

Telephone: 859-226-1000 Facsimile: 859-226-1040 www.intertek-etlsemko.com

TEST REPORT

Report Number: 102886547LEX-003

Project Number: G102886547

Report Issue Date: 7/24/2017

Product Name: XT6372R

Standards: Title 47 CFR Part 15 Subpart C

RSS-247 Issue 2

Radios Under Test: BTLE

Tested by: Intertek Testing Services NA, Inc. 731 Enterprise Drive Lexington, KY 40510 Client: Xirgo Technologies 188 Camino Ruiz Camarillo, CA 93012-6700

Report prepared by

Buen.

Brian Daffin, Engineer Report reviewed by

Bryan Taylor, Team Leader

Intertek

Report Number: 102886547LEX-003 Issued: 7/24/2017

TABLE OF CONTENTS

1	Introduction and Conclusion	3
2	Test Summary	3
3	Description of Equipment Under Test	4
4	Peak Output Power	6
5	6dB Bandwidth	8
6	Power Spectral Density	12
7	Conducted Spurious Emissions	15
8	Radiated Spurious Emissions (Transmitter)	17
9	AC Powerline Conducted Emissions	22
10	Antenna Requirement per FCC Part 15.203	25
11	Measurement Uncertainty	26
12	Revision History	27

1 Introduction and Conclusion

The tests indicated in section 2 were performed on the product constructed as described in section 3. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test method, a list of the actual test equipment used, documentation photos, results and raw data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested complied with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

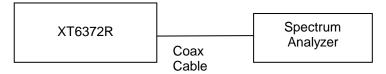
The INTERTEK-Lexington is located at 731 Enterprise Drive, Lexington Kentucky, 40510. The radiated emission test site is a 10-meter semi-anechoic chamber. The chamber meets the characteristics of CISPR 16-1 and ANSI C63.4. For measurements, a remotely controlled flush-mount metal-top turntable is used to rotate the EUT a full 360 degrees. A remote controlled non-conductive antenna mast is used to scan the antenna height from one to four meters. The test site is listed with the FCC under registration number 485103. The test site is listed with Industry Canada under site number IC 2042M-1.

2 Test Summary

Page	Test full name	FCC Reference	IC Reference	Result
6	Peak Output Power	§ 15.247(b)(1)	RSS-247 5.4(b)	Pass
8	6dB Bandwidth	§ 15.247(a)(1)	RSS-247 5.1(a)	Pass
12	Power Spectral Density	§ 15.247(d)	RSS-247 5.5	Pass
15	Conducted Spurious Emissions	§ 15.247(d)	RSS-247 5.5	Pass
17	Radiated Spurious Emissions (Transmitter)	§ 15.247(d), § 15.209, and § 15.205	RSS-247 5.5	Pass
22	AC Powerline Conducted Emissions	§ 15.107, § 15.207	RSS-Gen (7.2.4)	Pass
25	Antenna Requirement per FCC Part 15.203	§ 15.203	RSS-Gen (7.1.2)	Pass

3 Description of Equipment Under Test

Equ	Equipment Under Test				
Manufacturer	Xirgo Technologies				
Model Number	XT6372R				
Serial Number	1				
Receive Date	2/21/2017				
Test Start Date	2/21/2017				
Test End Date	2/31/2017				
Device Received Condition	Good				
Test Sample Type	Production				
Frequency Band	2402 – 2480MHz				
Mode(s) of Operation	Bluetooth Low Energy				
Modulation Type	FHSS				
Transmission Control	Test Commands				
Maximum Output Power	10.643dBm				
Test Channels	0, 19, 39				
Antenna Type (15.203)	Internal				
Operating Voltage	12VDC				


Description of Equipment Under Test
The XT6372R is a vehicle GPS/Cellular tracking device with Bluetooth.

Operating modes of the EUT:

- 70	Taming interaction and a control and a contr				
No.	Descriptions of EUT Exercising				
1	Transmitting BT Signal on low mid or high channels				
2	Receive / idle mode				

3.1 System setup including cable interconnection details, support equipment and simplified block diagram

3.2 EUT Block Diagram:

Conducted Output Measurements

Radiated Measurements

3.3 Cables:

Cables							
Description	Langth Chialding			Connection			
Description	Length	Shielding	Ferrites	From	То		
DC Power Cable	3ft	None	None	DC Power Supply	Test Sample		

3.4 Support Equipment:

No support equipment was used during this evaluation.

