

Telephone: 859-226-1000 Facsimile: 859-226-1040 www.intertek-etlsemko.com

TEST REPORT

Report Number: 102048164LEX-002

Project Number: G102048164

Report Issue Date: 4/6/2015

Product Name: XT6360

Standards: Title 47 CFR Part 22 and 24,

RSS-132 Issue 3, RSS-133

Issue 6

Radio Under Test: GSM

Tested by: Intertek Testing Services NA, Inc. 731 Enterprise Drive Lexington, KY 40510 Client: Xirgo Technologies 188 Camino Ruiz Camarillo, CA 93012

Report prepared by

Bryan Taylor, Team Leader

Report reviewed by

Jason Centers, Staff Engineer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Report Number: 102048164LEX-002 Issued: 4/6/2015

TABLE OF CONTENTS

1	Introduction and Conclusion	3
	Test Summary	
	Description of Equipment Under Test	
	Radiated Output Power	
	Radiated Spurious Emissions (Transmitter)	
	Measurement Uncertainty	
7	Revision History	. 14

1 Introduction and Conclusion

The tests indicated in section 2 were performed on the product constructed as described in section 3. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test method, a list of the actual test equipment used, documentation photos, results and raw data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested complied with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

The INTERTEK-Lexington is located at 731 Enterprise Drive, Lexington Kentucky, 40510. The radiated emission test site is a 10-meter semi-anechoic chamber. The chamber meets the characteristics of CISPR 16-1 and ANSI C63.4. For measurements, a remotely controlled flush-mount metal-top turntable is used to rotate the EUT a full 360 degrees. A remote controlled non-conductive antenna mast is used to scan the antenna height from one to four meters. The test site is listed with the FCC under registration number 485103. The test site is listed with Industry Canada under site number IC 2042M-1.

2 Test Summary

Page	Test full name	FCC Reference	IC Reference	Result
6	Radiated Output Power	§ 22.913(a) and § 24.232(c)	RSS-132 (5.4) RSS-133 (6.4)	Pass
7	Radiated Spurious Emissions (Transmitter)	§2.1053, §22.917(a)(b), and §24.238(a)(b)	RSS-132 (5.5), RSS-133 (6.5)	Pass
-	Conducted Output Power	§2.1046 §24.232(d)	RSS-132 (5.4) RSS-133 (6.4)	Note ¹
-	Occupied Bandwidth	§2.1049, §22.917(b)(d), and §24.238(a)	RSS-GEN (4.6.1) RSS-133 (2.3)	Note ¹
-	Conducted Spurious Emissions at Antenna Terminals	§2.1049, §2.1051, §22.917(a)(b), and § 24.238(a)(b)	RSS-132 (5.5), RSS-133 (6.5)	Note ¹
-	Frequency Stability	§2.1055, §22.355, and §24.235	RSS-132 (5.3), RSS-133 (6.3)	Note ¹
-	Receiver Spurious Emissions	§ 15.109	RSS-Gen (7.2.3.2)	Note ¹
-	AC Powerline Conducted Emissions	§ 15.107	RSS-Gen (7.2.2)	Note ¹

1 See module test report exhibit.

EMC Report for Xirgo Technologies on the XT6360

Report Number: 102048164LEX-002 Issued: 4/6/2015

3 Description of Equipment Under Test

Equipment Under Test							
Manufacturer	Xirgo Technologies						
Model Number	XT6360						
Serial Number	1 and 2						
Receive Date	3/30/2015						
Test Start Date	3/30/2015						
Test End Date	3/31/2015						
Device Received Condition	Good						
Test Sample Type	Production						
Frequency Band	824.2MHz – 848.8MHz (GSM850 Band) 826.4MHz – 846.6MHz (UMTS Band V) 1850.2MHz – 1909.8MHz (GSM1900 Band) 1852.4MHz – 1907.6MHz (UMTS Band II)						
Modulation Type	GSM / WCDMA						
Transmission Control	Base Station Simulator						
Maximum Output Power (Conducted)	1.871W, (GSM850 Band) 0.1629W, (UMTS Band V) 0.9772W, (GSM1900 Band) 0.169W, (UMTS Band II)						
Test Channels	128, 192, 251, (GSM850 Band) 4132, 4182, 4233 (UMTS Band V) 512, 661, 810 (GSM1900 Band) 9262, 9400, 9538 (UMTS Band II)						
Antenna Type	Internal						
Antenna Gain	-2dB (850 Bands), 0dBi (1900 Bands)						
Operating Voltage	12Vdc						


