.0 RB 1 MHz; VB: 1 MHz 102.1 Н 63 2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Η Fundamental emission level @ 3m in 1MHz RBW: 102.1 99.7 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 935 91 2 Average Measurement (RB=1MHz, VB=10Hz) Delta Marker - 100kHz <- this can only be used if band edge signal is 42.8 dB Calculated Band-Edge Measurement (Peak) 59.3 dBuV/m highest within 2MHz of band edge Calculated Band-Edge Measurement (Avg): 50.7 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: -4.2 49.8 54 38.3 dB Avg Delta Marker - 1MHz/10Hz. 59.3 **43.7** dB -14.7 74 Pk Calculated Band-Edge Measurement (Peak): Using 100kHz delta value 63.8 dBuV/m Calculated Band-Edge Measurement (Avg) 49.8 dBuV/m Using 1MHz delta value Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz $dB\mu V/m$ v/h Limit Margin Pk/QP/Avq degrees meters 2390.000 Using 1MHz delta value 49.8 54.0 -4.2 Avg Analyzer Settings HP8564E,EMI CF: 2392.500 MHz 80.0 75.0 -SPAN:100.000 MHz RB 1.000 MHz 70.0-65.0-Detector Sample 월 60.0-Att 0 RL Offset 0.00 55.0 분 55.0· 분 50.0· Sweep Time 37.0s Ref Lvl:93.70DBUV 45.0 40.0 Comments 35.0

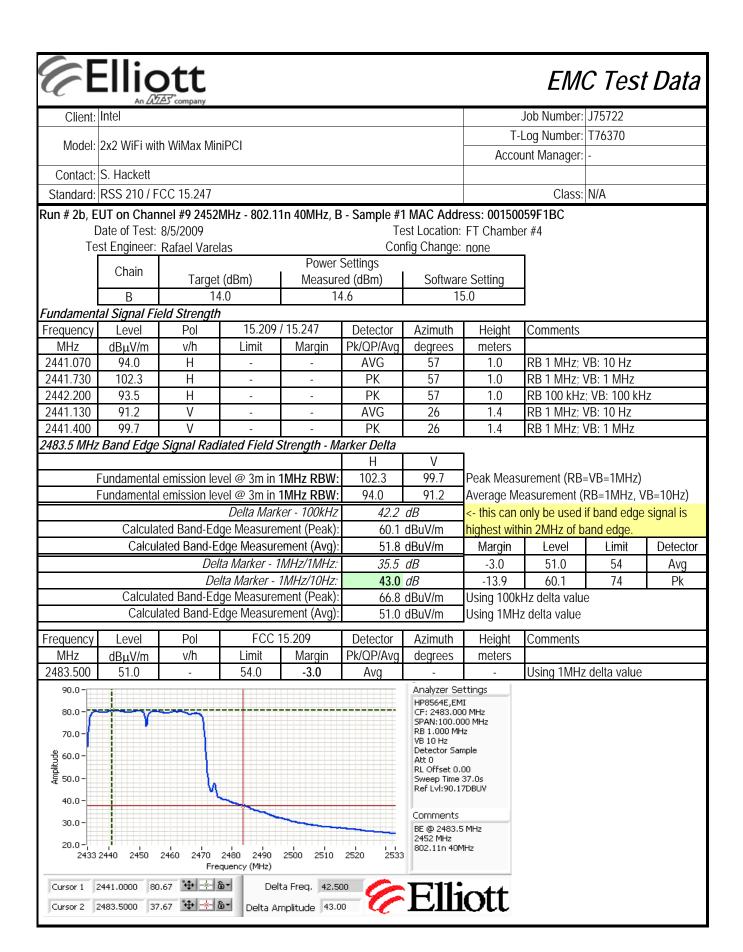
Cursor 1 2390.0000 38.53 💠 🛧 🖫

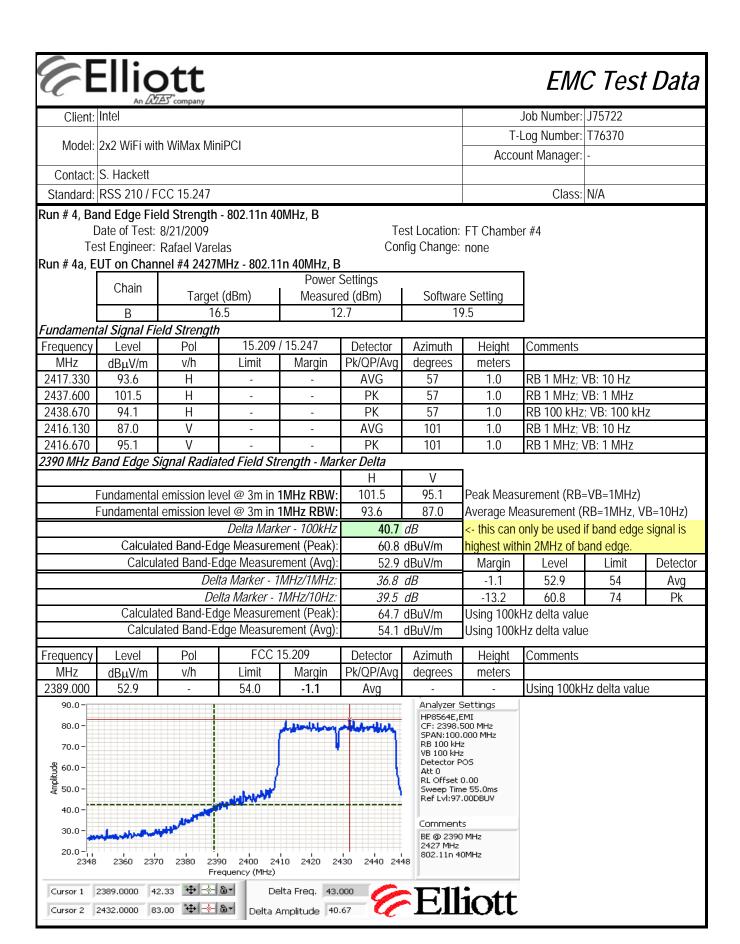
Cursor 2 2431.8333 82.20 💠 🐣 🖫

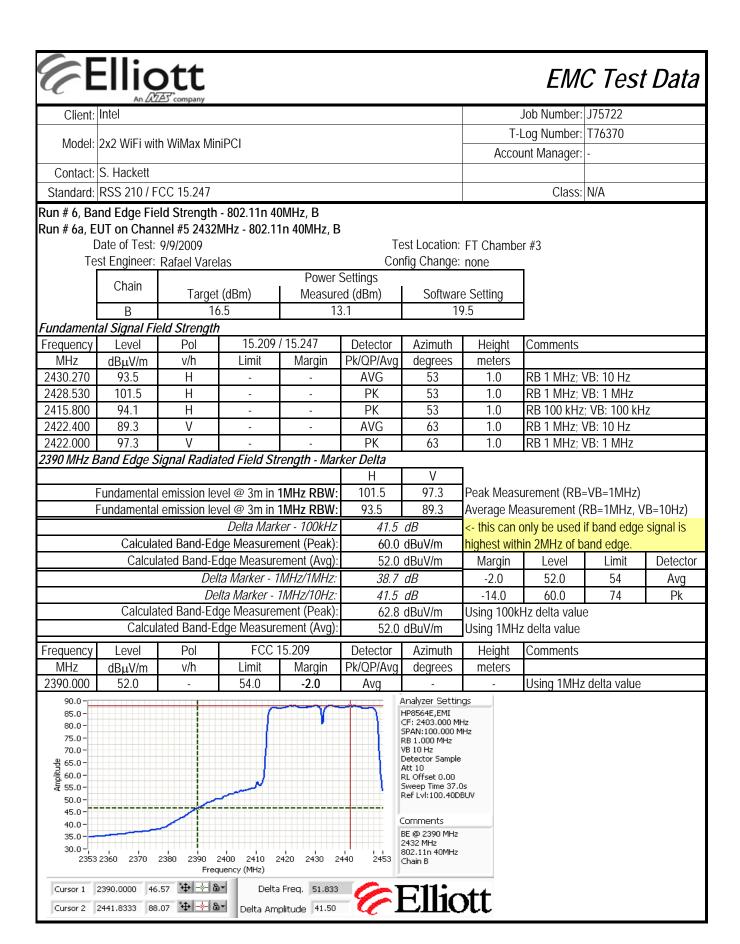
2342 2350 2360 2370 2380 2390 2400 2410 2420 2430 Frequency (MHz)