4 Peak Output Power

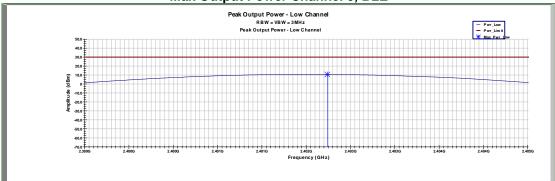
4.1 Test Limits

§ 15.247(b): The maximum peak conducted output power of the intentional radiator shall not exceed the following:

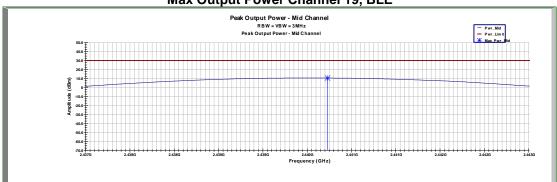
(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.

4.2 Test Procedure

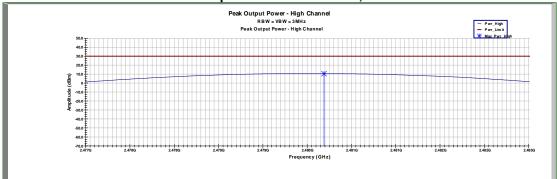
ANSI C63.10: 2013 and FCC Public Notice DA 00-705 Released March 30, 2000: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. The peak output power was measured using the marker to peak function of the spectrum analyzer.


4.3 Test Equipment Used:

Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
EMI Test Receiver	10887490.26	Rohde&Schwarz	ESI26	9/20/2016	9/20/2017
COND3	6026			11/17/2016	11/17/2017


4.4 Results:

Modulation	Channel	Frequency	Output Power	Limit	Result
		(MHz)	(dBm)	(dBm)	
BLE	0	2402	10.643	30	Compliant
	19	2441	10.511	30	Compliant
	39	2480	10.535	30	Compliant



Max Output Power Channel 19, BLE

Max Output Power Channel 39, BLE

5 6dB Bandwidth

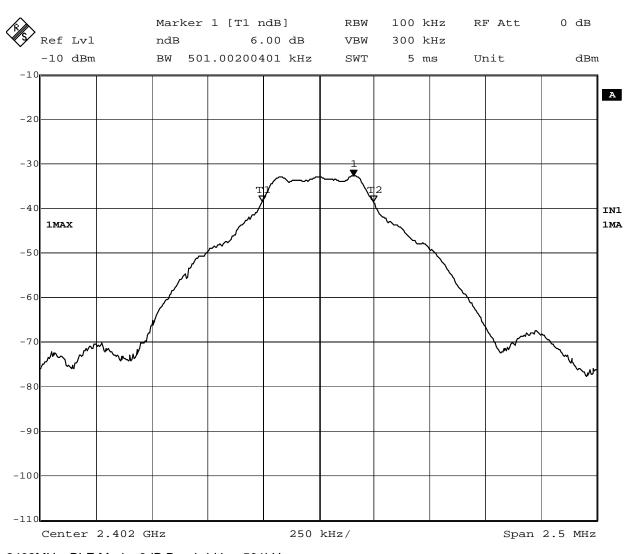
5.1 Test Limits

§ 15.247(a): Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(2) Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

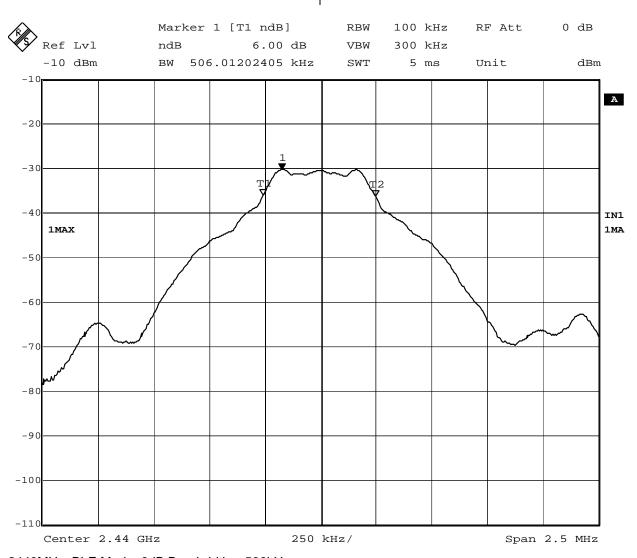
5.2 Test Procedure

ANSI C63.10: 2013 and FCC Public Notice DA 00-705 Released March 30, 2000: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