Description of Equipment Under Test
The XT6360 is a Vehicle GPS/Cellular Tracking Device with BT

Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	Transmitting a GSM / WCDMA signal
2	Receive / idle mode

3.1 System setup including cable interconnection details, support equipment and simplified block diagram

3.2 EUT Block Diagram:

Block Diagram for Radiated Tests

3.3 Cables:

Cables									
Description	Longth	Chioldina	Ferrites -	Connection					
Description	Length	Shielding		From	То				
DC Power Cable	3ft	None	None	DC Power Supply Test Sampl					

4 Radiated Output Power

4.1 Test Limits

§ 22.913

The effective radiated power (ERP) of transmitters in the Cellular Radiotelephone Service must not exceed the limits in this section.

(a) Maximum ERP. In general, the effective radiated power (ERP) of base transmitters and cellular repeaters must not exceed 500 Watts.

§ 24.232

(c) Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

4.2 Test Procedure

The radiated power was determined using the conducted output power and the antenna gain stated by the manufacturer. Below 1GHz, ERP was calculated by adding the antenna gain in dB to the module conducted output power in dBm. Above 1GHz the EIRP was calculated by adding the antenna gain in dBi to the module conducted output power in dBm

4.3 Results:

TX Band	Freq (MHz)	Ch.	Cond. Power (dBm)	Ant. Gain (dB / dBi)	ERP / EIRP (dBm)
	824.20	Low	32.51	-2.00	30.51
	836.60	Mid	32.59	-2.00	30.59
GSM850	848.80	High	32.72	-2.00	30.72
	1850.20	Low	29.90	0.00	29.90
	1880.00	Mid	29.55	0.00	29.55
GSM1900	1909.80	High	29.34	0.00	29.34
	826.40	Low	21.47	-2.00	19.47
UMTS Band	836.60	Mid	21.68	-2.00	19.68
V	846.60	High	21.88	-2.00	19.88
	1852.40	Low	22.28	0.00	22.28
UMTS Band	1880.00	Mid	22.18	0.00	22.18
П	1907.60	High	21.63	0.00	21.63

5 Radiated Spurious Emissions (Transmitter)

5.1 Test Limits

§ 2.1053

(a) Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, with the measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from halfwave dipole antennas.

§ 22.917

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
- (b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

§ 24.238

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
- (b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

5.2 Test Procedure

The EUT was placed on a non-conductive turntable. The measurement antenna was placed at a distance of 3 meters from the EUT. The EUT was forced to transmit at its maximum output power setting. During the tests, the antenna height and EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.

The frequency range up to tenth harmonic was investigated in order to identify the spurious emission. Once the spurious emissions were identified, the power of the emission was determined using the substitution method described in TIA-603-C. The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and at the spurious emissions frequency.

5.3 Test Equipment Used:

3.5 Test Equipment Oseu.										
Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due					
EMI Test Receiver	1302.6005.40	Rohde&Schwarz	ESU40	9/17/2014	9/17/2015					
Preamplifier	122005	Rohde&Schwarz	TS-PR18	11/26/2014	11/26/2015					
Horn Antenna	00156319	ETS	3117	5/2/2014	5/2/2015					
Horn Antenna	00154521	ETS	3117	10/21/2014	10/21/2015					
Bilog Antenna	2362	ETS	3142B	1/16/2015	1/16/2016					
Bilog Antenna	00051864	ETS	3142C	1/20/2015	1/20/2016					
System Controller	121701-1	Sunol Sciences	SC99V	Time of Use	Time of Use					
High Pass Filter	1	Wainwright	WHKX12- 2533.85-2710- 18000-40SS	Time of Use	Time of Use					
High Pass Filter	25	Wainwright	WHKX12- 1028.5-1100- 1500-40SS	Time of Use	Time of Use					
Base Station Simulator	2522	Rohde&Schwarz	CMU200	9/19/2014	9/19/2015					
Signal Generator	3915	Rohde&Schwarz	SMB100A	9/23/2014	9/23/2015					

5.4 Results:

All radiated spurious emissions were attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB which is equivalent to -13dBm.

