













# RF Exposure Evaluation Declaration

Product Name: WIRELESS CHARGER

Model No. : RB01

FCC ID : GKR-RB01

Applicant : Compal Electronics, Inc

Address : No.581 & 581-1, Ruiguang Rd., Neihu District, Taipei

city, Taiwan

Date of Receipt: Sep. 17, 2018

Test Date Sep. 18, 2018~ Oct. 15, 2018

Issued Date : Dec. 05, 2018

Report No. : 1892106R-RF-US-P20V01

Report Version: V1.1

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF, CNAS, A2LA or any agency of the The test report shall not be reproduced without the written approval of DEKRA Testing and Certification (Suzhou) Co., Ltd.



# **Test Report Certification**

Issued Date : Dec. 05, 2018 Report No. : 1892106R-RF-US-P20V01



Product Name : WIRELESS CHARGER

Applicant : Compal Electronics, Inc

Address : No.581 & 581-1, Ruiguang Rd., Neihu District, Taipei

city, Taiwan

Manufacturer : Suzhou Linepriting Wireless Communication Co.,Ltd
Address : 8F,Building 39,No.18,Dongchang Road,SIP,Suzhou,China

Model No. : RB01

FCC ID : GKR-RB01

Brand Name : LINE PRINTING

EUT Voltage : DC 12V

Applicable Standard : KDB 680106 D01 RF Exposure Wireless Charging Apps v03

Test Result : Complied

Performed Location : DEKRA Testing and Certification (Suzhou) Co., Ltd.

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006,

Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

FCC Delegation Number: CN1199

Documented By :

Kitty Li

(Adm. Specialist: Kitty Li)

Reviewed By :

Frankhe

(Senior Project Manager: Frank He)

Jouk zhang

Approved By :

(Engineering Supervisor: Jack Zhang)



# 1. General Information 1.1. EUT Description

| Product Name       | WIRELESS CHARGER |
|--------------------|------------------|
| Model No.          | RB01             |
| Working Voltage    | DC 12V           |
| Frequency Range    | 110kHz~145KHz    |
| Type of Modulation | ASK              |



# 1.2. Antenna information

| Model No.            | N/A         |          |             |                      |         |           |  |
|----------------------|-------------|----------|-------------|----------------------|---------|-----------|--|
| Antenna manufacturer | N/A         |          |             |                      |         |           |  |
| Antenna Delivery     | $\boxtimes$ | 1*TX+1*R | (+1*RX      |                      |         | 3*TX+3*RX |  |
| Antenna technology   |             | SISO     |             |                      |         |           |  |
|                      |             | MIMO     |             | Basic                |         |           |  |
|                      | _           |          |             | CDD                  |         |           |  |
|                      |             |          |             | Sectorized           |         |           |  |
|                      |             |          |             | Beam-f               | orming  |           |  |
| Antenna Type         |             | External |             | Dipole               |         |           |  |
|                      |             |          |             | Sectorized           |         |           |  |
|                      |             | Internal |             | PIFA                 |         |           |  |
|                      |             |          |             | PCB                  |         |           |  |
|                      |             |          |             | Ceramic Chip Antenna |         |           |  |
|                      |             |          | $\boxtimes$ | Loop antenna         |         |           |  |
|                      |             |          |             | Type F               | antenna |           |  |



### 1.3. Mode of Operation

DEKRA has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

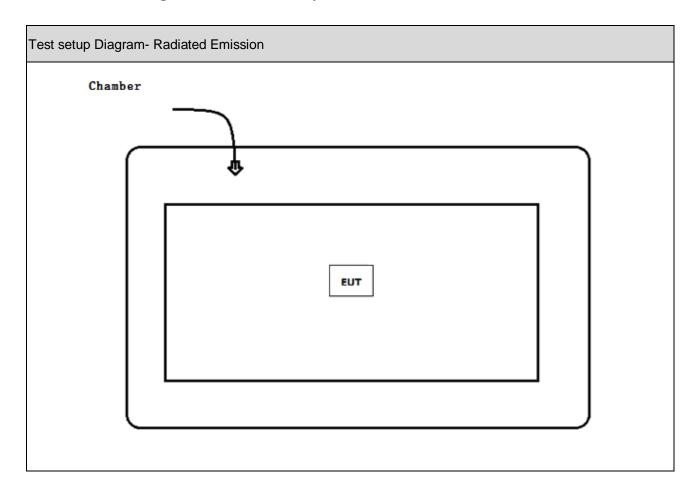
Test Mode

Mode 1: Transmit

#### Note:

- 1. Regards to the frequency band operation: the lowest middle and highest frequency of channel were selected to perform the test, then shown on this report.
- 2. For portable device, radiated spurious emission was verified over X, Y, Z Axis, and shown the worst case on this report.