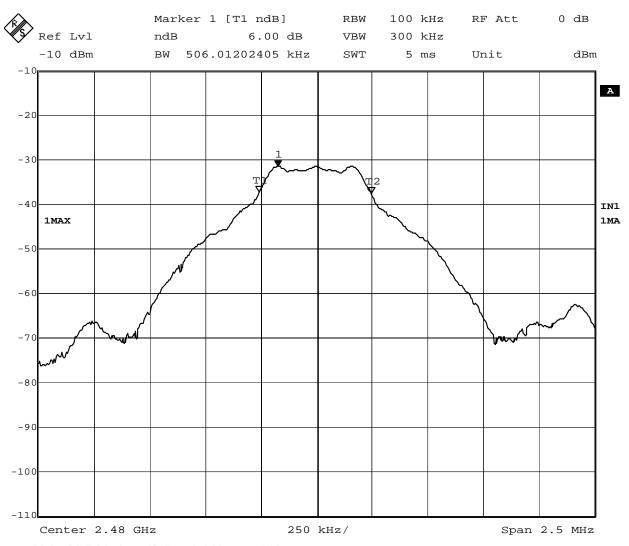

5.3 Test Equipment Used:

Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
EMI Test Receiver	10887490.26	Rohde&Schwarz	ESI26	9/20/2016	9/20/2017
COND3	6026			11/17/2016	11/17/2017

5.4 Results:


The 6dB bandwidth measurements are shown below. All bandwidth measurements were above 500kHz

Channel	Frequency (MHz)	6dB Bandwidth	Result
BLE	2402	501kHz	Pass
BLE	2440	506kHz	Pass
BLE	2480	506kHz	Pass



2402MHz, BLE Mode, 6dB Bandwidth = 501kHz

2440MHz, BLE Mode, 6dB Bandwidth = 506kHz

2480MHz, BLE Mode, 6dB Bandwidth = 506kHz

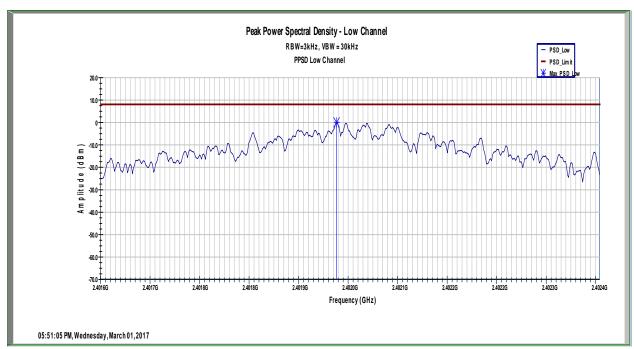
6 Power Spectral Density

6.1 Test Limits

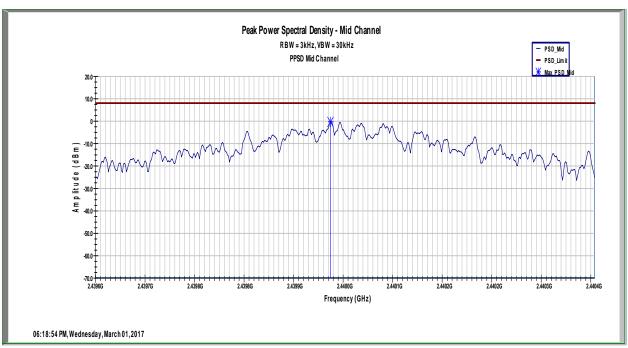
§ 15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be

used to determine the power spectral density.