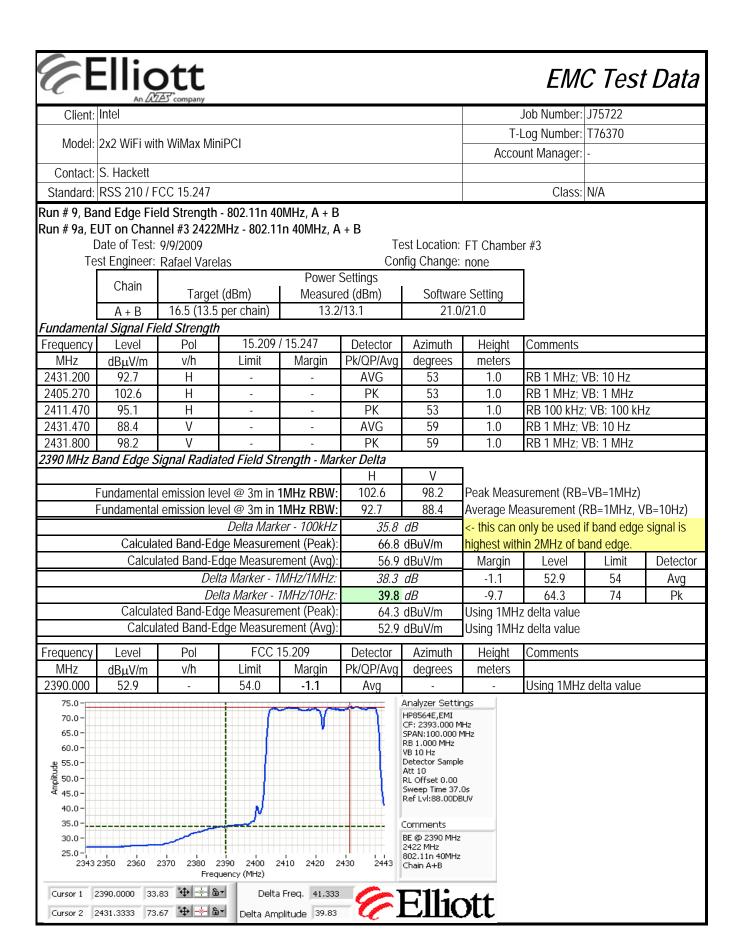

Delta Freq. 41.833

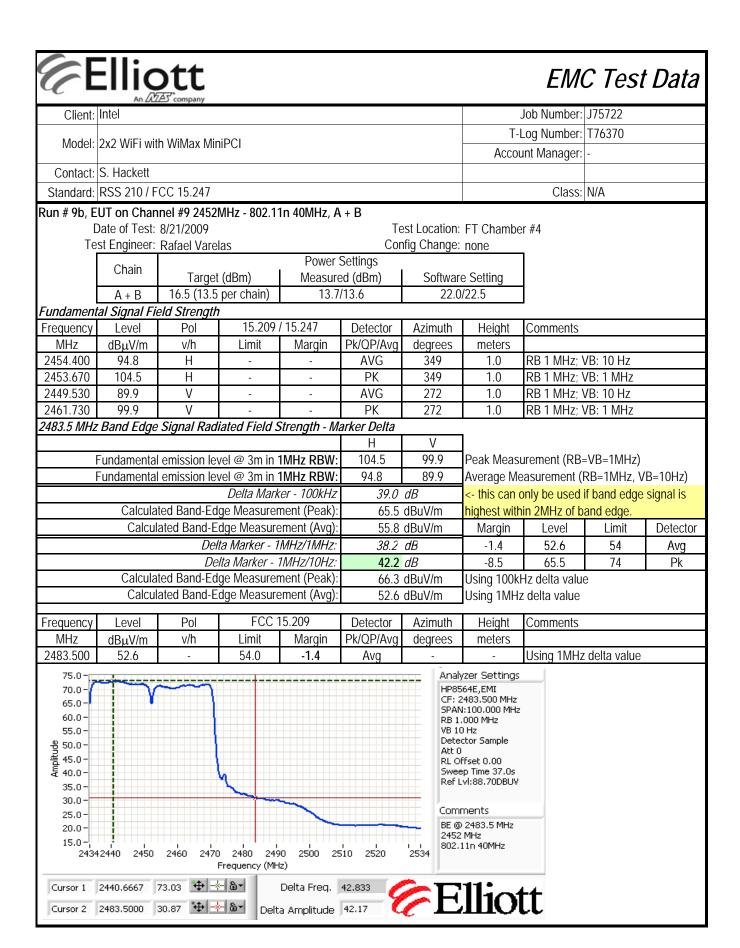

Delta Amplitude 43.67

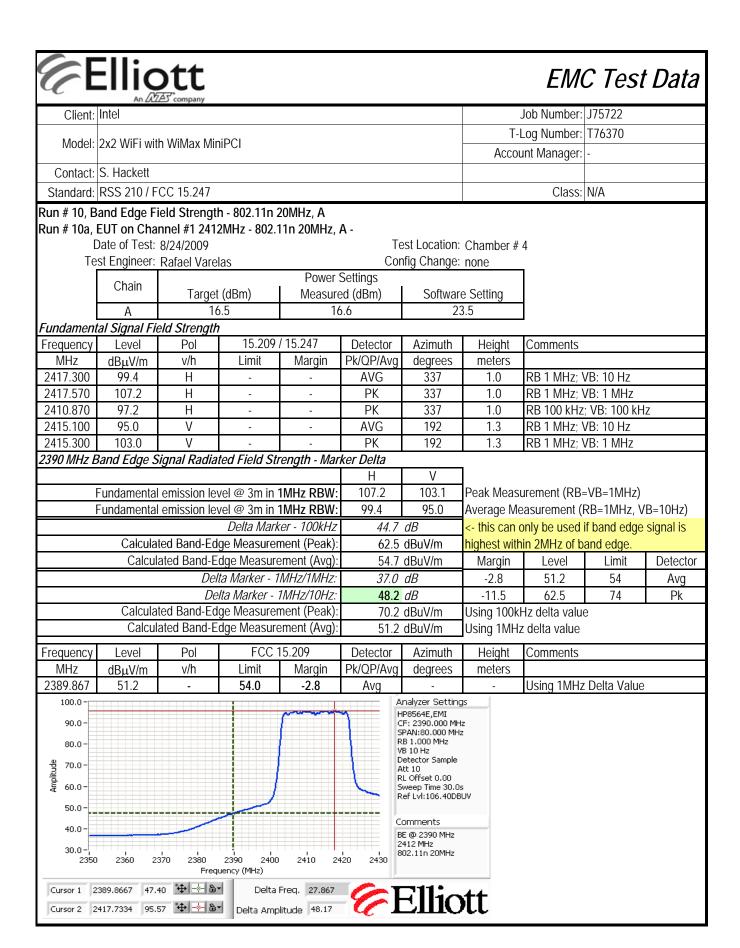

30.0

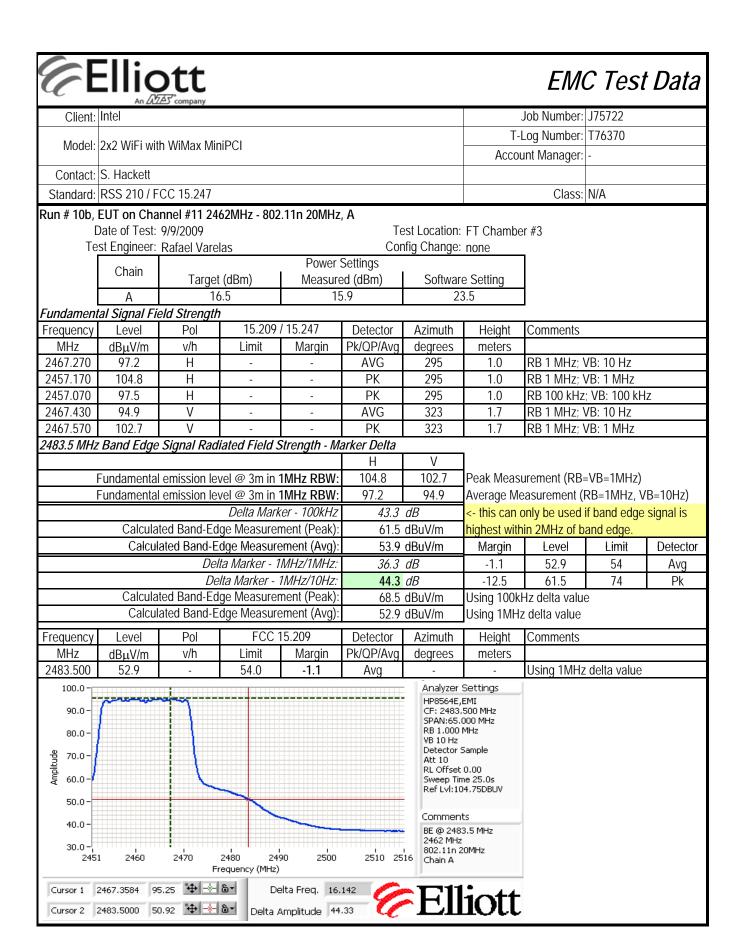

BE @ 2390 MHz

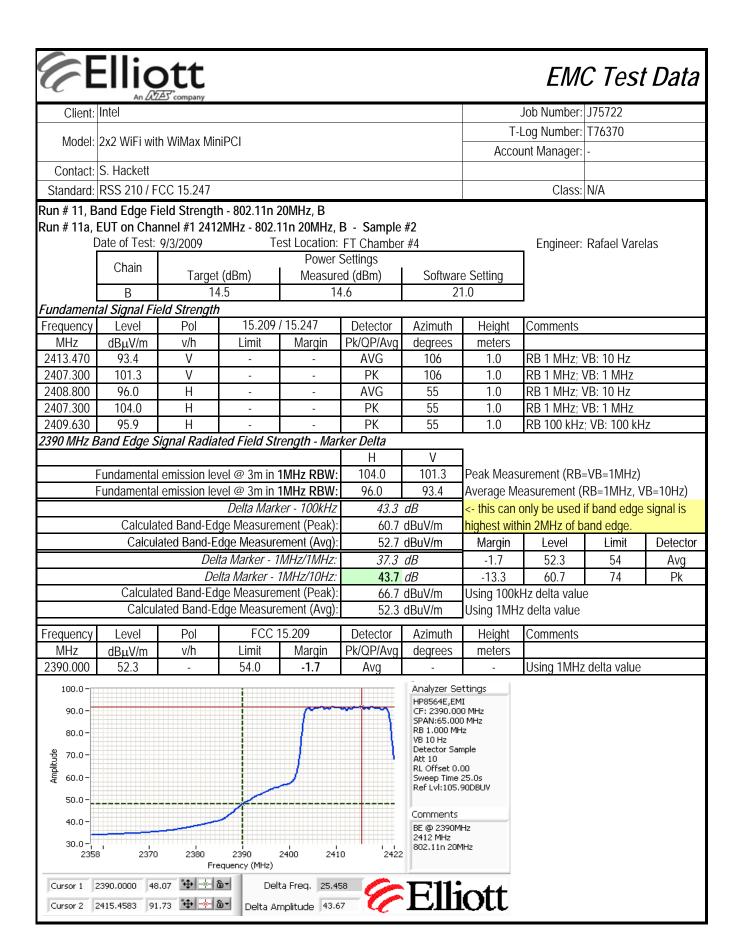

2422 MHz 802.11n 40MHz

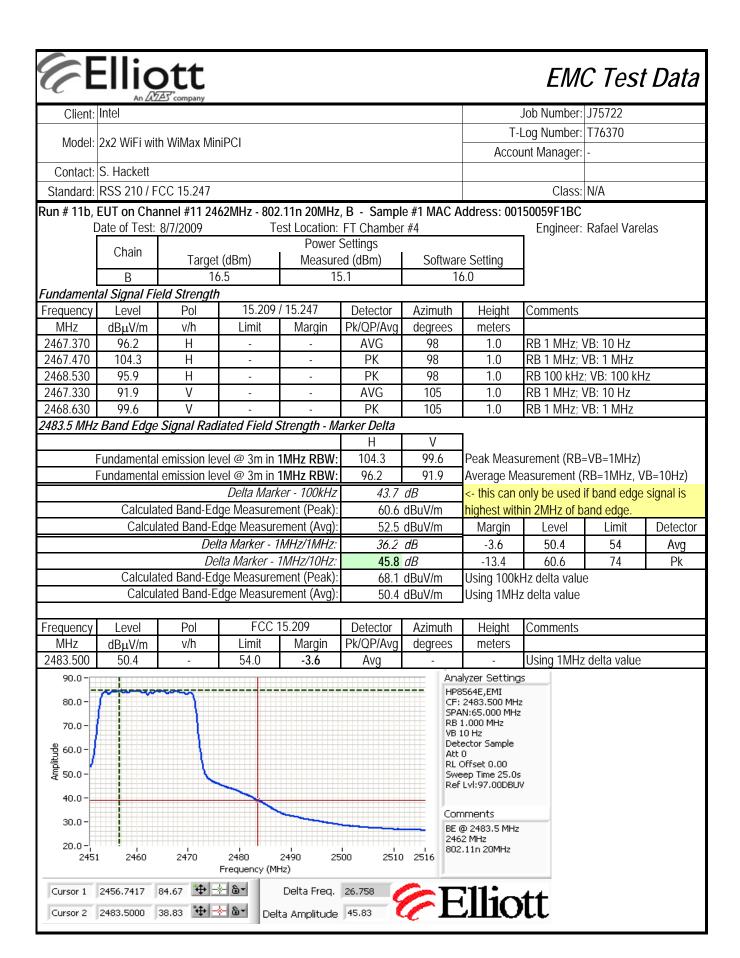


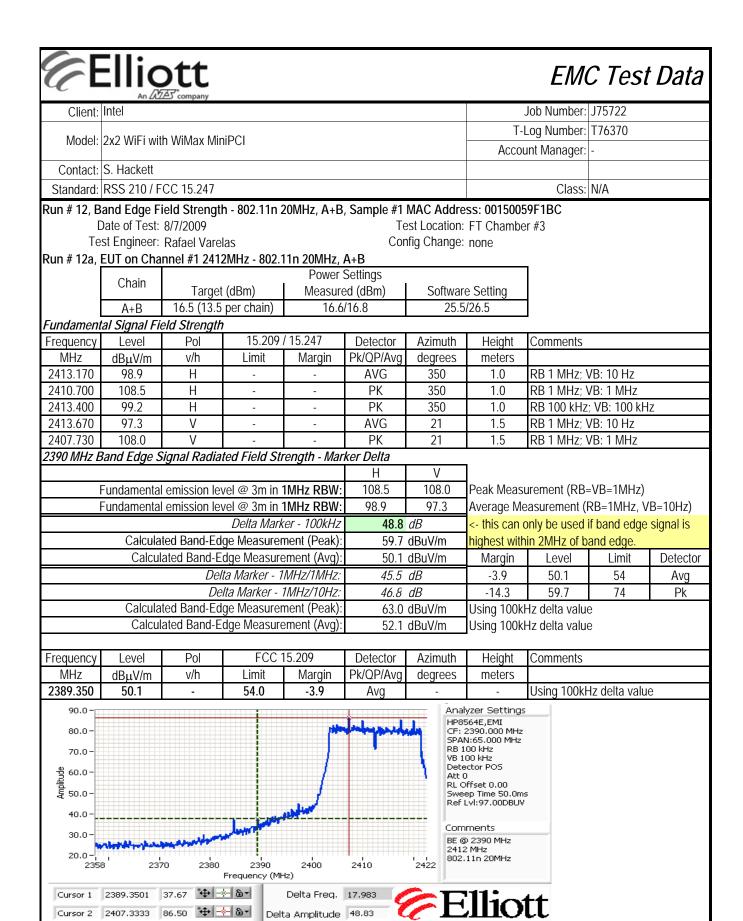


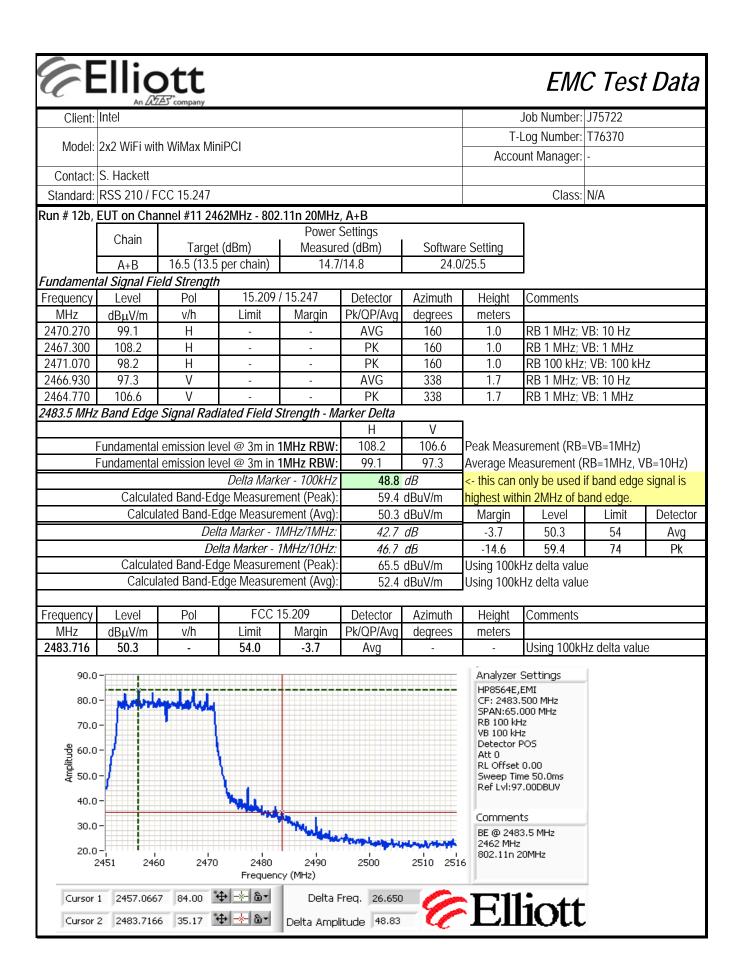












	Elliott An WZAS company	EMC Test Data
Client:	Intel	Job Number: J75722
Madalı	2v2 MiEi with MiMay MiniDCI	T-Log Number: T76370
Model.	2x2 WiFi with WiMax MiniPCI	Account Manager: -
Contact:	S. Hackett	
Standard:	RSS 210 / FCC 15 247	Class: N/A

RSS 210, FCC 15.247 (DTS) Band Edge Field Strength

Summary of Results

Sample #1 MAC Address: 00150059F1BC (except where noted); CRTU Tool Version 5.199.36.999, Driver Version 13.0.0.91
Band edge levels measured for adjacent channels if the output power at the lowest/highest channels has to be dropped by more than 3dB from the nominal target power of 16.5dBm.

Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
	802.11g	#1 2412MHz	16.5	16.8	Restricted Band Edge at 2390 MHz	15.209	49.7dBµV/m @ 2390.0MHz (-4.3dB)
Run #1	602.11g A	#11			Restricted Band Edge		50.5dBµV/m @
		2462MHz	16.5	15.3	at 2483.5 MHz	15.209	2483.5MHz (-3.5dB)
		#1	15.5	14.9	Restricted Band Edge	15.209	52.2dBµV/m @
Run # 2	802.11g	2412MHz	10.0	1 1.7	at 2390 MHz	10.207	2389.9MHz (-1.8dB)
Ruπ Z	В	#11	16.0	16.0	Restricted Band Edge	15.209	51.2dBµV/m @
		2462MHz	10.0		at 2483.5 MHz		2483.5MHz (-2.8dB)
		#1	1/ 5	1/ F	Restricted Band Edge	15 200	45.3dBµV/m @
Run # 3	802.11b	2412MHz	16.5	16.5	at 2390 MHz	15.209	2386.1MHz (-8.7dB)
Kull# 3	Α	#11	16.5	16.6	Restricted Band Edge	15.209	49.5dBµV/m @
		2462MHz	10.0	10.0	at 2483.5 MHz	13.209	2483.5MHz (-4.5dB)
		#1	1/ E	14.4	Restricted Band Edge	15.209	47.2dBµV/m @
Run # 4	802.11b	2412MHz	16.5	16.6	at 2390 MHz	15.209	2386.3MHz (-6.8dB)
Rull#4	В	#11	1/ Г	1/7	Restricted Band Edge	15.209	42.7dBµV/m @
		2462MHz	16.5	16.7	at 2483.5 MHz	13.209	2483.5MHz (-11.3dB)

General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Rel. Humidity: 15-65 % Temperature: 15-25 °C

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	Elliott An WAS company
Client:	Intel
Model	Ovo MiFi with MiMov N

	All Balls Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
	ZXZ WIFI WILLI WIIVIdX WIILIFCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Marker Delta Measurements

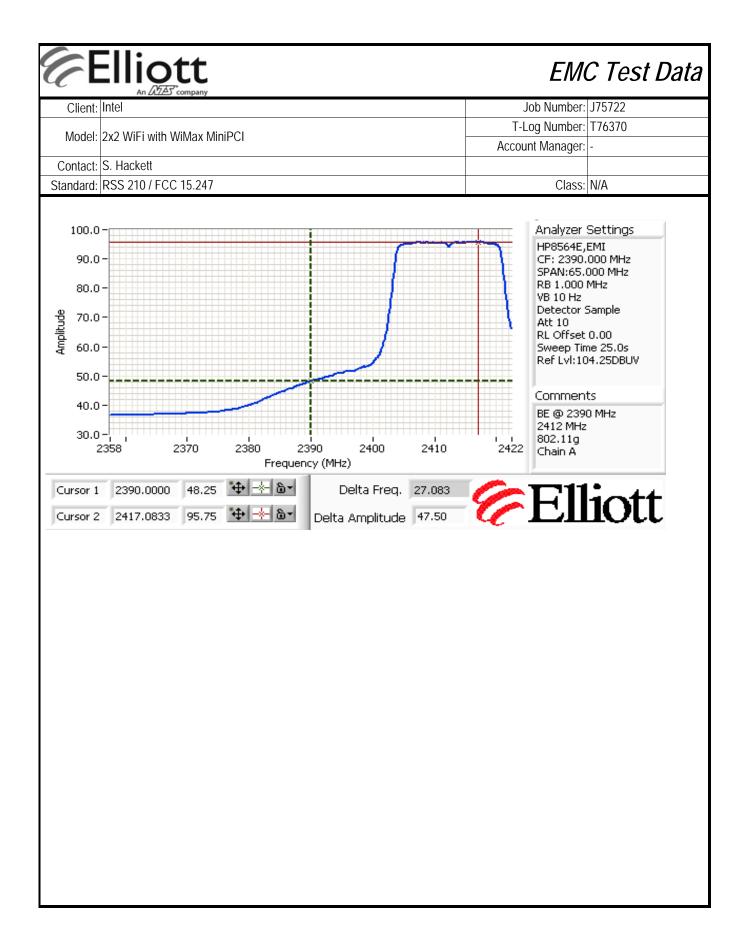
Three sets of marker deltas are measured using the following settings: RB=VB=100kHz; RB=1MHz,VB=1MHz; RB=1MHz, VB=10Hz. Marker deltas are made conducted (analyzer connected to EUT rf port a 20dB pad) for single chain operation. For MIMO operation the delta measurement is made in a radiated manner with the measurement antenna located approximately 50cm from the EUT's antennas. The fundamental field strength is always measured at a 3m test distance.