# 1.4. Tested System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

| Product | Manufacturer | Model No. | Serial No. | Power Cord |
|---------|--------------|-----------|------------|------------|
| 1 N/A   | N/A          | N/A       | N/A        | N/A        |



# 1.5. Configuration of Tested System





# 1.6. EUT Exercise Software

| 1 | Setup the EUT and simulators as shown on above. |
|---|-------------------------------------------------|
| 2 | Turn on the power of equipment.                 |
| 3 | Start to continue transmit.                     |



### 2. Technical Test

### 2.1. Test Environment

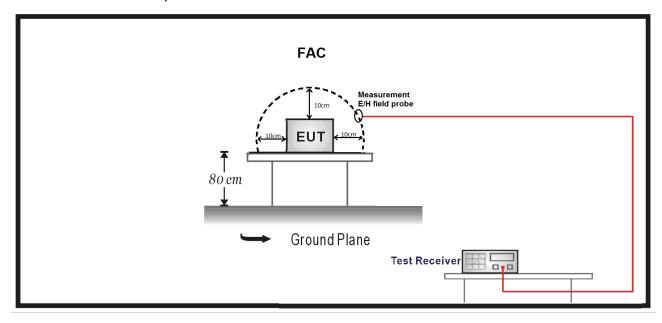
| Items                      | Required (IEC 68-1) | Actual   |
|----------------------------|---------------------|----------|
| Temperature (°C)           | 15-35               | 21       |
| Humidity (%RH)             | 25-75               | 50       |
| Barometric pressure (mbar) | 860-1060            | 950-1000 |



# 3. Electric Field Strength

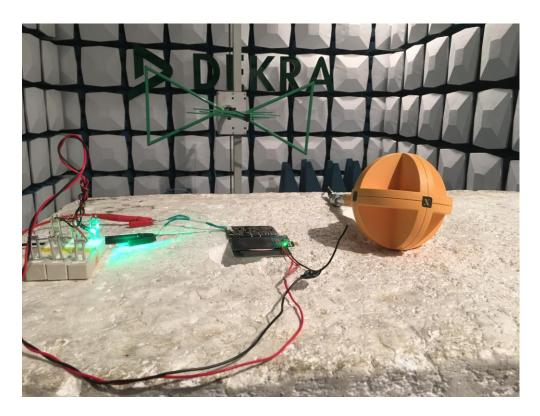
# 3.1. Test Equipment

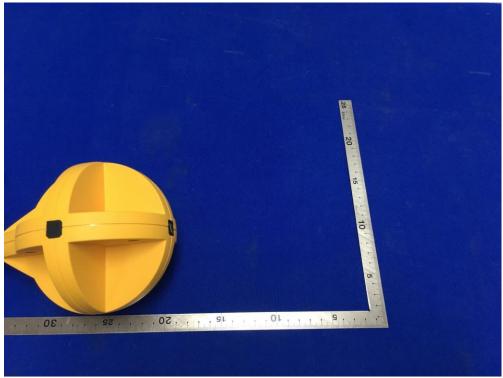
| Electric Field Strength / AC-6 |              |           |            |            |               |
|--------------------------------|--------------|-----------|------------|------------|---------------|
| Instrument                     | Manufacturer | Type No.  | Serial No. | Cal. Date  | Cal. Due Date |
| Spectrum Analyzer              | Agilent      | N9010A    | MY48030494 | 2018.01.07 | 2019.01.06    |
| Loop Antenna                   | R&S          | HFH2-Z2   | 833799/003 | 2018.11.26 | 2019.11.25    |
| MAGNETIC FIELD                 |              |           |            |            |               |
| HiTESTER                       | HIOKI        | FT3470-51 | 1009-B1    | 2018.10.11 | 2019.10.10    |
|                                |              | SUCOFLEX  |            |            |               |
| Coaxial Cable                  | Huber+Suhner | 106       | AC2-C      | 2018.03.02 | 2019.03.01    |
| Temperature/Humidity Meter     | Zhicheng     | ZC1-2     | AC2-TH     | 2018.01.08 | 2019.01.07    |