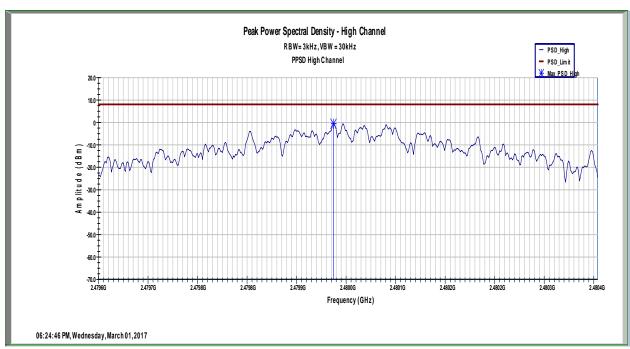
6.2 Test Procedure


ANSI C63.10: 2013 and KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)

6.3 Test Equipment Used:


Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
EMI Test Receiver	10887490.26	Rohde&Schwarz	ESI26	9/20/2016	9/20/2017
COND3	6026			11/17/2016	11/17/2017

6.4 Results:


Mode	Channel Number	Frequency (MHz)	PSD in 3kHz BW (dBm)	Limit (dBm)	Margin (dBm)	Result
BLE	0	2402	0.004	8	-7.996	Pass
BLE	19	2440	-0.329	8	-8.329	Pass
BLE	39	2480	-0.558	8	-8.558	Pass

Power Spectral Density - Channel 0

Power Spectral Density - Channel 19

Power Spectral Density - Channel 39

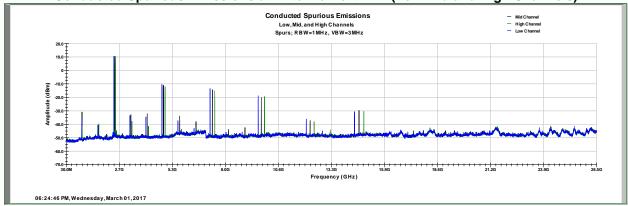
7 Conducted Spurious Emissions

7.1 Test Limits

§ 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

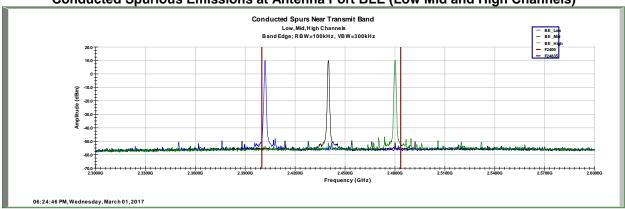
7.2 Test Procedure

ANSI C63.10: 2013 and FCC Public Notice DA 00-705 Released March 30, 2000: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.


7.3 Test Equipment Used:

Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
EMI Test Receiver	10887490.26	Rohde&Schwarz	ESI26	9/20/2016	9/20/2017
COND3	6026			11/17/2016	11/17/2017

7.4 Results:


The following plots show that there are no conducted spurious emissions exceeding the 20dB down criteria. Plots are also presented showing the band edge compliance.

Conducted Spurious Emissions at Antenna Port BLE (Low Mid and High Channels)

Channel	Frequency (GHz)	Level (dBm)	Limit (dBm)	Margin (dBm)	Result
Low	4.804	-10.44	-9.36	1.08	Compliant
	7.206	-13.45	-9.36	4.09	Compliant
Mid	4.880	-11.03	-9.49	1.54	Compliant
	7.320	-14.42	-9.49	4.93	Compliant
High	4.960	-12.11	-9.47	2.65	Compliant
	7.440	-15.23	-9.47	5.77	Compliant

Conducted Spurious Emissions at Antenna Port BLE (Low Mid and High Channels)

8 Radiated Spurious Emissions (Transmitter)

8.1 Test Limits

§ 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Part 15.205(a): Restricted Bands of Operations

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5–5.15
1 0.495-0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735–2.1905	16.80425-16.80475	960-1240	7.25–7.75
4.125–4.128	25.5-25.67	1300-1427	8.025–8.5
4.17725–4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215–6.218	74.8-75.2	1660–1710	10.6–12.7
6.26775–6.26825	108-121.94	1718.8–1722.2	13.25-13.4
6.31175–6.31225	123-138	2200-2300	14.47–14.5
8.291–8.294	149.9-150.05	2310-2390	15.35–16.2
8.362–8.366	156.52475-156.52525	2483.5-2500	17.7–21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01–23.12
8.41425–8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29–12.293	167.72-173.2	3332-3339	31.2–31.8
12.51975–12.52025	240-285	3345.8-3358	36.43–36.5
12.57675–12.57725	322-335.4	3600-4400	(2)
13.36–13.41.			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