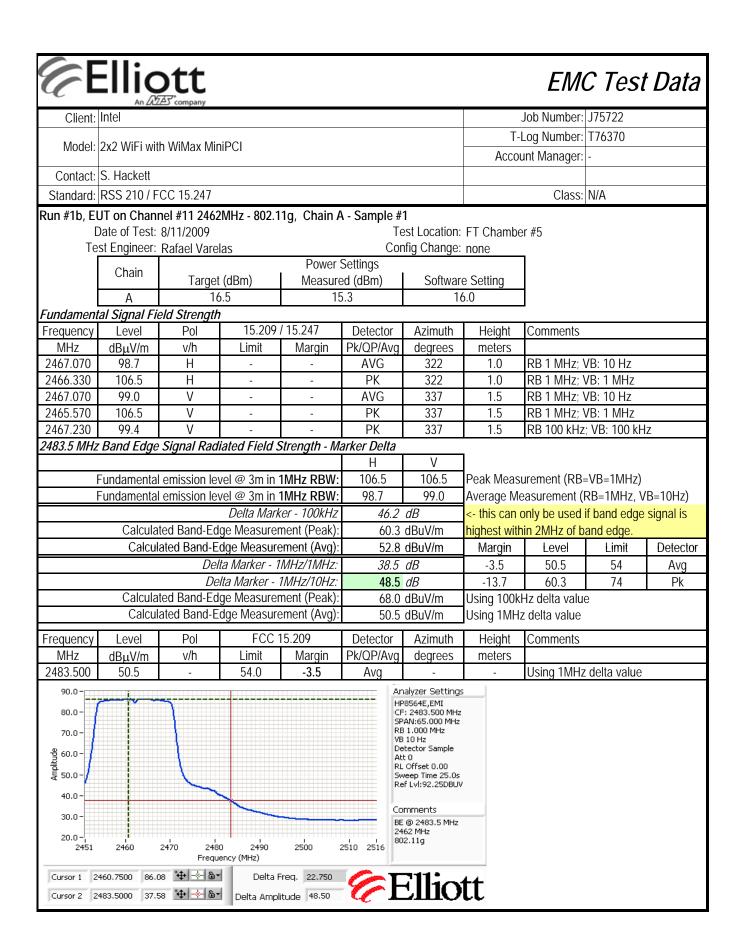
Run #1, Band Edge Field Strength - 802.11g, A

Run #1a EUT on Channel #1 2412MHz - 802.11g, A - Sample #2 MAC: 00150059F23C (sample #1 rf connector damaged)

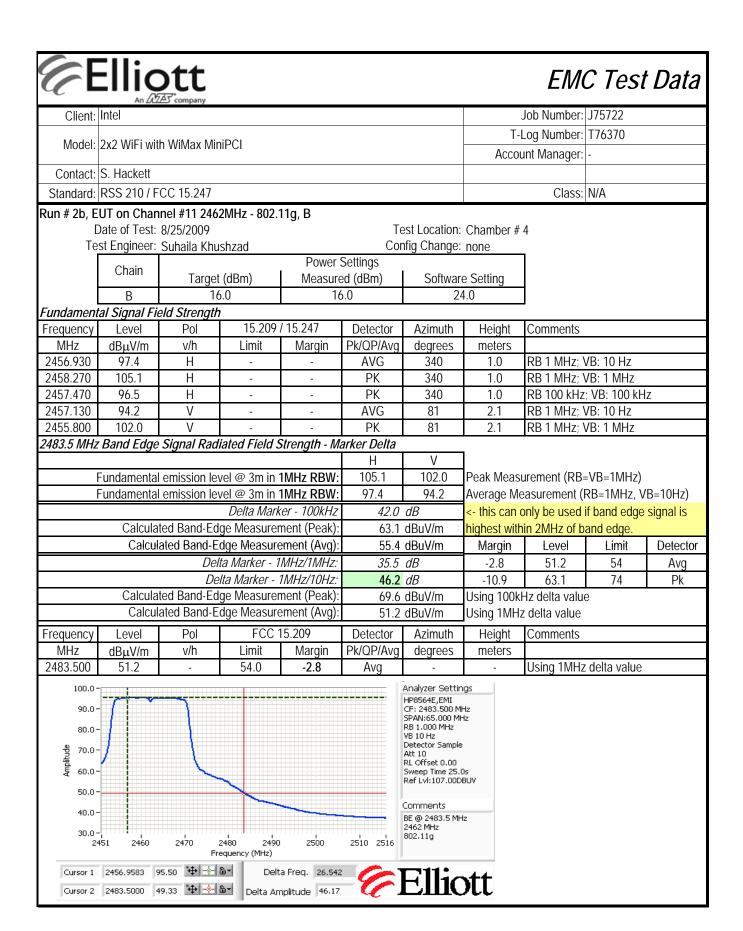
Date of Test: 9/9/2009 Test Location: FT Chamber #4

Test Engineer: Rafael Varelas Config Change: none

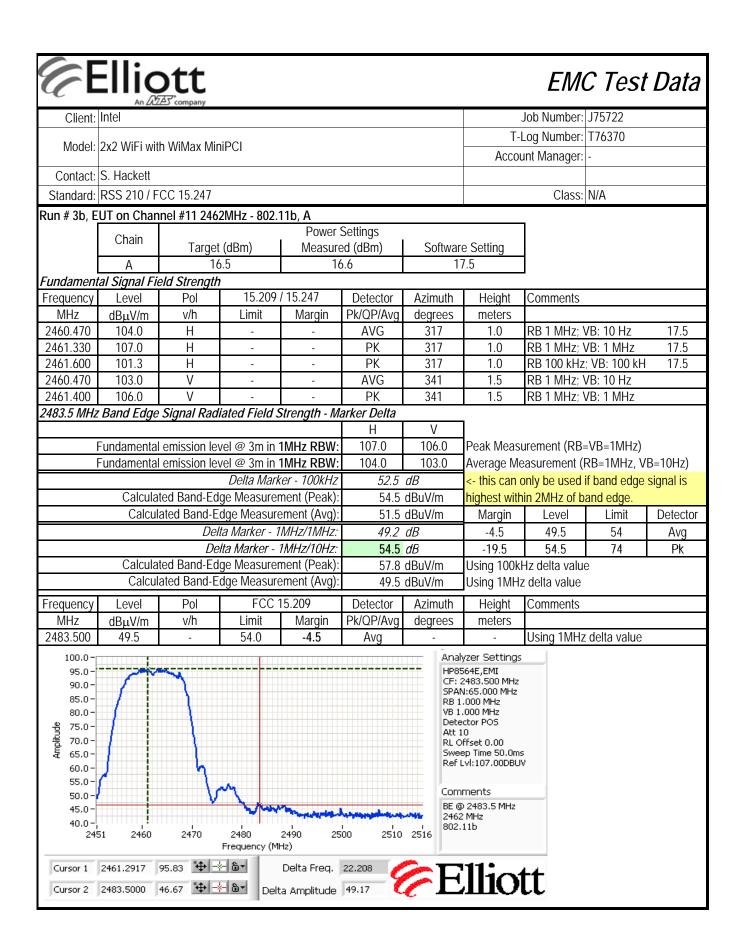

ot Engi	nicci.	italaci varcias	001	ing change. Hone
Chain	oin		Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting	
Α	\	16.5	16.8	24.0

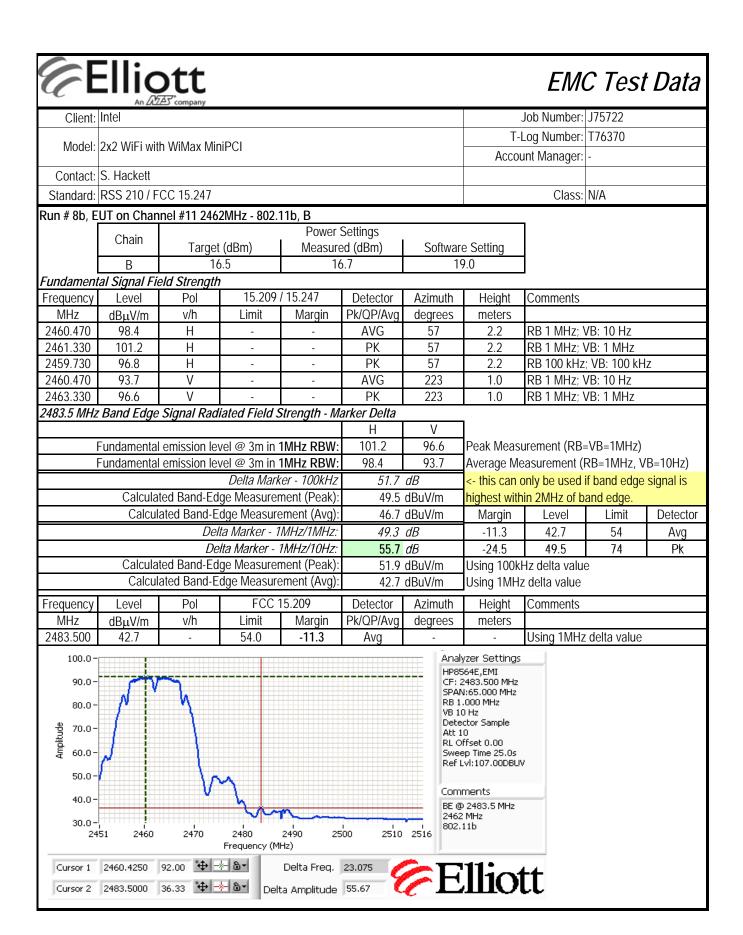

Fundamental Signal Field Strength

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2406.470	97.2	Н	-	-	AVG	297	1.0	RB 1 MHz; VB: 10 Hz
2407.600	104.9	Н	-	-	PK	297	1.0	RB 1 MHz; VB: 1 MHz
2405.870	97.3	Н	-	-	PK	297	1.0	RB 100 kHz; VB: 100 kHz
2406.870	95.2	V	-	-	AVG	267	1.0	RB 1 MHz; VB: 10 Hz
2408.200	103.1	V	-	-	PK	267	1.0	RB 1 MHz; VB: 1 MHz
2408.300	94.7	V	-	-	PK	267	1.0	RB 100 kHz; VB: 100 kHz


2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta

	<u>.</u>		<u>.</u>	<u>.</u>	Н	V				
-	undamental	emission lev	vel @ 3m in 1	1MHz RBW:	104.9	103.1	Peak Measi	urement (RB=	=VB=1MHz)	
-	undamental	emission lev	vel @ 3m in 1	1MHz RBW:	97.2	95.2	Average Me	easurement (I	RB=1MHz, V	B=10Hz)
			Delta Mark	er - 100kHz	45.0	45.0 dB <- this can only be used if band ed			if band edge	signal is
	Calcula	ted Band-Ed	ge Measurer	ment (Peak):	59.9	dBuV/m	highest with	in 2MHz of b	and edge.	
	Calcul	ated Band-E	dge Measure	ement (Avg):	52.2	dBuV/m	Margin	Level	Limit	Detector
		Del	lta Marker - 1	MHz/1MHz:	38.5	dB	-4.3	49.7	54	Avg
		De	lta Marker -	1MHz/10Hz:	47.5	dB	-14.1	59.9	74	Pk
			ge Measurer			dBuV/m	Using 100kl	Hz delta value	9	
	Calcul	ated Band-E	dge Measure	ement (Avg):	49.7	dBuV/m	Using 1MHz	z delta value		
F	Local	D.I	FCC 1	15 200	Datastas	A ' 1 l-	11.2.10	0		
Frequency	Level	Pol	FUU	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2390.000 49.7 - 54.0 -4.3					Avg	-	-	Using 1MHz	delta value	•




		A company								t Data	
Client:	Intel							Job Number:			
Model·	2x2 WiFi wit	h WiMax Mir	niPCI				T-l	Log Number:	T76370		
		II WIIVIGA IVIII	01				Accou	unt Manager:	-		
	S. Hackett										
Standard:	RSS 210 / F	CC 15.247						Class:	N/A		
				0059F23C	(sample #1 r	f connector d	amaged)				
	UT on Chan		MHz - 802.11	lg, B	_						
	Date of Test: 9/9/2009 Test Location: FT Chamber #3 Test Engineer: Rafael Varelas Config Change: none										
1e	st Engineer:	Rafael Vare	las	Dowor	Settings	ilig Change	none	1			
	Chain	Tarnet	(dBm)	•	ed (dBm)	Softwar	e Setting				
	В		5.5		4.9		1.5	1			
Fundameni	tal Signal Fie			<u>'</u>	***		··•	1			
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
2406.870	99.0	Н	-	-	AVG	52	1.0	RB 1 MHz; \			
2408.200	107.5	Н	-	-	PK	52	1.0	RB 1 MHz; \			
2407.100	100.0	Н	-	-	PK	52	1.0	RB 100 kHz		Z	
2406.070	103.7	V	-	-	PK	64	1.0	RB 1 MHz; \	VB: 1 MHz		
2390 MHz E	Band Edge S	ignal Radia	ted Field Sti	rength - Mar			7				
	F I	and along the		AMIL DOW	H	V	Daali Maaa		\/D_1\/ _\		
	Fundamental				107.5	103.7		urement (RB	,	/D 1011-\	
	<u>Fundamental</u>	emission ie		er - 100kHz	99.0 <i>43.3</i>	95.7	Ü	easurement (
	Calcula	tod Rand Ed	ge Measurer			dBuV/m		only be used iin 2MHz of b	•	signans	
			dge Measure			dBuV/m	Margin	Level	Limit	Detector	
	Odiodi		ta Marker - 1	1 07	36.3		-1.8	52.2	54	Avg	
			Ita Marker -		46.8		-9.8	64.2	74	Pk	
	Calcula		ge Measurer			dBuV/m		Hz delta valu			
	Calcul	ated Band-E	dge Measure	ement (Avg):		dBuV/m		z delta value			
	11	D-I	F00.1	15 200	Datasta	Λ=!	11.2.1.1	0			
Frequency MHz	Level	Pol v/h	Limit	15.209 Margin	Detector Pk/QP/Avg	Azimuth	Height	Comments			
2389.891	dBμV/m 52.2	V/II	54.0	-1.8	Avg	degrees	meters	Hsing 1MHz	delta value		
	52.2		37.0	-1.0				OSING TIVILIZ	della value		
100.0					Analyzer Se HP8564E,EM	I					
90.0-					CF: 2390.00 SPAN:65.000) MHz					
80.0-					RB 1,000 MH VB 10 Hz						
70.0- Wblkde 60.0-					Detector San Att 10						
₩ 60.0-			السر		RL Offset 0.0 Sweep Time: Ref Lvl:104.	25.0s					
50.0-		<u>_</u>	/		<u> </u>						
40.0-					Comments BE @ 2390 M	1Hz					
30.0 - 2358	2370	2380 239	0 2400	2410 2	2412 MHz 1 802.11g 422 Chain B						
2330		Frequency	/64LL=\								

	-11:	44								
		DTT A Company						EMO	C Test	' Data
Client:	Intel						,	Job Number:	J75722	
Model:	2x2 WiFi wit	h WiMax Mir	niPCI					Log Number: unt Manager:		
Contact:	S. Hackett						Accor	ant Manager.		
Standard:	RSS 210 / F	CC 15.247						Class:	N/A	
		eld Strength	- 802.11b, <i>P</i>	١	_					
	Date of Test:						Chamber #5	5		
	-	Suhaila Khu		1h A	Cor	nfig Change:	none			
Ruii # 3a, E	OT OH CHAIL	nel #1 2412l	VITIZ - 8UZ. I		Settings			1		
	Chain	Target	(dRm)	-	ed (dBm)	Softwar	e Setting			
	Α		5.5		5.5		6.5	1		
Fundament		eld Strength			- -	1		1		
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2414.070	102.0	Н	-	-	AVG	325	1.0	RB 1 MHz; \	/B: 10 Hz	
2413.270	104.9	Н	-	-	PK	325	1.0	RB 1 MHz; \	/B: 1 MHz	
2414.000	101.0	V	-	-	AVG	190	1.5	RB 1 MHz; \	/B: 10 Hz	
2413.270	104.0	V	-	-	PK	190	1.5	RB 1 MHz; \	/B: 1 MHz	
2409.800	100.2	V	-	-	PK	190	1.5	RB 100 kHz	; VB: 100 kH	Z
2390 MHz E	Band Edge S	Signal Radia	ted Field Sti	rength - Mar	ker Delta		-			
					Н	V				
		l emission lev			104.9	104.0		urement (RB=	-	
	Fundamental	l emission lev			102.0	101.0		easurement (I		
				ker - 100kHz	53.0			only be used	•	signal is
		ted Band-Ed				dBuV/m	1	in 2MHz of b		
	Calcul	ated Band-E	•			dBuV/m	Margin	Level	Limit	Detector
			ta Marker - 1		48.3		-8.7	45.3	54	Avg
			lta Marker -		56.7		-22.1	51.9	74	Pk
		ted Band-Ed	0			dBuV/m		Hz delta value	9	
	Calcul	ated Band-E	•		45.3	dBuV/m	Using 1MHz	z delta value		
Frequency	Level	Pol		15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		1.1.	
2386.130	45.3	-	54.0	-8.7	Avg	4	-	Using 1MHz	delta value	
-10.0 -					Analyzer HP8564E	Settings .EMI				
-20.0 -				JUL	CF: 2390	0.000 MHz 0.000 MHz				
-30.0 -				<i>[</i> '	RB 1.000) MHz				
මු -40.0 -					Detector Att 10	Sample				
9 -40.0 - hit -50.0 -					RL Offse	t 0.00 ime 25.0s				
-60.0-			_ /		Ref Lvl:0					
-70.0			JW		Commer					
-80.0 - 2358	2370	2380 23	90 2400	2410	BE @ 23' 2412 MH - 802.11b 2422					
		Frequen	cy (MHz)							
,	386.3167 -71.6		Delta Fred		El	liott				
Cursor 2 24	114.2666 -15.0	0 ₩ * b *	Delta Amplituo	de 56.67 🤾	السلا	шОЦ				