Note: All equipment are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

Page: 10 of 19




# 3.2. Test Setup


3kHz~10MHz Test Setup:





# 3.3. Setup Photo







#### 3.4. Limit

According to KDB 680106 D01v03 Clause 3.c: For devices designed for typical desktop applications, such a wireless charging pads, RF exposure evaluation should be conducted assuming a user separation distance of 15 cm. E and H field strength measurements or numerical modeling may be used to demonstrate compliance. Measurements should be made from all sides and the top of the primary/client pair, with the 15 cm measured from the center of the probe(s) to the edge of the device. Emissions between 100 kHz to 300 kHz should be assessed versus the limits at 300 kHz in Table 1 of Section 1.1310: 614 V/m and 1.63 A/m.

#### 3.5. Test Procedure

- Set the measurement frequency of the measurement probe to the fundamental frequency of the device under test.
- b. Set the span to encompass the entire emission bandwidth.
- c. Set the RBW greater than the 99% OBW of the fundamental emission.

Note: This step is not required for a broadband measurement probe that integrates the entire frequency range.

- d. Set the detector to Peak and trace display to Max-Hold.
- e. Allow the spectrum to fill; for pulsing devices this may require an increased monitoring period.
- f. Using a marker, set it to the maximum level of the spectral envelope.
- g. Repeat steps (b) to (f) while scanning a parallel plane at the measurement distance of 10cm on each side of the device to find the peak level.
- h. Repeat steps (b) to (g) for any frequencies where the field value is greater than -20 dBc below the maximum level identified.
- i. If there are multiple frequencies transmitted by the device under test, use equations (2) and (3) to determine compliance.

Note: When scanning around the entire device, the location found to be the maximum for the E- or H-field may not be the same location as the opposite field.

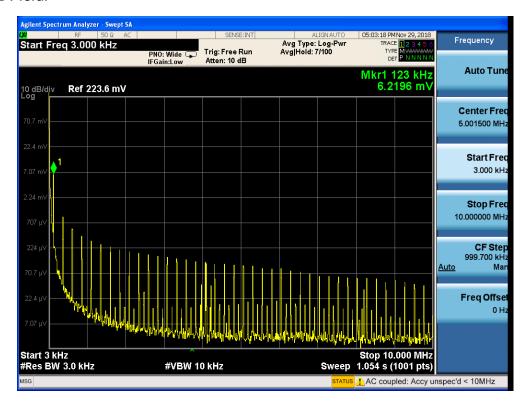


# 3.6. Uncertainty

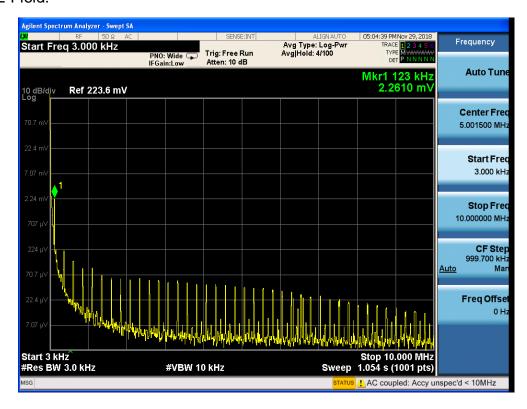
The measurement uncertainty is defined as  $\pm$  3.80 dB