Part 15.209(a): Field Strength Limits for Restricted Bands of Operation

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2,400 / F (kHz)	300
0.490 - 1.705	24,000 / F (kHz)	30
1.705 - 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 – 960	200	3
Above 960	500	3

² Above 38.6

8.2 Test Procedure

ANSI C63.10: 2013 and FCC Public Notice DA 00-705 Released March 30, 2000: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

8.3 Example of Field Strength Calculation Method:

The measured field strength was calculated by summing the readings taken from the spectrum analyzer with the appropriate correction factors associated with the antenna losses and cable losses. The calculation formula and sample calculations are listed below:

Formula:

FS = RA + AF + CF

 $FS = Field Strength in dB\mu V/m$

 $RA = Receiver Amplitude in dB\mu V$

AF = Antenna Factor in dB

CF = Cable Attenuation Factor in dB (Including preamplifier and filter attenuation)

Example Calculation:

 $RA = 19.48 dB\mu V$

 $AF = 18.52 \, dB$

CF = 0.78 dB

 $FS = 19.48 + 18.52 + 0.78 = 38.78 dB\mu V/m$

Level in $\mu V/m = Common Antilogarithm [(38.78 dB<math>\mu V/m)/20] = 86.89 \mu V/m$

8.4 Test Equipment Used:

8.4 Test Equipment Usea:											
Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due						
EMI Test Receiver	1302.6005.40	Rohde&Schwarz	ESU40	9/26/2016	9/26/2017						
Preamplifier	122005	Rohde&Schwarz	TS-PR18	11/17/2016	11/17/2017						
Preamplifier	100050	Rohde&Schwarz	TS-PR26	11/17/2016	11/17/2017						
Horn Antenna (18 – 40GHz)	00117798	ETS	3116c	6/6/2016	6/6/2017						
Horn Antenna	00156319	ETS	3117	6/3/2016	6/3/2017						
Bilog Antenna	2564	Schaffner	CBL6111C	3/23/2016	3/23/2017						
High Pass Filter	1	Wainwright	WHKX12- 2533.85-2710- 1800-40SS	11/17/2016	11/17/2017						
System Controller	121701-1	Sunol Sciences	SC99V	Time of Use	Time of Use						
EMC Software	Version 9.15.02	Rohde&Schwarz	EMC32	Time of Use	Time of Use						
3m Cable Antenna→Preamp	3074			11/17/2016	11/17/2017						
3m Cable Preamp→Chamb er	2588			11/17/2016	11/17/2017						
3m Cable Chamber→Contro I Room	2593			11/17/2016	11/17/2017						
3m Cable Control Room→Receiver	2592			11/17/2016	11/17/2017						
10m Cable Antenna→Preamp	3339			11/17/2016	11/17/2017						
10m Cable Preamp→Chamb er	3172			11/17/2016	11/17/2017						
10m Cable Chamber→Contro I Room	2590			11/17/2016	11/17/2017						
10m Cable Control Room→Receiver	2589			11/17/2016	11/17/2017						

8.5 Results:

All spurious emissions were attenuated by at least 20dB below the level of the fundamental as required by Part 15.247(d). Additionally, all emissions falling within restricted bands of operation and at the band edges were found to be below the limit specified in Part 15.209(a). The spurious emissions listed in the following table are the worst case emissions. Plots are also presented showing compliance with the restricted bands immediately adjacent to the transmit band.

Emissions were investigated with the test sample positioned in 3 orthogonal axis and the worst case reported.

Bluetooth, Channel 2402, BLE

Average

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
4804.000000	38.20	54.00	15.80	1000.000	341.0	Н	131.0	7.5
7206.000000	48.99	54.00	5.01	1000.000	366.0	٧	274.0	10.4
9607.600000	38.60	54.00	15.40	1000.000	206.0	Н	202.0	13.6
12009.400000	37.65	54.00	16.35	1000.000	200.0	Н	293.0	17.5
14411.400000	42.45	54.00	11.55	1000.000	311.0	٧	131.0	17.0