Client:	Ilic an ATA	company						Job Number:	175722	
Client: I	IIIei									
Model: 2	2x2 WiFi with	n WiMax Mir	iPCI					Log Number: unt Manager:		
Contact:	S. Hackett						ACCOL	ani ivianayer.	-	
	RSS 210 / F	CC 15 247						Class:	N/A	
Run # 8, Bar			- 802 11h F			Olu33i	14/7 (
	ate of Test:		002.110, 2	,	Te	est Location:	Chamber #	5		
Tes	t Engineer:	Suhaila Khu	shzad		Cor	nfig Change:	none			
Run # 8a, E <u>l</u>	JT on Chan	nel #1 2412I	MHz - 802.1					7		
	Chain	T	(dD)		Settings	Caffee	- C-#!			
-	D	Target 16			ed (dBm) 5.6		e Setting 7.5			
L <i>Fundamenta</i>	B B			10	J.U	1.	ı.J	J		
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2414.000	101.4	Н	-	-	AVG	102	1.2	RB 1 MHz; \		
2413.270	104.4	Н	-	-	PK	102	1.2	RB 1 MHz; \		
2414.800	98.4	Н	-	-	PK	102	1.2	RB 100 kHz		Z
2414.000	99.9	V	-	-	AVG	78	1.0	RB 1 MHz; \		
2413.270	102.6	V			PK	78	1.0	RB 1 MHz; \	/B: 1 MHz	
2390 MHz B	and Edge Si	ignal Radia	ted Field Sti	rength - Mar	1	\/	1			
	undamental	omission lo	(al @ 2m in :	1MUz DDM.	H 104.4	V 102.6	Dook Moos	urement (RB=	_\/D_1\/U¬\	
				1MHz RBW:	104.4	99.9	-1	easurement (I		/R_10H ₇)
<u> </u>	unuamentai	CHISSION IC		er - 100kHz	52.2		Ü	only be used		
	Calculat	ed Band-Ed	ge Measurer			dBuV/m		nin 2MHz of b	•	Signans
			dge Measure			dBuV/m	Margin	Level	Limit	Detector
			ta Marker - 1		47.7		-6.8	47.2	54	Avg
			lta Marker -		54.2		-21.8	52.2	74	Pk
	Calculat		ge Measurer			dBuV/m		Hz delta valu		
	Calcula	ated Band-E	dge Measure	ement (Avg):	47.2	dBuV/m	Using 1MH:	z delta value		
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2386.310	47.2	-	54.0	-6.8	Avg	-	-	Using 1MHz	delta value	
100.0-		· · · · · · · · · · · · · · · · · · ·				er Settings				
90.0-						0.000 MHz				
80.0-				N	RB 1.00					
70.0-						z or Sample				
-0.09 Amplitude					Att 10 RL Offs					
₹ 50.0-			$ \sim$ l			Time 25.0s 107.00DBUV				
40.0			~******		Comme	ents				
30.0 - 20.0 - , , 2358	2370	2380 2	390 2400	2410		390 MHz Hz				

	An ZAZZES company		
Client:	Intel	Job Number:	J75722
Madal	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
woden.	ZXZ WIFI WILLI WIIVIdX WIILIFCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Ambient Conditions: Temperature: 22.1 °C Rel. Humidity: 41 %

Summary

Sample #2 MAC Address: 00150059F23C; CRTU Tool Version 5.199.36.999, Driver Version 13.0.0.91

Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
1a	802.11b #6 16.5 dBm 16.8		Radiated Emissions,	FCC Part 15.209 /	28.4dBµV/m @		
Id	Chain A	2437MHz	10.3 ubili	10.0	1000 - 26,000 MHz	15.247(c)	1145.8MHz (-25.6dB)
1b	802.11b	#6	16.5 dBm	16.6	Radiated Emissions,	FCC Part 15.209 /	51.7dBµV/m @
ID	Chain B	2437MHz	10.3 ubili	10.0	1000 - 26,000 MHz	15.247(c)	7310.4MHz (-2.3dB)
1b	802.11b	#6	16.5 dBm	15.3	Radiated Emissions,	FCC Part 15.209 /	50.7dBµV/m @
10	Chain B	2437MHz	10.5 ubili	15.5	1000 - 26,000 MHz	15.247(c)	7310.5MHz (-3.3dB)
1c	802 11g #6		16.5 dBm	16.7	Radiated Emissions,	FCC Part 15.209 /	56.6dBµV/m @
IC	Chain A	2437MHz	10.5 ubili	10.7	1000 - 26,000 MHz	15.247(c)	1330.8MHz (-17.4dB)
1d	802.11g	#6	16.5 dBm	16.7	Radiated Emissions,	FCC Part 15.209 /	51.1dBµV/m @
Tu	Chain B	2437MHz	10.5 ubili	10.7	1000 - 26,000 MHz	15.247(c)	7310.3MHz (-2.9dB)
1d	802.11g	#6	16.5 dBm	16.1	Radiated Emissions,	FCC Part 15.209 /	50.0dBµV/m @
Tu	Chain B	2437MHz	10.5 00111	10.1	1000 - 26,000 MHz	15.247(c)	7310.6MHz (-4.0dB)
Worst case	legacy mod	le and chain	tested on t	op and botto	om channel:		
10	Worst case	#1	16.5 dBm	16.7	Radiated Emissions,	FCC Part 15.209 /	38.0dBµV/m @
i le	chain and	2412MHz	10.5 ubili	10.7	1000 - 26,000 MHz	15.247(c)	4824.0MHz (-16.0dB)
1f	mode from	#11	16.5 dBm	16.5	Radiated Emissions,	FCC Part 15.209 /	49.7dBµV/m @
- 11	1a - 1d	2462MHz	10.5 UDIII	10.5	1000 - 26,000 MHz	15.247(c)	7388.8MHz (-4.3dB)

MIMO Modes - tested at the highest power setting per chain (16.5dBm) but with all chains active to cover 1x and 2x modes. As measurements on the center channel demonstrated that 802.11b mode represented the worst case mode the high and low frequencies of

operation are considered covered by runs 1e and 1f...

2a	802.11n20	#6	16.5 dBm	>16.5 dBm	Radiated Emissions,	FCC Part 15.209 /	46.7dBµV/m @
Za	A+B	2437MHz	per chain	per chain	1000 - 26,000 MHz	15.247(c)	7309.9MHz (-7.3dB)
2b	802.11n40	#6	16.5 dBm	>16.5 dBm	Radiated Emissions,	FCC Part 15.209 /	46.2dBµV/m @
20	A+B	2437MHz	per chain	per chain	1000 - 26,000 MHz	15.247(c)	7309.8MHz (-7.8dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

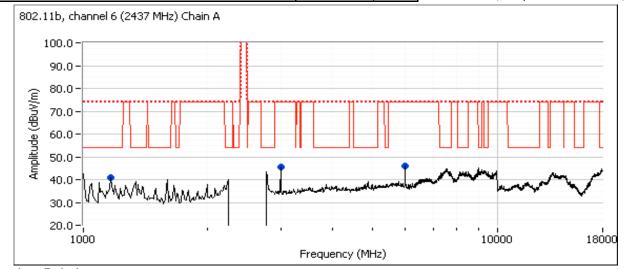
No deviations were made from the requirements of the standard.

	All 2023 Company		
Client:	Intel	Job Number:	J75722
Model	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
woden.	ZXZ VVIFT WILLI VVIIVIAX IVIITIIF CI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Run #1: Radiated Spurious Emissions, 1000 - 26000 MHz, Legacy modes

Date of Test: 8/19/2009 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #4 Host Unit Voltage 120V/60Hz

Run #1a: Chain A, 802.11b Mode, Center channel (2437 MHz)


Chain		Power Settings	
Citalii	Target (dBm)	Measured (dBm)	Software Setting
А	16.5	16.8	19.5

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2435.170	96.5	V	-	-	PK	224	1.8	RB 100 kHz; VB: 100 kHz
2438.900	100.6	Н	-	-	AVG	360	1.0	RB 1 MHz; VB: 10 Hz
2438.130	103.7	Н	-	-	PK	360	1.0	RB 1 MHz; VB: 1 MHz
2437.870	97.4	Н	-	-	PK	359	1.0	RB 100 kHz; VB: 100 kHz

Fundamental emission level @ 3m in 100kHz RBW: 97.4 dBµV/m

Limit for emissions outside of restricted bands: 67.4 dBµV/m Limit is -30dBc (UNII power measurement)

Spurious Emissions

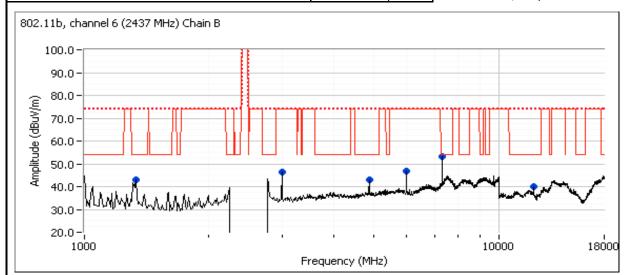
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1145.820	28.4	V	54.0	-25.6	AVG	118	1.2	MHz; VB: 10 Hz
1147.490	45.8	V	74.0	-28.2	PK	118	1.2	MHz; VB: 1 MHz
2998.330	45.7	Н	74.0	-28.3	Peak	248	1.0	
5995.830	45.8	V	74.0	-28.2	Peak	143	1.0	

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: No emissions above 18GHz observed when scanning the EUT with antenna 10cm from the device/antenna.

Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
woden.	2XZ WIFT WILL WINDAX WILLIPCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Run #1b: Chain B, 802.11b Mode, Center channel (2437 MHz)


Chain	Power Settings						
CHalli	Target (dBm)	Measured (dBm)	Software Setting				
В	16.5	16.6	19.5				

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2437.930	103.3	Н	-	•	AVG	58	1.0	RB 1 MHz; VB: 10 Hz
2438.130	106.4	Н	-	•	PK	58	1.0	RB 1 MHz; VB: 1 MHz
2438.070	100.8	Н	-	-	PK	58	1.0	RB 100 kHz; VB: 100 kHz
2437.830	92.5	V	-	-	PK	249	1.0	RB 100 kHz; VB: 100 kHz

Fundamental emission level @ 3m in 100kHz RBW:	100.8	dBμV/m	
Limit for emissions outside of restricted bands:	70.8	dBuV/m	Li

Limit is -30dBc (UNII power measurement)

Spurious Emissions

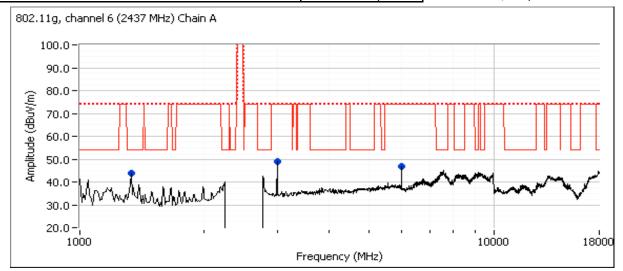
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7310.360	51.7	V	54.0	-2.3	AVG	212	1.3	RB 1 MHz; VB: 10 Hz
4874.020	43.5	V	54.0	-10.5	AVG	219	1.0	RB 1 MHz; VB: 10 Hz
12173.330	40.2	V	54.0	-13.8	Peak	181	1.3	Peak reading, average limit
7312.160	56.6	V	74.0	-17.4	PK	212	1.3	RB 1 MHz; VB: 1 MHz
1330.060	50.9	V	74.0	-23.1	PK	247	1.3	RB 1 MHz; VB: 1 MHz
1328.820	29.6	V	54.0	-24.4	AVG	247	1.3	RB 1 MHz; VB: 10 Hz
4874.000	48.0	V	74.0	-26.0	PK	219	1.0	RB 1 MHz; VB: 1 MHz

Elliott EMC Test Data Client: Intel Job Number: J75722 T-Log Number: T76370 Model: 2x2 WiFi with WiMax MiniPCI Account Manager: Contact: S. Hackett Standard: RSS 210 / FCC 15.247 Class: N/A **Power Settings** Chain Target (dBm) Software Setting Measured (dBm) 16.5 15.3 18.0 Date of Test: 8/27/2009 Test Location: Chamber #5 Test Engineer: Suhaila Khushzad Spurious Emissions - remeasured 3rd harmonic to detrmine output power level that has more than 3dB margin 15.209 / 15.247 Frequency Pol Detector Azimuth Height Comments Level Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin degrees meters 7310.530 50.7 ٧ 54.0 -3.3 AVG 158 1.5 RB 1 MHz; VB: 10 Hz 7312.200 56.0 ٧ 74.0 -18.0 PK 158 1.5 RB 1 MHz; VB: 1 MHz 7308.270 38.8 Н 54.0 -15.2 AVG 180 1.0 RB 1 MHz; VB: 10 Hz 7306.730 49.8 Н 74.0 -24.2 PK 180 1.0 RB 1 MHz; VB: 1 MHz For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the Note 1: level of the fundamental and measured in 100kHz.

No emissions above 18GHz observed when scanning the EUT with antenna 10cm from the device/antenna.

Note 2:

	All Diffe Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
iviouei.	ZXZ WIFT WILL WINIAX WILLIFCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A


Run #1c: Chain A, 802.11g Mode, Center channel (2437 MHz)

Chain		Power Settings						
CHalli	Target (dBm)	Measured (dBm)	Software Setting					
Α	16.5	16.7	23.5					

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2441.030	98.0	Н	-	•	AVG	2	1.0	RB 1 MHz; VB: 10 Hz
2441.230	106.0	Н	-	•	PK	2	1.0	RB 1 MHz; VB: 1 MHz
2442.200	98.3	Н	-	-	PK	2	1.0	RB 100 kHz; VB: 100 kHz
2443.500	93.8	V	-	-	PK	225	1.8	RB 100 kHz; VB: 100 kHz

Fundamental emission level @ 3m in 100kHz RBW: 98.3 dBμV/m Limit for emissions outside of restricted bands: $68.3 dB\mu V/m$ Limit is -30dBc (UNII power measurement)

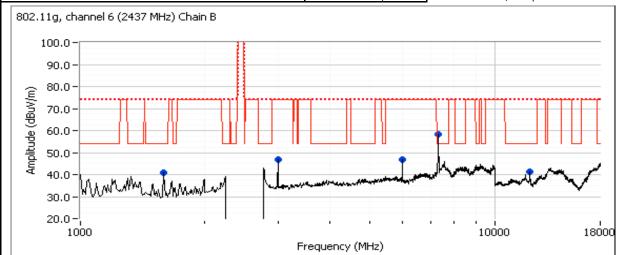
Spurious Emissions

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1330.800	56.6	V	74.0	-17.4	PK	95	1.0	MHz; VB: 1 MHz
1329.960	34.3	V	54.0	-19.7	AVG	95	1.0	MHz; VB: 10 Hz
2998.330	48.9	V	68.3	-19.4	Peak	250	1.0	
5995.830	46.6	V	68.3	-21.7	Peak	102	1.3	

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the Note 1: level of the fundamental and measured in 100kHz.

	All Diffe Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
iviouei.	ZXZ WIFT WILL WINIAX WILLIFCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Run #1d: Chain B, 802.11g Mode, Center channel (2437 MHz)


Chain		Power Settings	
Chain	Target (dBm)	Measured (dBm)	Software Setting
В	16.5	16.7	24.0

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2439.670	95.2	V	-	1	PK	251	1.8	RB 100 kHz; VB: 100 kHz
2435.870	100.5	Н	-	1	AVG	56	1.0	RB 1 MHz; VB: 10 Hz
2441.330	108.8	Н	-	-	PK	56	1.0	RB 1 MHz; VB: 1 MHz
2435.870	101.2	Н	-	-	PK	56	1.0	RB 100 kHz; VB: 100 kHz

Fundamental emission level @ 3m in 100kHz RBW: 101.2 $dB\mu V/m$ Limit for emissions outside of restricted bands: 71.2 $dB\mu V/m$

Limit is -30dBc (UNII power measurement)

Spurious Emissions

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7310.340	51.1	V	54.0	-2.9	AVG	211	1.2	RB 1 MHz; VB: 10 Hz
7314.670	66.4	V	74.0	-7.6	PK	211	1.2	RB 1 MHz; VB: 1 MHz
1586.670	40.7	V	54.0	-13.3	Peak	80	1.3	Peak reading, average limit
12180.510	34.4	V	54.0	-19.6	AVG	173	1.3	RB 1 MHz; VB: 10 Hz
12176.240	50.5	V	74.0	-23.5	PK	173	1.3	RB 1 MHz; VB: 1 MHz
5995.830	46.8	V	71.2	-24.4	Peak	145	1.0	
2998.330	46.7	V	71.2	-24.5	Peak	302	1.0	

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: No emissions above 18GHz observed when scanning the EUT with antenna 10cm from the device/antenna.