Page: 14 of 19



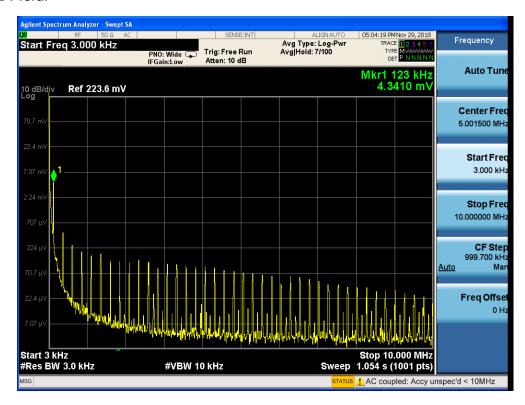

### 3.7. Test Result

| Axial | Maximum<br>Freq.<br>(kHz) | Maximum<br>Level<br>(mV/m) | Limit<br>(V/m) | Result |
|-------|---------------------------|----------------------------|----------------|--------|
| Х     | 110~145                   | 6.2196                     | 307            | Pass   |
| Υ     | 110~145                   | 2.2610                     | 307            | Pass   |
| Z     | 110~145                   | 4.3410                     | 307            | Pass   |
| Axial | Maximum<br>Freq.<br>(kHz) | Maximum<br>Level<br>(μA/m) | Limit<br>(A/m) | Result |
| Х     | 110~145                   | 133.58                     | 0.815          | Pass   |
|       |                           |                            |                | 1      |
| Υ     | 110~145                   | 85.113                     | 0.815          | Pass   |

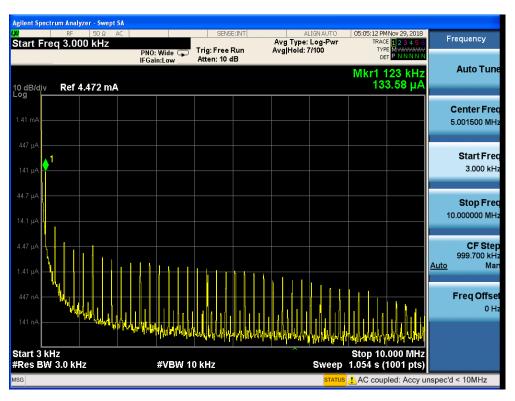

Page: 15 of 19



### X Axial-E Field:

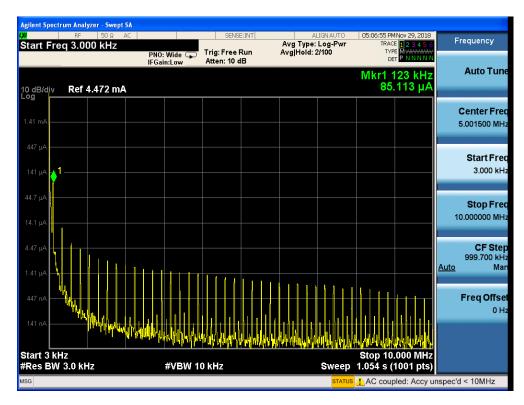



### Y Axial-E Field:

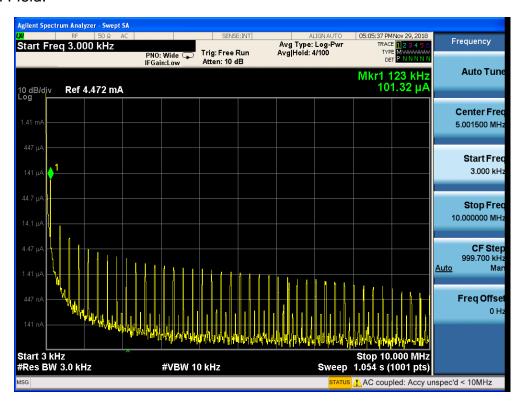





### Z Axial-E Field:




### X Axial-H Field:






#### Axial-H Field:



### Y Axial-H Field:





# 4. RF Exposure Evaluation

| WPT         | Device requirement                                                                           |
|-------------|----------------------------------------------------------------------------------------------|
| $\boxtimes$ | Wireless power transfer frequency is below 1 MHz;                                            |
| $\boxtimes$ | Output power from each primary coil is less than or equal to 15 watts;                       |
| $\boxtimes$ | The transfer system includes only single primary and secondary coils. This includes charging |
|             | systems that may have multiple primary coils and clients that are able to detect and allow   |
|             | coupling only between individual pairs of coils.                                             |
| $\boxtimes$ | Client device is placed directly in contact with the transmitter;                            |
| $\boxtimes$ | Mobile exposure conditions only (portable exposure conditions are not covered by this        |
|             | exclusion).                                                                                  |
| $\boxtimes$ | The aggregate H-field strengths at 15 cm surrounding the device and 20 cm above the top      |
|             | surface from all simultaneous transmitting coils are demonstrated to be less than 50% of the |
|             | MPE limit.                                                                                   |

| Note: The WPT device can maintain all the six conditions above, so the RF exposure can be exempted. |  |
|-----------------------------------------------------------------------------------------------------|--|
| The End                                                                                             |  |