Max Peak

Frequency	MaxPeak	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB)
4804.000000	45.07	74.00	28.93	1000.000	341.0	Н	131.0	7.5
7206.000000	53.58	74.00	20.42	1000.000	366.0	٧	274.0	10.4
9607.600000	49.61	74.00	24.39	1000.000	206.0	Н	202.0	13.6
12009.400000	50.73	74.00	23.27	1000.000	200.0	Н	293.0	17.5
14411.400000	53.11	74.00	20.89	1000.000	311.0	٧	131.0	17.0

Bluetooth, Channel 2402, BLE, Band Edge

Average

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
2390.000000	41.70	54.00	12.30	1000	294	٧	327	37.7

Max Peak

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
2390.000000	52.09	74.00	21.91	1000	294	٧	327	37.7

Bluetooth, Channel 2440, BLE

Average

Frequency	Average	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB)
4880.000000	47.37	54.00	6.63	1000.000	308.0	Н	278.0	7.4
7320.000000	47.40	54.00	6.60	1000.000	200.0	٧	317.0	10.5
9759.600000	39.07	54.00	14.93	1000.000	344.0	Н	306.0	13.7
12200.400000	50.61	54.00	3.39	1000.000	100.0	٧	276.0	17.2
19519.430000	53.58	54.00	0.42	1000.000	100.0	Н	0.0	-27.9

Max Peak

Frequency	MaxPeak	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB)
4880.000000	50.93	74.00	23.07	1000.000	308.0	Н	278.0	7.4
7320.000000	52.76	74.00	21.24	1000.000	200.0	٧	317.0	10.5
9759.600000	49.92	74.00	24.08	1000.000	344.0	Н	306.0	13.7
12200.400000	58.58	74.00	15.42	1000.000	100.0	٧	276.0	17.2
19519.430000	64.49	74.00	9.51	1000.000	100.0	Н	0.0	-27.9

Bluetooth, Channel 2480, BLE

Average

, o. a.g.								
Frequency	Average	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB)
4960.000000	53.45	54.00	0.55	1000.000	309.0	Н	130.0	7.2
7440.000000	47.55	54.00	6.45	1000.000	410.0	Н	134.0	10.9
9920.400000	43.51	54.00	10.49	1000.000	325.0	Н	310.0	14.0
12399.400000	40.70	54.00	13.30	1000.000	200.0	٧	280.0	16.9
14879.200000	41.88	54.00	12.12	1000.000	211.0	٧	261.0	18.2
19840.990000	53.89	54.00	0.11	1000.000	100.0	Н	0.0	-27.9

Max Peak

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
4960.000000	55.97	74.00	18.03	1000.000	309.0	Н	130.0	7.2
7440.000000	52.83	74.00	21.17	1000.000	410.0	Н	134.0	10.9
9920.400000	53.00	74.00	21.00	1000.000	325.0	Н	310.0	14.0
12399.400000	51.67	74.00	22.33	1000.000	200.0	٧	280.0	16.9
14879.200000	53.05	74.00	20.95	1000.000	211.0	٧	261.0	18.2
19840.990000	66.02	74.00	7.98	1000.000	100.0	Н	0.0	-27.9

Bluetooth, Channel 2480, BLE, Band Edge

Average

,								
Frequency	Average	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB)
2483.500000	42.95	54.00	11.05	1000	410	Н	274	37.8

Max Peak

Freq	uency M	laxPeak	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(M	lHz) (d	dΒμV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB)
248	33.500000	53.50	74.00	20.50	1000	410	H	274	37.8

9 AC Powerline Conducted Emissions

9.1 Test Limits

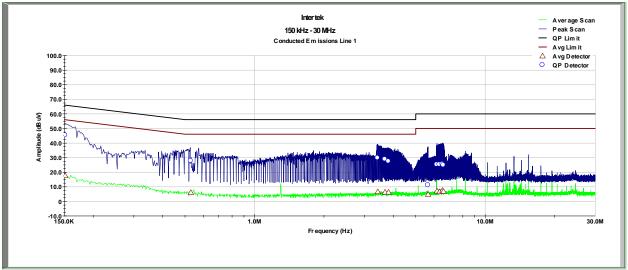
§ 15.107(e): Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Francisco of amicaian	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15–0.5	66 to 56*	56 to 46*		
0.5–5	56	46		
5–30	60	50		

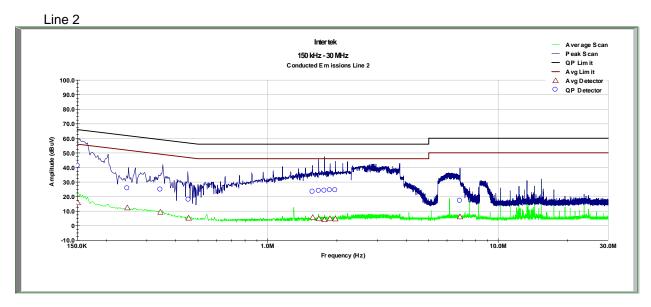
^{*}Decreases with the logarithm of the frequency.