Worst Case Spurious Measurements (GSM850)

more executive measurements (comess)									
Radiated Spurious Emissions Measurement									
Test Engineer:	Bryan Taylor								
Test Date: 3/30/2015									
Temp. / Humidity / Pressure:	23.7C/27.4%/98	88.9mBar							
Bandwidth Settings: RBW = 1MHz; VBW = 3MHz									
	Results represent the worst case from 3 orthogonal axis positions. Spurious emissions not reported								

Notes: here were below the measurement noise floor.

			Α	В	С	D	E	F
	Spurious Frequency		Device Reading	Signal Generator	Cable Loss	Tx Antenna	Limit	Radiated Spurious Emission
Band/Channel	(MHz)	Polarity	(dBm)	Level (dBm)	(dB)	Gain (dBd)	(dBm)	Level (dBm)
	1648.4	Н	-54.44	-46.91	3.26	5.64	-13	-44.53
	1648.4	V	-53.81	-45.38	3.26	5.64	-13	-43.00
	2472.6	Н	-50.2	-38.77	4.17	5.87	-13	-37.07
	2472.6	V	-51.84	-38.96	4.17	5.87	-13	-37.26
GSM 850/Channel	3296.8	Н	-62.31	-49.89	4.58	7.32	-13	-47.16
128	3296.8	V	-64.87	-52.06	4.58	7.32	-13	-49.33
	4121	Н	-62.14	-48.47	5.33	8.91	-13	-44.89
	4121	V	-63.05	-49.37	5.33	8.91	-13	-45.79
	4945.2	Н	-72.96	-57.19	5.82	9.90	-13	-53.11
	4945.2	V	-73.45	-57.7	5.82	9.90	-13	-53.62
	1674	Н	-55.93	-47.58	3.30	5.64	-13	-45.24
	1674	V	-54.56	-45.45	3.30	5.64	-13	-43.11
	2511	Н	-52.38	-40.41	3.97	5.65	-13	-38.73
	2511	V	-53.65	-40.08	3.97	5.65	-13	-38.40
GSM 850/Channel	3348	Н	-57.82	-45.21	4.63	7.67	-13	-42.17
192	3348	V	-62.06	-49.04	4.63	7.67	-13	-46.00
	4185	Н	-62.33	-48.54	5.19	8.91	-13	-44.82
	4185	V	-65.94	-52.06	5.19	8.91	-13	-48.34
	5022	Н	-73.59	-58.24	6.19	9.99	-13	-54.44
	5022	V	-72.86	-57.47	6.19	9.99	-13	-53.67
	1697.6	Н	-48.78	-40	3.18	5.64	-13	-37.54
	1697.6	V	-50.43	-40.49	3.18	5.64	-13	-38.03
	2546.4	Н	-52.55	-40.66	4.09	5.65	-13	-39.10
	2546.4	V	-47.25	-34.09	4.09	5.65	-13	-32.53
GSM 850/Channel	3395.2	Н	-57.65	-44.8	4.84	7.67	-13	-41.97
251	3395.2	V	-62.9	-49.52	4.84	7.67	-13	-46.69
	4244	Н	-60.18	-46.04	5.00	9.01	-13	-42.03
	4244	V	-68.17	-53.96	5.00	9.01	-13	-49.95
	5092.8	Н	-73.33	-57.87	6.25	9.99	-13	-54.13
	5092.8	V	-72.89	-57.05	6.25	9.99	-13	-53.31 F=B-C+D