	All Diffe Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
	2XZ WIFI WILLI WIIVIdX WIILIIPCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Chain		Power Settings							
	Chain	Target (dBm)	Measured (dBm)	Software Setting					
4	В	16.5	16.1	23.0					
Date of Test: 8/27/2009 Test Location: Chamber #									

Date of Test: 8/27/2009
Test Engineer: Suhaila Khushzad

Spurious Emissions - remeasured 3rd harmonic to detrmine output power level that has more than 3dB margin

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7310.600	50.0	V	54.0	-4.0	AVG	156	1.6	RB 1 MHz; VB: 10 Hz
7318.270	66.9	V	74.0	-7.1	PK	156	1.6	RB 1 MHz; VB: 1 MHz
7308.800	42.4	Н	54.0	-11.6	AVG	13	1.0	RB 1 MHz; VB: 10 Hz
7306.530	61.7	Н	74.0	-12.3	PK	13	1.0	RB 1 MHz; VB: 1 MHz

INATA 1.	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
	level of the fundamental and measured in 100kHz.
Note 2:	No emissions above 18GHz observed when scanning the EUT with antenna 10cm from the device/antenna.

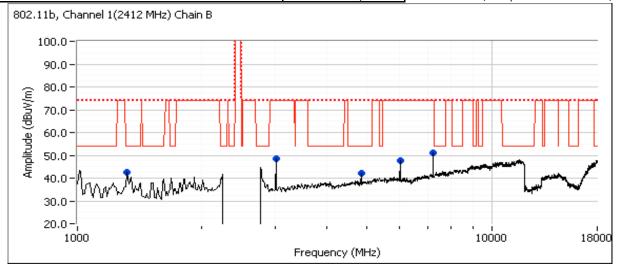
	All Diff. Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
	ZXZ WIFT WILL WINIAX WILLIFCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Run #1e: Chain B, Worst-case from runs 1a - 1d, b Mode, low channel (2412 MHz)

Date of Test: 8/20/2009
Test Engineer: Suhaila Khushzad
Test Location: Chamber #5
Ho

Config Change: None Host Unit Voltage 120V/60Hz

Config. Used: 1


Chain	Power Settings							
CHalli	Target (dBm)	Measured (dBm)	Software Setting					
В	16.5	16.7	19.0					

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

	Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
	MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
	2414.800	104.1	Н	-	-	AVG	53	1.0	RB 1 MHz; VB: 10 Hz		
	2412.670	95.6	V	-	-	PK	54	1.0	RB 100 kHz; VB: 100 kHz		
	2411.670	101.6	Н	-	-	PK	53	1.0	RB 100 kHz; VB: 100 kHz		

Fundamental emission level @ 3m in 100kHz RBW: $101.6 \text{ dB}_{\mu}\text{V/m}$ Limit for emissions outside of restricted bands: $71.6 \text{ dB}_{\mu}\text{V/m}$

Limit is -30dBc (UNII power measurement)

Spurious Emissions

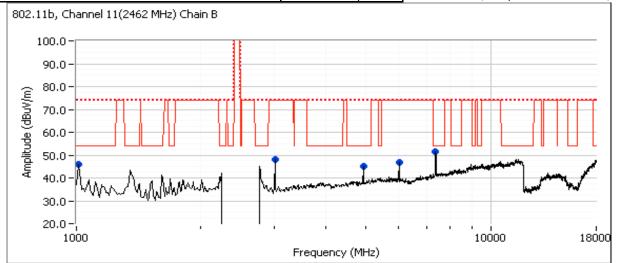
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4823.960	38.0	V	54.0	-16.0	AVG	123	1.0	RB 1 MHz; VB: 10 Hz
4824.100	46.0	V	74.0	-28.0	PK	123	1.0	RB 1 MHz; VB: 1 MHz
1332.700	34.7	V	54.0	-19.3	AVG	94	1.0	RB 1 MHz; VB: 10 Hz
1329.780	51.6	V	74.0	-22.4	PK	94	1.0	RB 1 MHz; VB: 1 MHz
3000.230	48.3	V	71.6	-23.3	Peak	255	1.0	
6001.020	47.8	V	71.6	-23.8	Peak	100	1.0	
7235.320	51.2	V	71.6	-20.4	Peak	193	1.9	

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: No emissions above 18GHz observed when scanning the EUT with antenna 10cm from the device/antenna.

Client:	Intel	Job Number:	J75722
Model	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
woden.	2XZ WIFI WILLI WIIVIdX WIILIIPCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Run #1f: Chain B, Worst-case from runs 1a - 1d, b Mode, high channel (2462 MHz)


Choin		Power Settings	
Chain	Target (dBm)	Measured (dBm)	Software Setting
В	16.5	16.5	20.0

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2459.330	103.5	Н	-	-	AVG	49	1.0	RB 1 MHz; VB: 10 Hz
2461.070	106.3	Н	-	-	PK	49	1.0	RB 1 MHz; VB: 1 MHz
2463.670	101.3	Н	-	-	PK	49	1.0	RB 100 kHz; VB: 100 kHz
2459.670	94.6	V	-	-	PK	48	1.7	RB 100 kHz; VB: 100 kHz

Fundamental emission level @ 3m in 100kHz RBW: 101.3 dB_μV/m

Limit for emissions outside of restricted bands: 71.3 dB_µV/m Limit is -30dBc (UNII power measurement)

Spurious Emissions

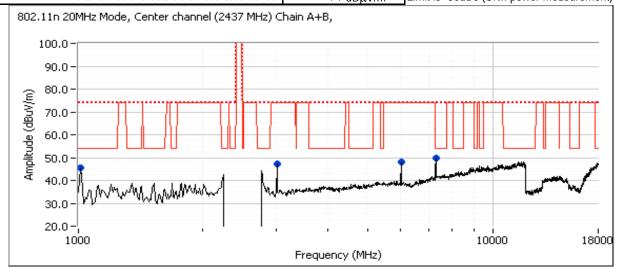
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7388.780	49.7	V	54.0	-4.3	AVG	183	1.3	RB 1 MHz; VB: 10 Hz
7387.910	55.1	V	74.0	-18.9	PK	183	1.3	RB 1 MHz; VB: 1 MHz
4923.490	43.5	V	54.0	-10.5	AVG	223	1.0	RB 1 MHz; VB: 10 Hz
4924.340	48.4	V	74.0	-25.6	PK	223	1.0	RB 1 MHz; VB: 1 MHz
1000.000	30.7	V	54.0	-23.3	AVG	117	1.3	RB 1 MHz; VB: 10 Hz
1000.470	51.6	V	74.0	-22.4	PK	117	1.3	RB 1 MHz; VB: 1 MHz
3000.230	48.1	V	74.0	-25.9	Peak	249	1.0	
6001.020	46.8	V	74.0	-27.2	Peak	269	1.3	

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: No emissions above 18GHz observed when scanning the EUT with antenna 10cm from the device/antenna.

	All Date Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
	ZXZ WIFT WILLT WINIDA WILLIFCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Run #2: Radiated Spurious Emissions, 1000 - 26000 MHz, MIMO modes


Run #2a: Chain A+B, 802.11n 20MHz Mode, Center channel (2437 MHz)

Chain	Power Settings							
CHAIH	Target (dBm)	Measured (dBm)	Software Setting					
A+B	16.5, 16.5	16.5, 16.6	24, 25					

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2440.270	101.2	Н	-	-	AVG	49	1.0	RB 1 MHz; VB: 10 Hz
2435.400	110.9	Н	-	-	PK	49	1.0	RB 1 MHz; VB: 1 MHz
2440.330	95.6	V	-	-	PK	281	1.3	RB 100 kHz; VB: 100 kHz
2440.930	104.0	Н	-	-	PK	49	1.0	RB 100 kHz; VB: 100 kHz

Fundamental emission level @ 3m in 100kHz RBW: 104 dBμV/m Limit for emissions outside of restricted bands: 74 dBμV/m Limit is -30dBc (UNII power measurement)

Spurious Emissions

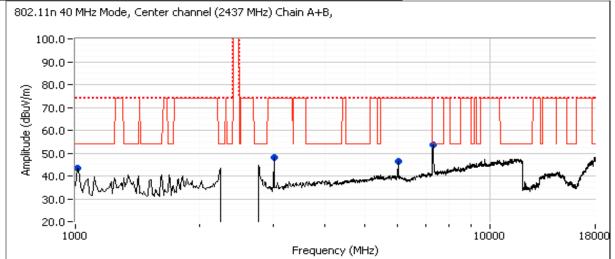
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7309.900	46.7	V	54.0	-7.3	AVG	224	1.9	MHz; VB: 10 Hz
7309.900	60.8	V	74.0	-13.2	PK	224	1.9	MHz; VB: 1 MHz
1000.000	30.6	V	54.0	-23.4	AVG	102	1.0	MHz; VB: 10 Hz
1000.730	45.1	V	74.0	-28.9	PK	102	1.0	MHz; VB: 1 MHz
3027.590	47.4	V	74.0	-26.6	Peak	186	1.0	
6000.770	48.0	V	74.0	-26.0	Peak	98	1.0	

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: No emissions above 18GHz observed when scanning the EUT with antenna 10cm from the device/antenna.

	All Diffe Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
iviouei.	ZXZ WIFT WILL WINIAX WILLIFCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Run #2b: Chain A+B, 802.11n 40MHz Mode, Center channel (2437 MHz)


_	7114111711270	0211 111 101111112 1110000 0		7
	Chain		Power Settings	
	CHalli	Target (dBm)	Measured (dBm)	Software Setting
	A+B	16.5, 16.5	16.7, 16.8	25, 26

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2439.400	97.0	Н	-	1	AVG	51	1.0	RB 1 MHz; VB: 10 Hz
2433.400	106.3	Н	-	1	PK	51	1.0	RB 1 MHz; VB: 1 MHz
2444.730	98.2	V	-	-	PK	252	1.4	RB 100 kHz; VB: 100 kHz
2434.670	99.8	Н	-	-	PK	51	1.0	RB 100 kHz; VB: 100 kHz

Fundamental emission level @ 3m in 100kHz RBW: 99.8 dBµV/m

Limit for emissions outside of restricted bands: 69.8 dB_µV/m Limit is -30dBc (UNII power measurement)

Spurious Emissions

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7309.800	46.2	V	54.0	-7.8	AVG	154	1.6	MHz; VB: 10 Hz
7330.470	59.3	V	74.0	-14.7	PK	154	1.6	MHz; VB: 1 MHz
1000.100	32.1	V	54.0	-21.9	AVG	110	1.3	MHz; VB: 10 Hz
1000.110	48.2	V	74.0	-25.8	PK	110	1.3	MHz; VB: 1 MHz
3000.030	47.9	V	74.0	-26.1	Peak	258	1.0	
6000.680	46.3	V	74.0	-27.7	Peak	269	1.3	

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: No emissions above 18GHz observed when scanning the EUT with antenna 10cm from the device/antenna.

	An 2022 Company			
Client:	Intel	Job Number:	J75722	
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T-Log Number: T76370	
	XZ WIFI WILD WIMAX MIDIPCI	Account Manager:	-	
Contact:	S. Hackett			
Standard:	RSS 210 / FCC 15.247	Class:	N/A	

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 9/2/2009 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Radio Lab Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 22.1 °C

Rel. Humidity: 42 %

Summary of Results

Sample #2 MAC Address: 00150059F23C; CRTU Tool Version 5.199.36.999, Driver Version 13.0.0.91

Sample #2 WAC Address: 001300371 23C, CRT0 1001 Version 3.177.30.777, Driver Version 13.0.0.71						
Run #	Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin
	26.5					802.11a: 15.3 dBm
1	25.5	-	Output Power	15.247(b)	Pass	HT20: 15.2 dBm
	26.5					HT40: 15.4 dBm
	25.0					802.11a:-8.7dBm/3kHz
2	25.5	-	Power spectral Density (PSD)	15.247(d)	Pass	HT20:-9.5dBm/3kHz
	25.5					HT40:-12.8dBm/3kHz
	24.5					802.11a: 16.3 MHz
3	25.0	-	Minimum 6dB Bandwidth	15.247(a)	Pass	HT20: 17.6 MHz
	25.0					HT40: 36.5 MHz
	25.5					802.11a: 17.1 MHz
3	25.0	-	99% Bandwidth	RSS GEN	-	HT20: 18.4 MHz
	26.5					HT40: 36.0 MHz
4		_	Spurious emissions	15.247(b)	Pass	All Emissions less than
-τ			Sparious cirilisatoris	10.217(0)	1 433	30dBc

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

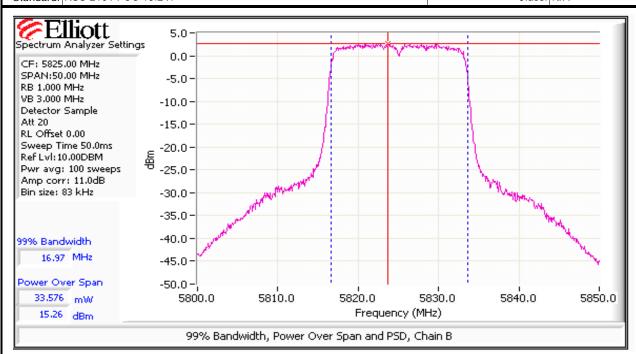
No deviations were made from the requirements of the standard.

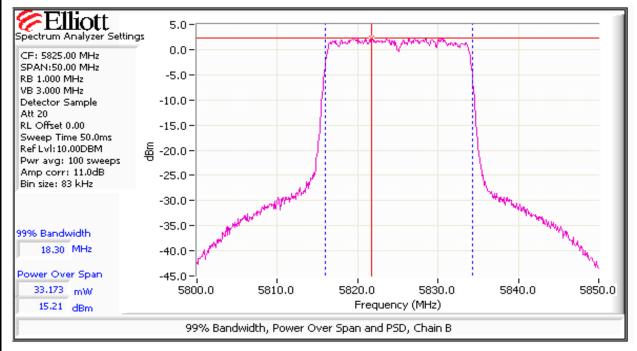
	An ZZZZZ company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	-Log Number: T76370
	2XZ VVIFI WILLI VVIIVIAX IVIII IIPCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Run #1: Output Power

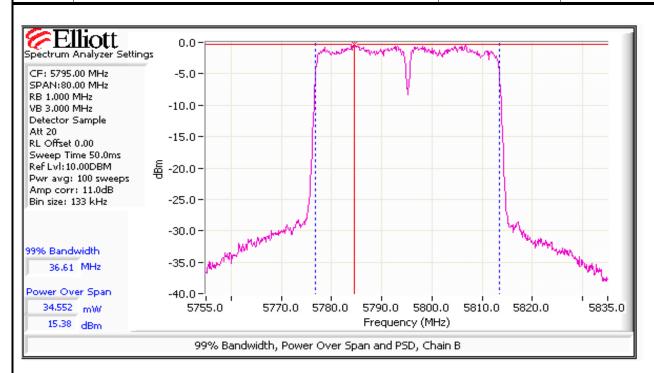
Power	Fraguenay (MIIIa)	Output	Power	Antenna	Dooult	EIRP	Note 2	Output	Power
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
24.5	Chain A 802.11a, #149	14.9	30.8	5.0	Pass	19.9	0.097	16.7	46.8
25.0	Chain A 802.11a, #157	15.1	32.4	5.0	Pass	20.1	0.102	16.8	47.9
25.5	Chain A 802.11a - #165	14.7	29.5	5.0	Pass	19.7	0.093	16.7	46.8
25.0	Chain B 802.11a, #149	15.1	32.4	5.0	Pass	20.1	0.102	16.7	46.8
25.5	Chain B 802.11a, #157	15.2	33.1	5.0	Pass	20.2	0.105	16.6	45.7
26.5	Chain B 802.11a - #165	15.3	33.9	5.0	Pass	20.3	0.107	16.8	47.9
25.0	Chain A HT20, #149	15.0	31.6	5.0	Pass	20.0	0.100	16.8	47.9
25.0	Chain A HT20 - #157	14.8	30.2	5.0	Pass	19.8	0.095	16.8	47.9
25.5	Chain A HT20, #165	14.6	28.6	5.0	Pass	19.6	0.090	16.6	45.7
25.5	Chain B HT20, #149	15.2	33.1	5.0	Pass	20.2	0.105	16.8	47.9
26.0	Chain B HT20 - #157	15.2	33.1	5.0	Pass	20.2	0.105	16.8	47.9
26.5	Chain B HT20, #165	15.2	33.1	5.0	Pass	20.2	0.105	16.8	47.9
25.0	Chain A: HT40 - #151	15.2	33.1	5.0	Pass	20.2	0.105	16.8	47.9
25.5	Chain A: HT40 - #159	14.9	31.0	5.0	Pass	19.9	0.098	16.6	45.7
25.5	Chain B: HT40 - #151	15.1	32.4	5.0	Pass	20.1	0.102	16.7	46.8
26.5	Chain B: HT40 - #159	15.4	34.7	5.0	Pass	20.4	0.110	16.6	45.7

Note 1: Output power measured using a spectrum analyzer (see plots below):

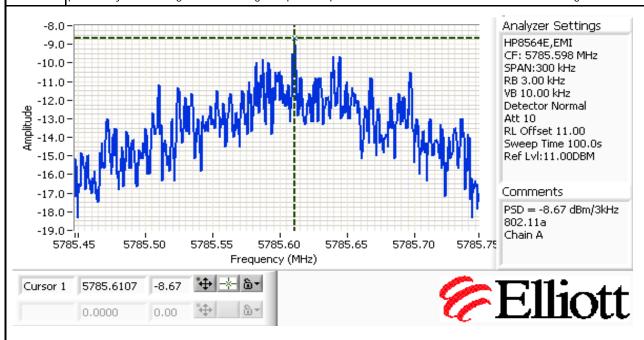

RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 80 MHz for n40 mode and 40MHz for a and n20 modes. Spurious limit is -30dBc because this method was used.