9.2 Test Procedure

ANSI C63.4: 2014


9.3 Test Equipment Used:

Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
EMI Test Receiver	10887490.26	Rohde&Schwarz	ESI26	9/20/2016	9/20/2017
LISN	3333	Teseq	NNB52	6/3/2016	6/3/2017
COND2	5025			11/17/2016	11/17/2017


9.4

9.5 Results:

Line 1

Frequency (MHz)	Quasi-Peak (dBuV)	Quasi-Peak Limit (dBuV)	Quasi-Peak Margin (dB)	Average (dBuV)	Average Limit (dBuV)	Average Margin (dB)
/	, ,		• ,	, ,		• ,
151.20 KHz	45.277	65.966	20.689	17.774	55.966	38.192
530.20 KHz	27.701	56.000	28.299	6.117	46.000	39.883
3.425 MHz	29.663	56.000	26.337	6.620	46.000	39.380
3.685 MHz	28.813	56.000	27.187	6.279	46.000	39.721
3.815 MHz	27.318	56.000	28.682	6.342	46.000	39.658
5.658 MHz	10.982	60.000	49.018	4.822	50.000	45.178
6.183 MHz	25.137	60.000	34.863	7.102	50.000	42.898
6.342 MHz	25.219	60.000	34.781	6.604	50.000	43.396
6.534 MHz	25.536	60.000	34.464	7.475	50.000	42.525
6.601 MHz	24.809	60.000	35.191	6.831	50.000	43.169

Frequency	Quasi-Peak	Quasi-Peak	Quasi-Peak	Average	Average	Average
(MHz)	(dBuV)	Limit (dBuV)	Margin (dB)	(dBuV)	Limit (dBuV)	Margin (dB)
150.60 KHz	41.120	65.983	24.862	15.778	55.983	40.205
247.10 KHz	25.687	63.226	37.539	12.240	53.226	40.986
343.70 KHz	24.825	60.466	35.641	9.262	50.466	41.204
455.50 KHz	17.855	57.271	39.417	5.240	47.271	42.031
1.572 MHz	23.256	56.000	32.744	5.616	46.000	40.384
1.671 MHz	23.832	56.000	32.168	4.747	46.000	41.253
1.767 MHz	24.003	56.000	31.997	4.079	46.000	41.921
1.867 MHz	24.381	56.000	31.619	4.823	46.000	41.177
1.969 MHz	24.296	56.000	31.704	4.686	46.000	41.314
6.834 MHz	17.020	60.000	42.980	6.139	50.000	43.861

10 Antenna Requirement per FCC Part 15.203

10.1 Test Limits

§ 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

10.2 Results:

The sample tested met the antenna requirement. The antenna was a PCB circuit board that was permanently soldered to the main board.

Intertek

Report Number: 102886547LEX-003 Issued: 7/24/2017

11 Measurement Uncertainty

The measured value related to the corresponding limit will be used to decide whether the equipment meets the requirements.

The measurement uncertainty figures were calculated and correspond to a coverage factor of k = 2, providing a confidence level of respectively 95.45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian).

Measurement uncertainty Table

Parameter	Uncertainty	Notes
Radiated emissions, 30 to 1000 MHz	<u>+</u> 3.9dB	
Radiated emissions, 1 to 18 GHz	<u>+</u> 4.2dB	
Radiated emissions, 18 to 40 GHz	<u>+</u> 4.3dB	
Power Port Conducted emissions, 150kHz to 30	<u>+</u> 2.8dB	
MHz		

Intertek

Report Number: 102886547LEX-003 Issued: 7/24/2017

12 Revision History

Revision Level	Date	Report Number	Notes
0	7/24/2017	102886547LEX-003	Original Issue