Worst Case Spurious Measurements (UMTS Band V)

	Worst base oparious incasarements (our o Baria V)									
Radiated Spurious Emissions Measurement										
Test Engineer:	Bryan Taylor									
Test Date:										
Temp. / Humidity / Pressure:	22 70/27 49/109	0 0mBar								
Pressure:	23.16/21.4/090									
Bandwidth Settings:	RBW = 1MHz;	VBW = 3MH	łz							
	Results renres	ent the wor	st case from	3 orthogona	axis nosition	s Spurious	emissions	not reported		

Results represent the worst case from 3 orthogonal axis positions. Spurious emissions not reported Notes:

			Α	В	С	D	Е	F
	Spurious		Device	Signal	J	- U		Radiated Spurious
	Frequency		Reading	Generator	Cable Loss	Tx Antenna	Limit	Emission
Band/Channel	(MHz)	Polarity	(dBm)	Level (dBm)	(dB)	Gain (dBd)	(dBm)	Level (dBm)
	1652.8	Н	-52.52	-44.99	3.30	5.64	-13	-42.65
	1652.8	V	-54.18	-45.75	3.30	5.64	-13	-43.41
	2479.2	Н	-63.96	-52.53	4.17	5.87	-13	-50.83
	2479.2	V	-63.33	-50.45	4.17	5.87	-13	-48.75
WCDMA Band V /	3305.6	Н	-71.53	-59.11	4.58	7.67	-13	-56.02
Channel 4132	3305.6	V	-71.68	-58.87	4.58	7.67	-13	-55.78
	4132	Н	-71.99	-58.32	5.22	8.91	-13	-54.63
	4132	V	-72.51	-58.83	5.22	8.91	-13	-55.14
	4958.4	Н	-73.14	-57.37	5.82	9.90	-13	-53.29
	4958.4	V	-72.56	-56.81	5.82	9.90	-13	-52.73
	1672.8	Н	-54.21	-45.86	3.30	5.64	-13	-43.52
	1672.8	V	-57.48	-48.37	3.30	5.64	-13	-46.03
	2509.2	Н	-62.22	-50.25	3.97	5.65	-13	-48.57
	2509.2	V	-62.85	-49.28	3.97	5.65	-13	-47.60
WCDMA Band V /	3345.6	Н	-71.64	-59.03	4.63	7.67	-13	-55.99
Channel 4182	3345.6	V	-70.72	-57.7	4.63	7.67	-13	-54.66
	4182	Н	-71.84	-58.05	5.19	8.91	-13	-54.33
	4182	V	-70.72	-56.84	5.19	8.91	-13	-53.12
	5018.4	Н	-73.18	-57.83	6.19	9.99	-13	-54.03
	5018.4	V	-72.93	-57.54	6.19	9.99	-13	-53.74
	1693.2	Н	-52.97	-44.19	3.48	5.64	-13	-42.03
	1693.2	V	-58.26	-48.32	3.48	5.64	-13	-46.16
	2539.8	Н	-62.43	-50.54	4.09	5.65	-13	-48.98
	2539.8	V	-61.41	-48.25	4.09	5.65	-13	-46.69
WCDMA Band V /	3386.4	Н	-71.22	-58.37	4.84	7.67	-13	-55.54
Channel 4233	3386.4	V	-71.46	-58.08	4.84	7.67	-13	-55.25
	4233	Н	-72.58	-58.44	4.87	9.01	-13	-54.30
	4233	V	-73.14	-58.93	4.87	9.01	-13	-54.79
	5079.6	Н	-72.91	-57.45	6.25	9.99	-13	-53.71
	5079.6	V	-73.08	-57.24	6.25	9.99	-13	-53.50
								F=B-C+D

Report Number: 102048164LEX-002 Issued: 4/6/2015

Worst Case Spurious Measurements (GSM1900)

Wordt Gudd Sparioud Moudal Chronic (Golf 1999)								
Radiated Spurious Emissions Measurement								
Test Engineer:	Bryan Taylor							
Test Date:	3/31/2015							
Temp. / Humidity / Pressure:	23.7C/27.4%/98	88.9mBar						
Bandwidth Settings:	RBW = 1MHz;	VBW = 3MH	lz					
	Results repres	ent the wor	st case from	3 orthogona	axis position	s. Spurious	emissions	not reported

Results represent the worst case from 3 orthogonal axis positions. Spurious emissions not reported here were below the measurement noise floor.