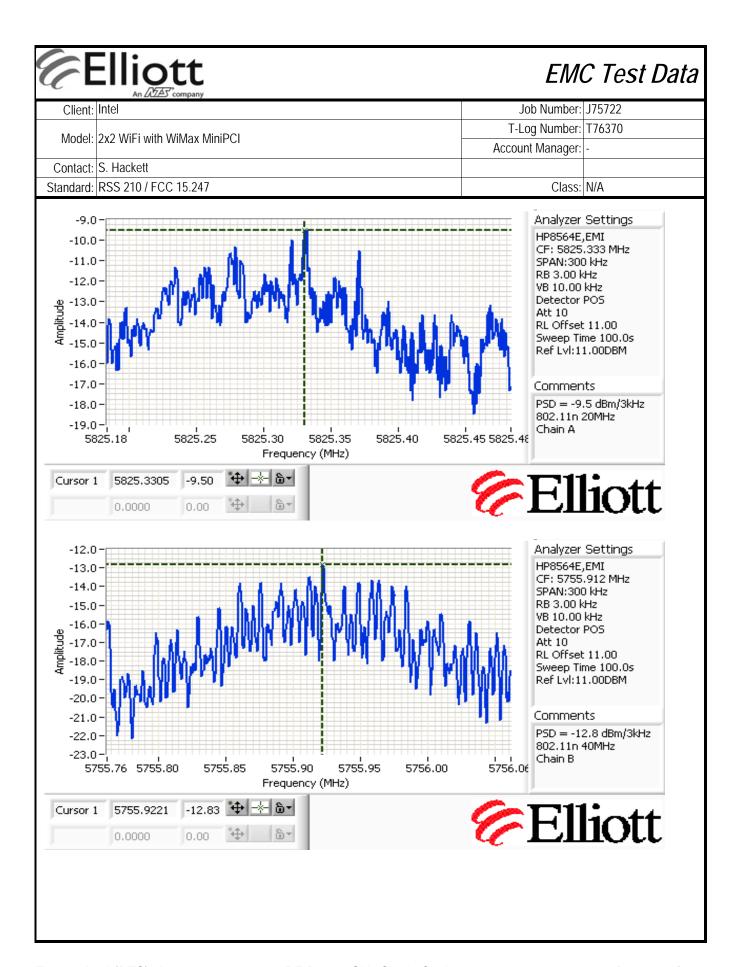

Note 2: Power setting - the software power setting used during testing, included for reference only.

Note 3: Power measured using average power meter and is included for reference only.


	All 2022 Company		
Client:	Intel	Job Number:	J75722
Model	Model: 2x2 WiFi with WiMax MiniPCI		T76370
iviodei:	2X2 WIFI WITH WIMAX MINIPCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

	An 2022 Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	Log Number: T76370
	2XZ WIFI WILLI WIIVIdX WIILIIPCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

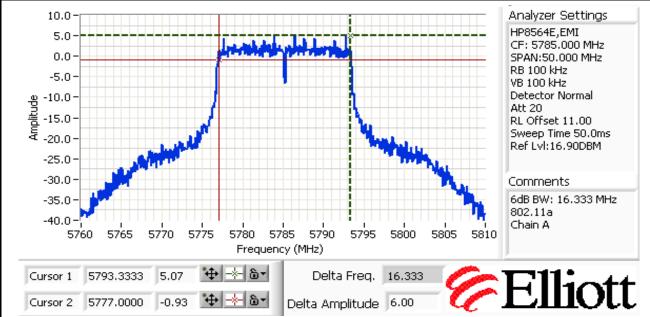

	An 2022 Company			
Client:	Intel	Job Number:	J75722	
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T-Log Number: T76370	
	ZXZ WIFI WIIII WIIVIdX WIIIIIFCI	Account Manager:	-	
Contact:	S. Hackett			
Standard:	RSS 210 / FCC 15.247	Class:	N/A	

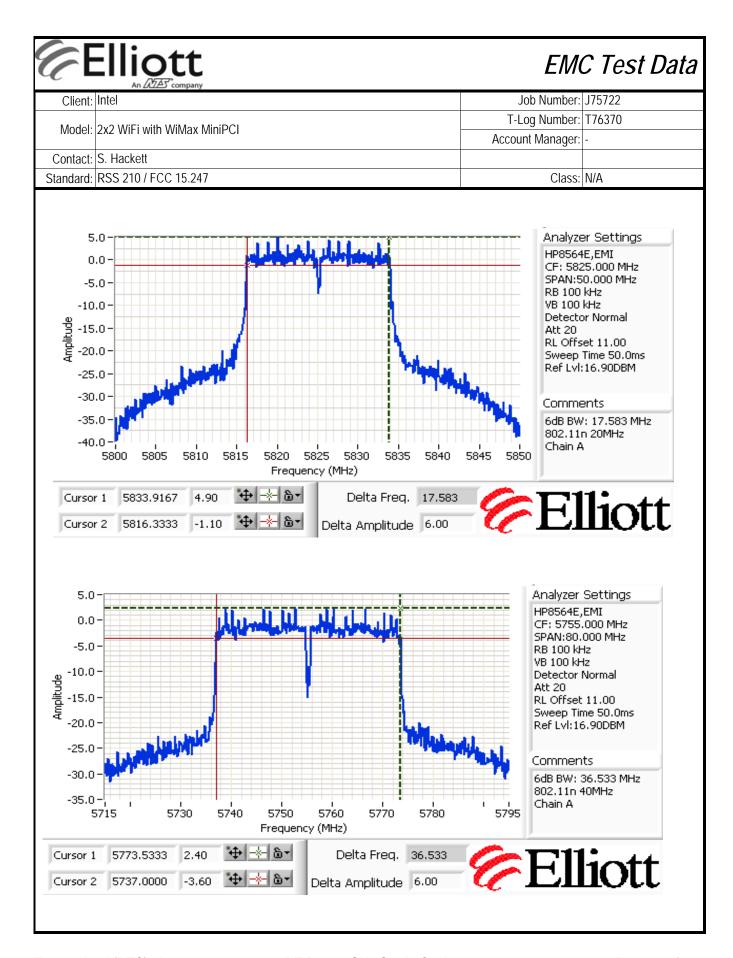

Run #2: Power spectral Density

Power		PSD	Limit	Result
Setting	Frequency (MHz)	(dBm/3kHz) Note 1	dBm/3kHz	Nosuit
24.5	Chain A 802.11a, #149	-9.3	8.0	Pass
25.0	Chain A 802.11a, #157	-8.7	8.0	Pass
25.5	Chain A 802.11a - #165	-9.5	8.0	Pass
25.0	Chain A HT20, #149	-9.8	8.0	Pass
25.0	Chain A HT20 - #157	-9.7	8.0	Pass
25.5	Chain A HT20, #165	-9.5	8.0	Pass
25.0	Chain A: HT40 - #151	-13.5	8.0	Pass
25.5	Chain A: HT40 - #159	-13.8	8.0	Pass
25.0	Chain B 802.11a, #149	-9.3	8.0	Pass
25.5	Chain B 802.11a, #157	-9.8	8.0	Pass
26.5	Chain B 802.11a - #165	-9.5	8.0	Pass
25.5	Chain B HT20, #149	-9.7	8.0	Pass
26.0	Chain B HT20 - #157	-9.7	8.0	Pass
26.5	Chain B HT20, #165	-9.7	8.0	Pass
25.5	Chain B: HT40 - #151	-12.8	8.0	Pass
26.5	Chain B: HT40 - #159	-13.0	8.0	Pass

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

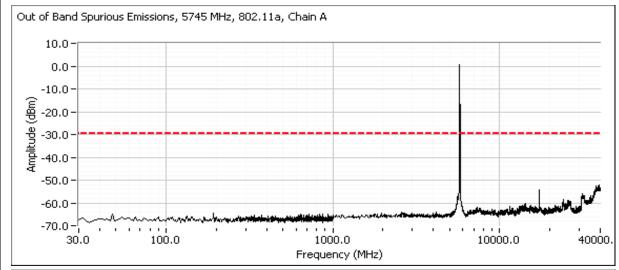

	All Diff. Company		
Client:	Intel	Job Number:	J75722
Model: 2x	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
	2 WIFI WILL WIMAX MILLIPCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

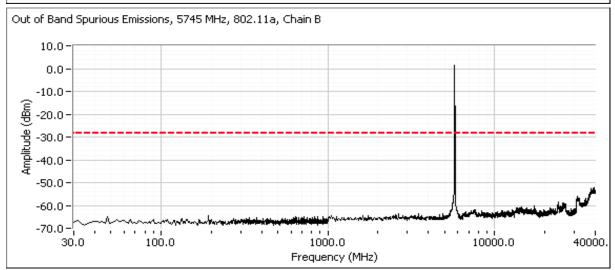

Run #3: Signal Bandwidth

Power	Frequency (MHz)	Resolution	Bandwid	th (MHz)
Setting	Frequency (MHZ)	Bandwidth	6dB	99%
24.5	Chain A 802.11a, #149	100k	16.3	17.1
25.0	Chain A 802.11a, #157	100k	16.3	17.1
25.5	Chain A 802.11a - #165	100k	16.4	17.0
25.0	Chain A HT20, #149	100k	17.66	18.4
25.0	Chain A HT20 - #157	100k	17.66	18.4
25.5	Chain A HT20, #165	100k	17.58	18.3
25.0	Chain A: HT40 - #151	100k	36.5	36.6
25.5	Chain A: HT40 - #159	100k	36.5	36.6
25.0	Chain B 802.11a, #149			17.1
25.5	Chain B 802.11a, #157			17.1
26.5	Chain B 802.11a - #165			17.0
25.5	Chain B HT20, #149			18.4
26.0	Chain B HT20 - #157			18.4
26.5	Chain B HT20, #165			18.3
25.5	Chain B: HT40 - #151			36.6
26.5	Chain B: HT40 - #159			36.6

Note 1: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB

Note 2: Requirement is that the 6dB bandwidth be greater than 500kHz. Only chain A bandwidth was measured as representative of both chains given that the signal bandwidth far exceeds the minimum required and the similarity of the signal on each chain.

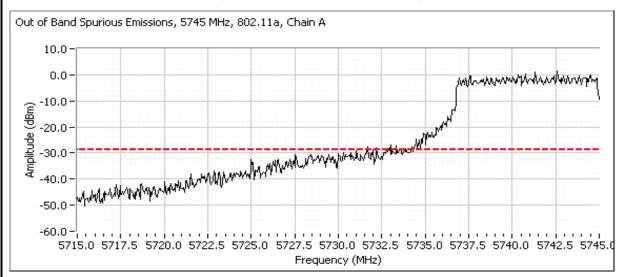

Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	per: T76370
	2XZ WIFI WITH WITHWAX WITHPOL	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A


Run #4: Out of Band Spurious Emissions

Frequency (MHz)	Limit	Result
5745, 5755	-30dBc	Pass
5785	-30dBc	Pass
5795, 5825	-30dBc	Pass

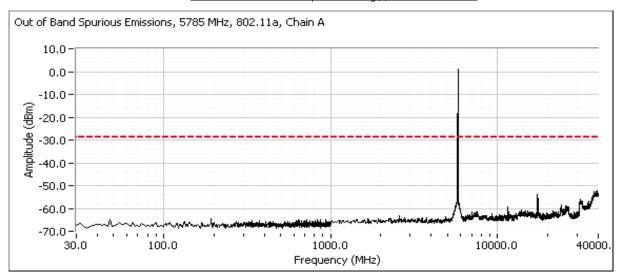
802.11a Mode, Chains A and B

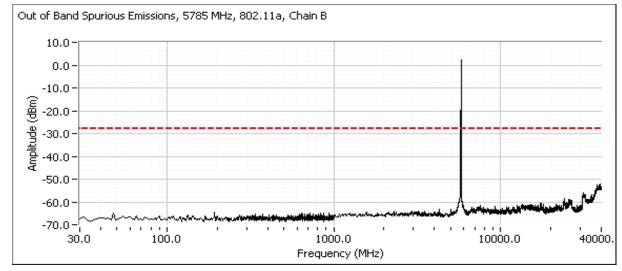
Plots for low channel, power setting(s), A=24.5, B=25.0



	All 2022 Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
		Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

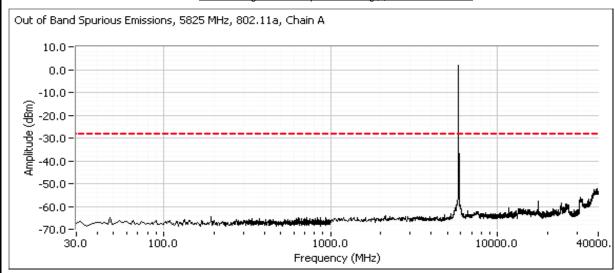
Additional plot from 5715 - 5745 MHz showing compliance with -30dBc at the band edge.

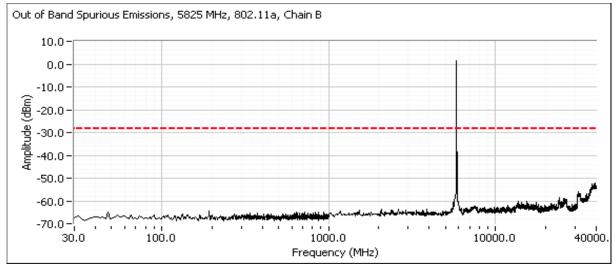




	An Diff. Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
		Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

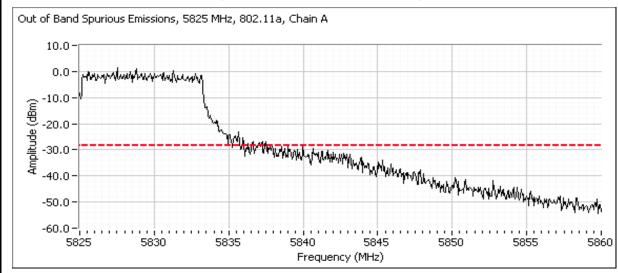
Plots for center channel, power setting(s), A=25.0, B = 25.5

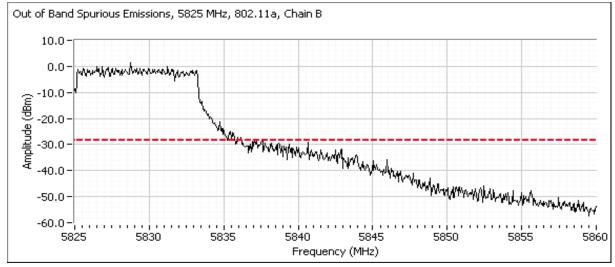




	The state of the s		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
		Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

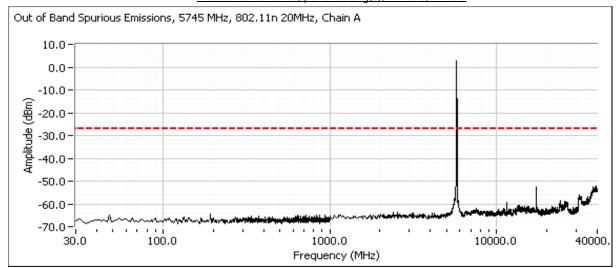
Plots for high channel, power setting(s), A=25.5, B=26.5

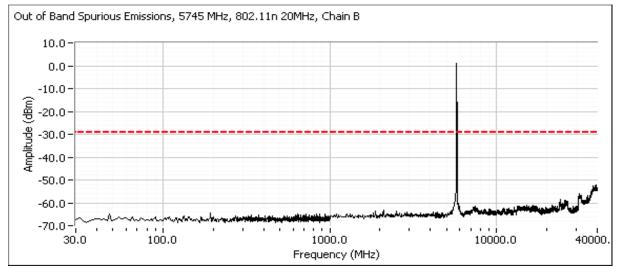




	All 2022 Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
		Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Additional plot from 5825 - 5860 MHz showing compliance with -30dBc at the band edge.