			Α	В	С	D	Е	F
	Spurious Frequency		Device Reading	Signal Generator	Cable Loss	Tx Antenna	Limit	Radiated Spurious Emission
Band/Channel	(MHz)	Polarity	(dBm)	Level (dBm)	(dB)	Gain (dBd)	(dBm)	Level (dBm)
	3700.4	Н	-58.59	-44.44	4.85	8.26	-13	-41.03
	3700.4	V	-66.12	-52.27	4.85	8.26	-13	-48.86
	5550.6	Н	-70.34	-54.48	6.91	10.40	-13	-51.00
	5550.6	V	-71.28	-55.37	6.91	10.40	-13	-51.89
GSM 1900/Channel	7400.8	Н	-73.47	-55.14	7.75	11.84	-13	-51.05
512	7400.8	V	-73.57	-55.59	7.75	11.84	-13	-51.50
	9251	Н	-74.01	-54.43	9.21	13.19	-13	-50.45
	9251	V	-73.62	-53.96	9.21	13.19	-13	-49.98
	11101.2	Н	-75.48	-51.89	10.47	13.23	-13	-49.13
	11101.2	V	-75.62	-52.23	10.47	13.23	-13	-49.47
	3760	Н	-59.73	-44.68	5.20	8.26	-13	-41.62
	3760	V	-65.58	-50.78	5.20	8.26	-13	-47.72
	5640	Н	-70.36	-55.14	7.09	10.56	-13	-51.67
	5640	V	-70.34	-55.02	7.09	10.56	-13	-51.55
GSM 1900/Channel	7520	Н	-71.63	-53.02	8.01	11.93	-13	-49.11
661	7520	V	-72.64	-54.29	8.01	11.93	-13	-50.38
	9400	Н	-73.21	-52.68	9.15	13.12	-13	-48.72
	9400	V	-72.83	-52.23	9.15	13.12	-13	-48.27
	11280	Н	-75.69	-51.36	10.16	13.26	-13	-48.26
	11280	V	-75.18	-51.1	10.16	13.26	-13	-48.00
	3819.6	Н	-62.17	-47.46	5.00	8.25	-13	-44.21
	3819.6	V	-61.37	-47.02	5.00	8.25	-13	-43.77
	5729.4	Н	-71.59	-54.46	7.06	10.66	-13	-50.86
	5729.4	V	-71.38	-54.32	7.06	10.66	-13	-50.72
GSM 1900/Channel	7639.2	Н	-72.47	-54.48	7.87	11.98	-13	-50.37
810	7639.2	V	-72.34	-54.37	7.87	11.98	-13	-50.26
	9549	Н	-73.24	-52.43	8.41	13.09	-13	-47.76
	9549	V	-72.11	-51.08	8.41	13.09	-13	-46.41
	11458.8	Н	-73.69	-48.6	9.51	13.25	-13	-44.86
	11458.8	V	-74.87	-50.13	9.51	13.25	-13	-46.39
								F=B-C+D

Worst Case Spurious Measurements (UMTS Band II)

	Worst base oparious measurements (om to band ii)							
	Radiated Spurious Emissions Measurement							
Test Engineer:	Bryan Taylor							
Test Date:								
Temp. / Humidity / Pressure:	22 70/27 49/109	0 0mBar						
Pressure:	23.76/27.4/090	0.3111Da1						
Bandwidth Settings:	RBW = 1MHz;	VBW = 3MH	lz					
	Results repres	ent the wor	st case from	3 orthogona	l axis positio	ns. Spurious	emissions	not reported

Results represent the worst case from 3 orthogonal axis positions. Spurious emissions not reported Notes: here were below the measurement noise floor.

			Α	В	С	D	E	F
	Spurious Frequency		Device Reading	Signal Generator	Cable Loss	Tx Antenna	Limit	Radiated Spurious Emission
Band/Channel	(MHz)	Polarity	(dBm)	Level (dBm)	(dB)	Gain (dBd)	(dBm)	Level (dBm
Dana/Chamiler	3704.8	H	-53.92	-39.77	4.85	8.26	-13	-36.36
	3704.8	V	-60.92	-47.07	4.85	8.26	-13	-43.66
	5557.2	H	-60.23	-44.37	6.91	10.40	-13	-40.89
	5557.2	V	-64.29	-48.38	6.91	10.40	-13	-44.90
UMTS Band	7409.6	H	-73.11	-54.78	7.75	11.84	-13	-50.69
II/Channel 9262	7409.6	V	-72.64	-54.66	7.75	11.84	-13	-50.57
	9262	H	-74.29	-54.71	9.08	13.19	-13	-50.60
	9262	V	-73.44	-53.78	9.08	13.19	-13	-49.67
	11114.4	Н	-74.28	-50.69	10.47	13.23	-13	-47.93
	11114.4	V	-74.63	-51.24	10.47	13.23	-13	-48.48
	3760	Н	-51.98	-36.93	5.20	8.26	-13	-33.87
	3760	V	-62.88	-48.08	5.20	8.26	-13	-45.02
	5640	Н	-65.05	-49.83	7.09	10.56	-13	-46.36
	5640	V	-61.05	-45.73	7.09	10.56	-13	-42.26
UMTS Band	7520	Н	-73.61	-55	8.01	11.93	-13	-51.09
II/Channel 9400	7520	V	-73.73	-55.38	8.01	11.93	-13	-51.47
	9400	Н	-74.12	-53.59	9.15	13.12	-13	-49.63
	9400	V	-74.11	-53.51	9.15	13.12	-13	-49.55
	11280	Н	-76.29	-51.96	10.16	13.26	-13	-48.86
	11280	V	-75.93	-51.85	10.16	13.26	-13	-48.75
	3815.2	Н	-56.01	-41.3	5.00	8.25	-13	-38.05
	3815.2	V	-65.49	-51.14	5.00	8.25	-13	-47.89
	5722.8	Н	-66.84	-49.71	6.61	10.66	-13	-45.66
	5722.8	V	-68.35	-51.29	6.61	10.66	-13	-47.24
UMTS Band	7630.4	Н	-73.43	-55.44	8.15	11.98	-13	-51.61
II/Channel 9538	7630.4	V	-73.67	-55.7	8.15	11.98	-13	-51.87
	9538	Н	-72.95	-52.14	8.41	13.09	-13	-47.47
	9538	V	-73.28	-52.25	8.41	13.09	-13	-47.58
	11445.6	Н	-74.18	-49.09	9.13	13.25	-13	-44.97
	11445.6	V	-73.64	-48.9	9.13	13.25	-13	-44.78
								F=B-C+D

Report Number: 102048164LEX-002 Issued: 4/6/2015

6 Measurement Uncertainty

The measured value related to the corresponding limit will be used to decide whether the equipment meets the requirements.

The measurement uncertainty figures were calculated and correspond to a coverage factor of k = 2, providing a confidence level of respectively 95.45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian).

Measurement uncertainty Table

Parameter	Uncertainty	Notes
Radiated emissions, 30 to 1000 MHz	<u>+</u> 3.9dB	
Radiated emissions, 1 to 18 GHz	<u>+</u> 4.2dB	
Radiated emissions, 18 to 40 GHz	<u>+</u> 4.3dB	
Power Port Conducted emissions, 150kHz to 30	<u>+</u> 2.8dB	
MHz		

Report Number: 102048164LEX-002 Issued: 4/6/2015

7 Revision History

Revision Level	Date	Report Number	Notes
0	4/6/2015	102048164LEX-002	Original Issue