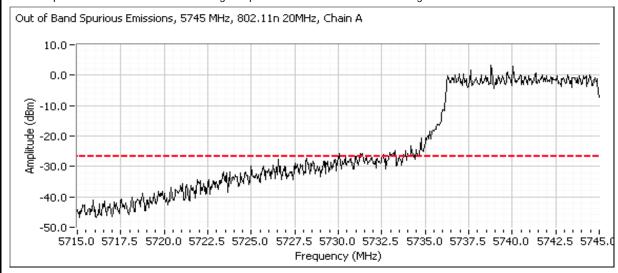


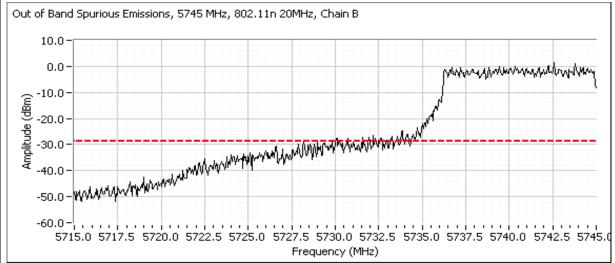


	An 2022 Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
		Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

HT20 Mode, Chains A and B

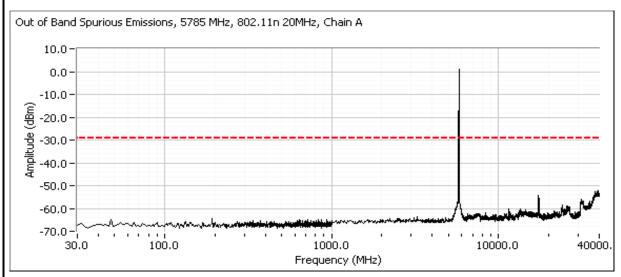
Plots for low channel, power setting(s), A =25.0, B=25.5

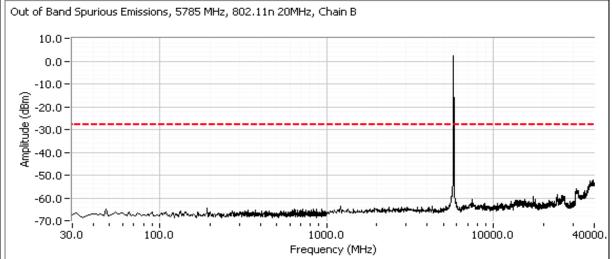




	All 2022 Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
		Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

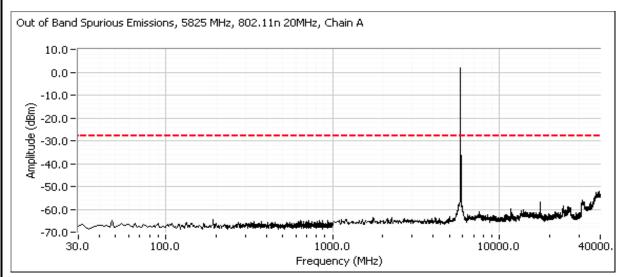
Additional plot from 5715 - 5755 MHz showing compliance with -30dBc at the band edge.

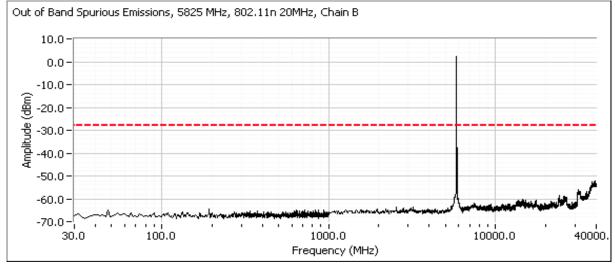




	The state of the s		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
		Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

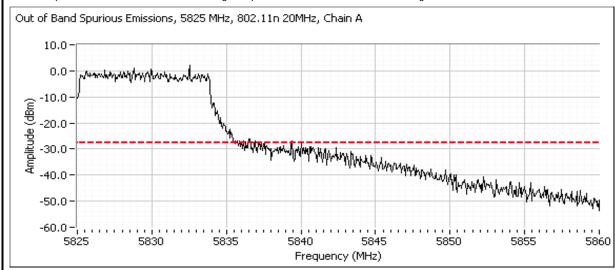
Plots for center channel, power setting(s), A=25.0, B=26.0

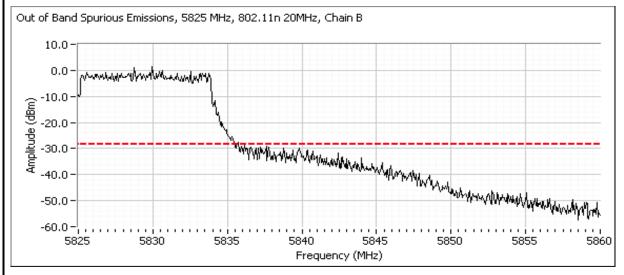




	The state of the s		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
		Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

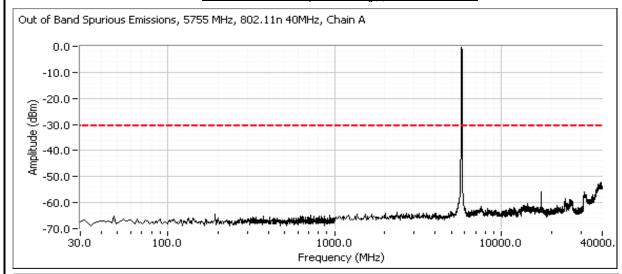
Plots for high channel, power setting(s), A 25.5, B=26.5

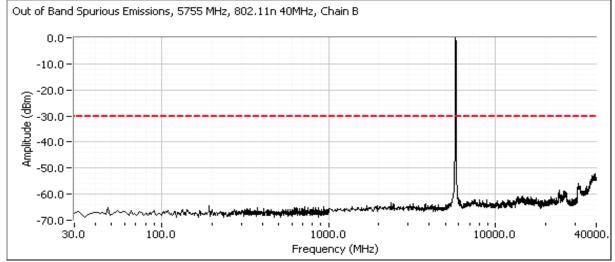




	All Diff. Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
		Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Additional plot from 5820 - 5860 MHz showing compliance with -30dBc at the band edge.

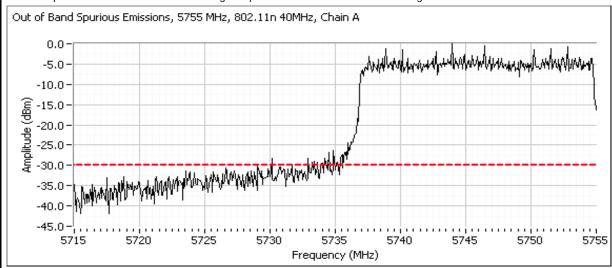


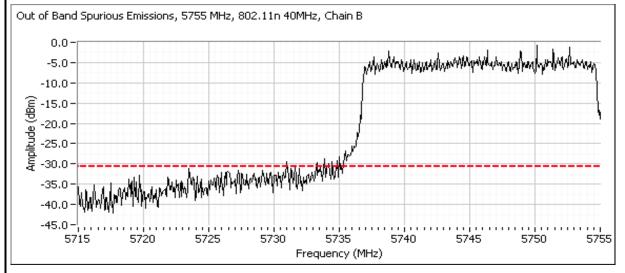


	An 2022 Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
		Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

HT40 Mode, Chains A and B

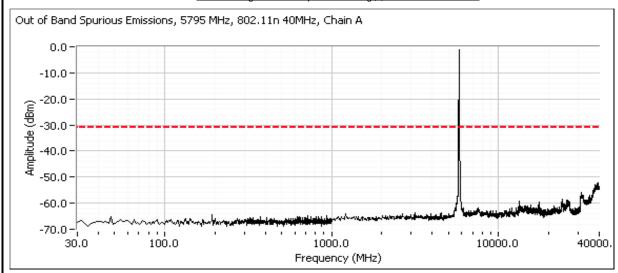
Plots for low channel, power setting(s) ,A =25.0, B = 25.5

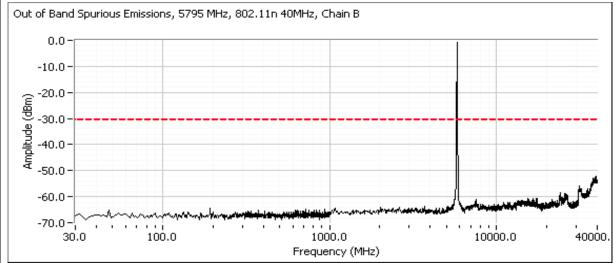




	All Diff. Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
		Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

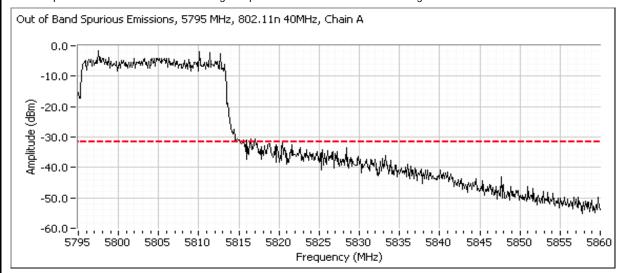
Additional plot from 5715 - 5755 MHz showing compliance with -30dBc at the band edge.

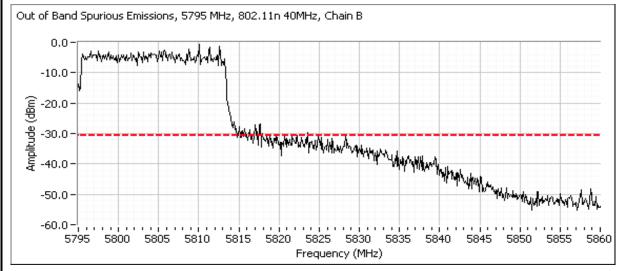




	An Diff. Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
		Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Plots for high channel, power setting(s), A = 25.5, B = 26.5





All DEE Company						
Client:	Intel	Job Number:	J75722			
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370			
	ZXZ WIFT WILL WINIAX WITHE	Account Manager:	-			
Contact:	S. Hackett					
Standard:	RSS 210 / FCC 15.247	Class:	N/A			

Additional plot from 5820 - 5860 MHz showing compliance with -30dBc at the band edge.

	An (ATA) company		
Client:	Intel	Job Number:	J75722
Madal	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
woden.	ZXZ WIFI WIIII WIIVIdX WIIIIIFCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements MIMO and Smart Antenna Systems - Power and PSD

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 9/3/2009 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #3 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 21.2 °C

Rel. Humidity: 43 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power Chain A + B	15.247(b)	Pass	HT20: 14.6 dBm
ı	Output I ower Chair A + B	13.247(b)	газз	HT40: 14.4 dBm
2	Power spectral Density (PSD) Chain	15.247(d)	Pass	HT20: -11.4 dBm/3kHz
Z	A + B	13.247(u)	F 455	HT40:-13.4 dBm/3kHz
-	6dB Bandwidth	15.247(a)		Covered by single-chain
-	99% Bandwidth	RSS GEN	-	measurements at
-	Spurious emissions	15.247(b)		higher power per chain

Modifications Made During Testing

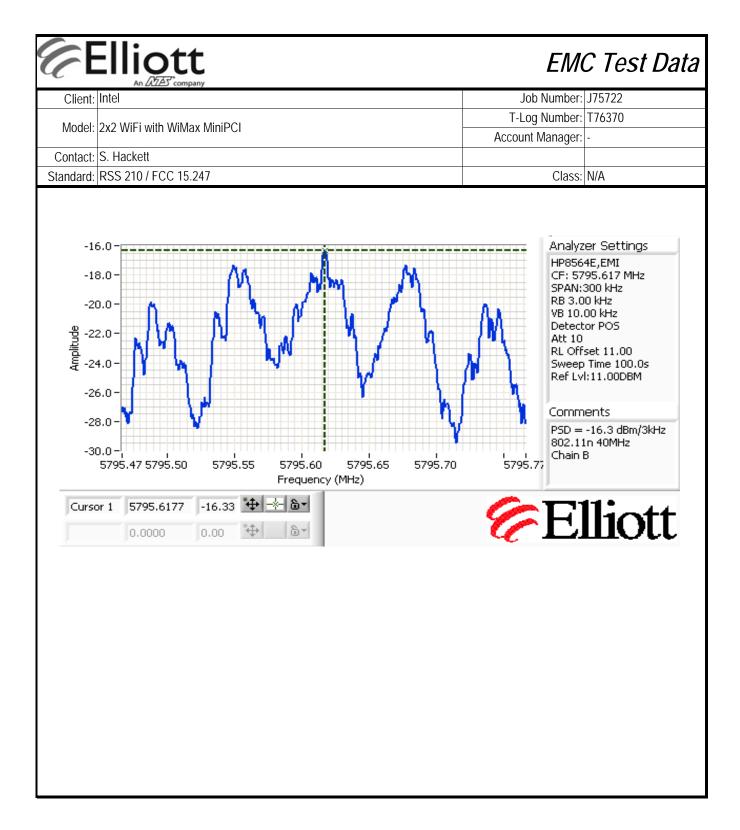
No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

E	Elliott An AZAS company						EMO	C Test Da	ata
Client:	An ATAS company					J	lob Number:	J75722	
						T-L	og Number:	T76370	
Model:	2x2 WiFi with WiMax Mi	niPCI					nt Manager:		
Contact:	S. Hackett								
Standard:	RSS 210 / FCC 15.247						Class:	N/A	
Run #1: 0	utput Power - Chain A +	В							
	insmitted signal on chain		no						
	745 MHz HT20	Chain 1	Chain 2	Chain 3	Chain 4	Total Agracy	o All Chains	Limit	
Power Setti	ng/Average power ^{Note 3}	13.8	13.8			TOTAL ACTOS:	s All Chains	Limit	
Output Pow	ver (dBm) Note 1	11.6	11.5			14.6 dBm	0.029 W	30.0 dBm 1.0	00 W
Antenna Ga	ain (dBi) ^{Note 2}	5.0	5.0				5.0 dBi	Pass	
eirp (dBm) ^r	Note 2	16.6	16.5			19.6 dBm	0.090 W	rass	
		01.1.4	01 1 6	illitarillorillorillo	Milio Africanio na	31	1	T	
	785 MHz HT20	Chain 1	Chain 2	Chain 3	Chain 4	Total Across	s All Chains	Limit	
Power Setti	ng/Average power ^{Note 3}	13.7	13.8						
Output Pow	ver (dBm) Note 1	10.7	11.2			14.0 dBm	0.025 W	30.0 dBm 1.0	000 W
Antenna Ga	ain (dBi) Note 2	5.0	5.0			10.0 dD==	5.0 dBi	Pass	
e <mark>irp (dBm) ^r</mark>	NOTE 2	15.7	16.2			19.0 dBm	0.079 W		
5	825 MHz HT20	Chain 1	Chain 2	Chain 3	Chain 4	#			
Power Setting/Average power ^{Note 3}		13.6	13.7	0000000	CONCINT Y	Total Across	s All Chains	Limit	
Output Pow	ver (dBm) Note 1	11.2	11.3			14.3 dBm	0.027 W	30.0 dBm 1.0	000 W
Outbut F0W ∆ntenna Ga	ain (dBi) Note 2	5.0	5.0			1110 000111	5.0 dBi		
eirp (dBm) ^r	Note 2	16.2	16.3			19.3 dBm	0.084 W	Pass	
<u> </u>									
5	755 MHz HT40	Chain 1	Chain 2	Chain 3	Chain 4	1	A II O		
	ng/Average power ^{Note 3}	13.8	13.8			Total Across	s All Chains	Limit	
Output Pow	ver (dBm) Note 1	11.5	11.3			14.4 dBm	0.028 W	30.0 dBm 1.0	000 W
Antenna Ga	ain (dBi) Note 2	5.0	5.0				5.0 dBi		
eirp (dBm) ^r	Note 2	16.5	16.3			19.4 dBm	0.087 W	Pass	
		-							
	795 MHz HT40	Chain 1	Chain 2	Chain 3	Chain 4	Total Acros	s All Chains	Limit	
Power Setti	ng/Average power ^{Note 3}	13.6	13.6						
Output Pow	ver (dBm) Note 1	11.6	11.1			14.4 dBm	0.027 W	30.0 dBm 1.0	00 W
Antenna Ga	ain (dRi) ^{Note 2}	5.0	5.0			10 1 17	5.0 dBi	Pass	
eirp (dBm) ¹	NULE Z	16.6	16.1			19.4 dBm	0.086 W		
	Output power measured	using a spec	ctrum analvz	zer (see plots	below):				
	RBW=1MHz, VB=3 MHz	0 1	,			d signal was o	continuous) a	and power integrat	tion
	over >=80 MHz for n40 i	•	•			•			
Note 1:				5	•				
Note 1:	used.								
Note 1: Note 2:	used. Antenna gain in dBi								

All DEE Company						
Client:	Intel	Job Number:	J75722			
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370			
	ZXZ WIFT WILL WINIAX WITHE	Account Manager:	-			
Contact:	S. Hackett					
Standard:	RSS 210 / FCC 15.247	Class:	N/A			


Run #2: Power spectral Density

Power Setting	Frequency (MHz)	Chain 1		(dBm/3kHz) Note 1	Total	Limit dBm/3kHz	Result
Setting		CHAIH	CHAIHZ	CHAMO (CHAM) A	TUlai	UDIII/3KHZ	
23.5/24.0	5745 HT20	-14.7	-14.8		-11.7	8.0	Pass
23.5/24.5	5785 HT20	-15.2	-14.5		-11.8	8.0	Pass
24.0/25.0	5825 HT20	-14.0	-14.8		-11.4	8.0	Pass
23.5/24.0	5755 HT40	-16.5	-16.5		-13.5	8.0	Pass
24.0/24.5	5795 HT40	-16.5	-16.3		-13.4	8.0	Pass

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

	An ZAZZES company		
Client:	Intel	Job Number:	J75722
Madali	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
woden.	ZXZ WIFI WILLI WIIVIdX WIILIFCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 8/25, 26/2009 Config. Used: 1

Test Engineer: Rafael / Suhaila Config Change: None

Test Location: FT Chamber #4 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 22.4 °C

Rel. Humidity: 41 %

Summary of Results

Sample #2 MAC Address: 00150059F23C; CRTU Tool Version 5.199.36.999, Driver Version 13.0.0.91

Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin	
	802.11n20	#157	16.5dBm	A: 16.7 dBm			39.6dBµV/m @	
	A+B	5785 MHz	per chain	B: 16.7 dBm			11569.9MHz (-14.4dB)	
1	802.11a	.11a #157 16.5 dBm 16.7 dBm			41.3dBµV/m @			
(Determine	Chain A	5785 MHz	10.5 UBIII	Radiat	I Radiated Emissions I	1 FCC 15	FCC 15.209 / 15.247	11570.0MHz (-12.7dB)
worst case	802.11a	#157	16.5 dBm 16.6 d	16 6 dRm			1 00 13.2077 13.247	52.4dBµV/m @
mode)	Chain B	5785 MHz		TO.O UDITI			3000.1MHz (-21.6dB)	
	802.11n40	#159	16.5dBm	A: 16.6 dBm			40.0dBµV/m @	
	A+B	5795 MHz	per chain	B: 16.7 dBm			11593.2MHz (-14.0dB)	
	802.11n20	#149	16.5 dBm	16.7	Radiated Emissions,	FCC 15.209 / 15.247	38.3dBµV/m @	
2	A+B or	5745 MHz	10.5 UBIII	10.7	1 - 40 GHz	1 CC 13.2097 13.247	11490.0MHz (-15.7dB)	
Z	802.11a A	#165	16.5 dBm	16.8	Radiated Emissions,	FCC 15.209 / 15.247	43.4dBµV/m @	
	or B	5825 MHz	10.5 UDIII	10.0	1 - 40 GHz	1 00 13.207 / 13.247	11650MHz (-10.6dB)	

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

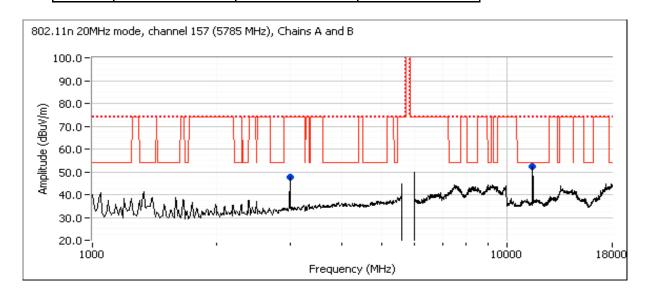
No deviations were made from the requirements of the standard.

В

	An ZAZES company		
Client:	Intel	Job Number:	J75722
Madal	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
Model.	ZXZ WIFT WILLT WINIDA WITHE	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

28.0

Run #1, Radiated Spurious Emissions, 30 - 40,000 MHz. Operation in the 5725-5850 MHz Band


Preliminary tests on center channel in the 5725-5850 MHz band to determine the worst case mode.

Run #1a: 802.11n 20MHz mode, channel 157 (5785 MHz), Chains A and B active at 16.5dBm each chain.

16.5

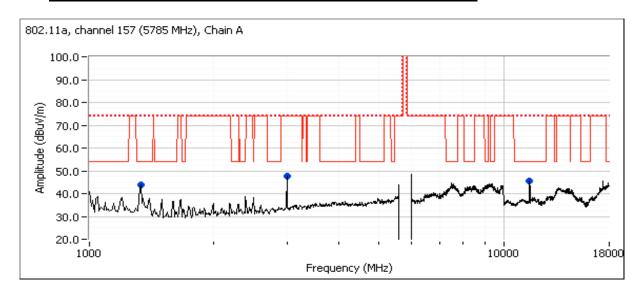
	Chain		Power Settings	
Chain	Chain	Target (dBm)	Measured (dBm)	Software Setting
	٨	16.5	16.7	27.0

16.7

Spurious Radiated Emissions:

opanious n	purious Rudiated Efficiency								
Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
11569.850	39.6	V	54.0	-14.4	AVG	301	1.4	MHz; VB: 10 Hz	
11570.050	53.6	V	74.0	-20.4	PK	301	1.4	MHz; VB: 1 MHz	
3000.380	47.5	V	74.0	-26.5	AVG	191	1.0	MHz; VB: 10 Hz	
3000.200	51.3	V	74.0	-22.7	PK	191	1.0	MHz; VB: 1 MHz	

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc ... refer to conducted plots.


Note 2: A scan using the measurement antenna within 0.5m of the device indicated no emissions from 18 - 40GHz.

	All Deed Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
	ZXZ WIFI WILLI WIIVIdX WIILIFCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

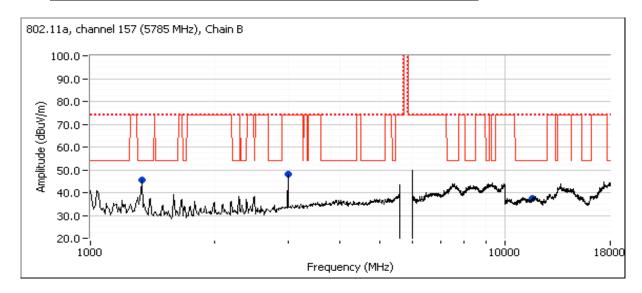
Run #1b: 802.11a, channel 157 (5785 MHz), Chain A at 16.5dBm

Chain	Power Settings					
Chain	Target (dBm)	Measured (dBm)	Software Setting			
Α	16.5	16.7	26.0			

Spurious Radiated Emissions:

opanicas n	purious Rudiated Efficiency							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11570.030	41.3	V	54.0	-12.7	AVG	140	1.1	MHz; VB: 10 Hz
11569.090	53.1	V	74.0	-20.9	PK	140	1.1	MHz; VB: 1 MHz
1328.150	29.2	V	54.0	-24.8	AVG	256	1.3	MHz; VB: 10 Hz
1328.020	50.2	V	74.0	-23.8	PK	256	1.3	MHz; VB: 1 MHz
3000.330	44.9	V	74.0	-29.1	AVG	291	1.0	MHz; VB: 10 Hz
3000.190	49.5	V	74.0	-24.5	PK	291	1.0	MHz; VB: 1 MHz

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc ... refer to conducted plots.


Note 2: A scan using the measurement antenna within 0.5m of the device indicated no emissions from 18 - 40GHz.

	All Deed Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
	ZXZ WIFI WILLI WIIVIdX WIILIFCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

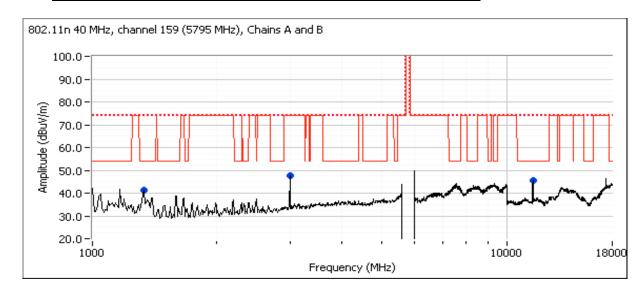
Run #1c: 802.11a, channel 157 (5785 MHz), Chain B at 16.5dBm

Chain	Power Settings					
Cildili	Target (dBm)	Measured (dBm)	Software Setting			
А	16.5	16.6	26.0			

Spurious Radiated Emissions:

	ourrous radiated interests.							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3000.130	52.4	V	74.0	-21.6	PK	189	1.0	MHz; VB: 1 MHz
3000.260	48.8	V	74.0	-25.2	AVG	189	1.0	MHz; VB: 10 Hz
11570.000	30.4	V	54.0	-23.6	AVG	166	1.0	MHz; VB: 10 Hz
11570.830	42.9	V	74.0	-31.1	PK	166	1.0	MHz; VB: 1 MHz
1329.910	30.3	V	54.0	-23.7	AVG	97	1.0	MHz; VB: 10 Hz
1349.910	47.9	V	74.0	-26.1	PK	97	1.0	MHz; VB: 1 MHz

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc ... refer to conducted plots.


Note 2: A scan using the measurement antenna within 0.5m of the device indicated no emissions from 18 - 40GHz.

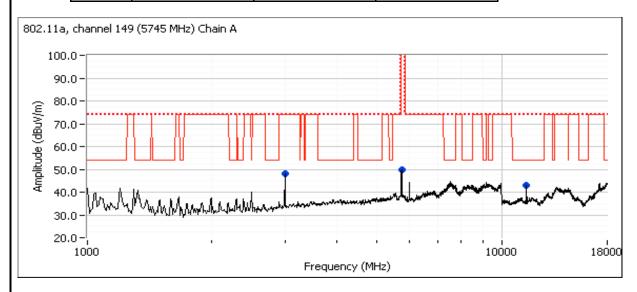
	All Directions Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
	ZXZ WIFT WILL WINIAX WITHE	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Run #1d: 802.11n 40 MHz, channel 159 (5795 MHz), Chains A and B at 16.5dBm each chain

Choin	Power Settings					
Chain	Target (dBm)	Measured (dBm)	Software Setting			
Α	16.5	16.6	27.0			
В	16.5	16.7	27.5			

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11593.220	40.0	V	54.0	-14.0	AVG	131	1.1	MHz; VB: 10 Hz
11590.150	52.9	V	74.0	-21.1	PK	131	1.1	MHz; VB: 1 MHz
3000.260	47.2	V	74.0	-26.8	AVG	188	1.0	MHz; VB: 10 Hz
3000.190	50.8	V	74.0	-23.2	PK	188	1.0	MHz; VB: 1 MHz
1327.350	26.6	V	54.0	-27.4	AVG	311	1.0	MHz; VB: 10 Hz
1330.220	45.5	V	74.0	-28.5	PK	311	1.0	MHz; VB: 1 MHz


Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc refer to	
	Note 1.	conducted plots.

	All Dates Company		
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
	ZXZ WIFT WILL WINIAX WILLIFCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Run #2, Radiated Spurious Emissions, 30 - 40,000 MHz. Operation in the 5725 - 5850 MHz Band Measurements on the bottom and top channels on the worst case mode.

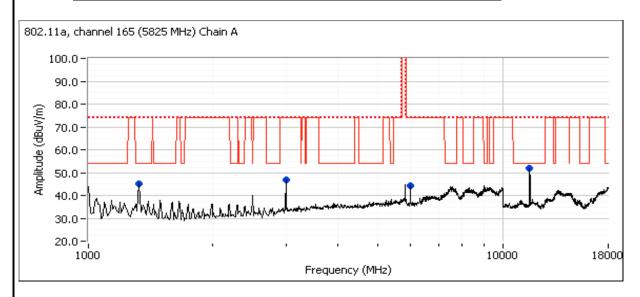
Run #2a: 802.11a mode, channel 149 (5745 MHz), Chain A active at 16.5dBm

Chain	Power Settings						
Chain	Target (dBm)	Measured (dBm)	Software Setting				
Α	16.5	16.7	25.0				

Spurious Radiated Emissions:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	punious radiated zimesione.							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11489.960	38.3	V	54.0	-15.7	AVG	178	1.3	RB 1 MHz; VB: 10 Hz
11486.220	51.3	V	74.0	-22.7	PK	178	1.3	RB 1 MHz; VB: 1 MHz
2999.330	48.2	V	74.0	-25.8	Peak	255	1.0	
5745.000	50.0	V	-	-	Peak	206	1.3	Fundamental

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc ... refer to conducted plots.


Note 2: A scan using the measurement antenna within 0.5m of the device indicated no emissions from 18 - 40GHz.

An ZAZZO Company			
Client:	Intel	Job Number:	J75722
Model:	2x2 WiFi with WiMax MiniPCI	T-Log Number:	T76370
	ZXZ WIFI WIIII WIIVIdX WIIIIIFCI	Account Manager:	-
Contact:	S. Hackett		
Standard:	RSS 210 / FCC 15.247	Class:	N/A

Run #2b: 802.11a mode, channel 165 (5825 MHz), Chain A active at 16.5dBm

Chain	Power Settings				
	Target (dBm)	Measured (dBm)	Software Setting		
Α	16.5	16.8	25.5		

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11650.130	43.4	V	54.0	-10.6	AVG	139	1.0	MHz; VB: 10 Hz
11650.870	55.1	V	74.0	-18.9	PK	139	1.0	MHz; VB: 1 MHz
1329.960	34.9	V	54.0	-19.1	AVG	95	1.0	MHz; VB: 10 Hz
1329.520	58.5	V	74.0	-15.5	PK	95	1.0	MHz; VB: 1 MHz
2998.330	46.6	V	74.0	-27.4	Peak	253	1.9	
5995.830	44.1	٧	74.0	-29.9	Peak	147	1.0	

Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc refer to
	conducted plots.
NI-I-O	

Appendix C Photographs of Test Configurations

Uploaded as a separate exhibit

File: R76779 Appendix Page 3 of 10

Appendix D Proposed FCC ID Label & Label Location

Uploaded as a separate exhibit

File: R76779 Appendix Page 4 of 10

Appendix E Detailed Photographs

Uploaded as a separate exhibit

File: R76779 Appendix Page 5 of 10

Appendix F Operator's Manual

Uploaded as a separate exhibit

File: R76779 Appendix Page 6 of 10

Appendix G Block Diagram

Uploaded as a separate exhibit

File: R76779 Appendix Page 7 of 10

Appendix H Schematic Diagrams

Uploaded as a separate exhibit

File: R76779 Appendix Page 8 of 10

Appendix I Theory of Operation

Uploaded as a separate exhibit

File: R76779 Appendix Page 9 of 10

Appendix J RF Exposure Information

Uploaded as a separate exhibit

File: R76779 Appendix Page 10 of 10