

Page 1 of 15

TEST REPORT

Test Report No.:	SKTTRT-090316-002			
Applicant:	Se Jin Electron Inc			
Applicant Address:	4F, SJ Technovile, 60-19, Gasa	n-dong, Geumcheon-g	u, Seoul, 153-769, South Korea	
Manufacturer:	Se Jin Electron Inc			
Manufacturer Address:	4F, SJ Technovile, 60-19, Gasan-dong, Geumcheon-gu, Seoul, 153-769, South Korea			
Device Under Test:	2.4GHz RF KEYBOARD			
FCC ID:	GJJSWK-8650RT	Model Name:	SWK-8650RT	
Brand/Trade Name:	•			
Receipt No.:	SKTEU09-0108	Date of receipt:	February 5, 2009	
Date of Issue:	March 16, 2009			
Location of Testing:	SK TECH CO., LTD. #820-2, Wolmoon-ri, Wabu-up, Namyangju-si, Kyunggi-do, 472-905 South Korea			
Test Procedure:	ANSI C63.4			
Test Specification:	47CFR, Part 15 Rules			
FCC Equipment Class:	DXT - Part 15 Low Power Transceiver, Rx Verified			
Test Result:	The above-mentioned device has been tested and passed.			
T				

Tested & Reported by: Seungtaek, Shim Approved by: Jongsoo, Yoon

39

2009-03-16

No.

2009-03-16

	Signature	Date		Signature	Date
Other Aspects:		-			
Abbreviations:		· OK, Pass = passed	• Fail = failed	\cdot N/A = not applicable	

- > This test report is not permitted to copy partly and entirely without our permission.
- > This test result is dependent on only equipment to be used.
- > This test result is based on a single evaluation of submitted samples of the above mentioned.

Page 2 of 15

>> CONTENTS <<

1. GENERAL	···· 3
2. TEST SITE	3
2.1 Location ·····	3
2.2 List of Test and Measurement Instruments	
2.3 Test Date ·····	
2.4 Test Environment	4
3. DESCRIPTION OF THE EQUIPMENT UNDER TEST	
3.1 Rating and Physical Characteristics	5
3.2 Equipment Modifications	
3.3 Submitted Documents	5
4. MEASUREMENT CONDITIONS	
4.1 Description of test configuration	6
4.2 List of Peripherals ·····	6
4.3 Type of Used Cables ·····	
4.4 Uncertainty	6
5. TEST AND MEASUREMENTS	····· 7
5.1 ANTENNA REQUIREMENT	
5.1.1 Regulation	7
5.1.2 Result	7
5.2 RADIATED EMISSIONS	
5.2.1 Regulation ·····	
5.2.2 Test Procedure ····	
5.2.3 Test Results ·····	··· 10
Table 1: Measured values of the Field strength ·····	
Figure 1: Plot of the band edge	
Figure 2: Plot of the 20dB bandwidth	13
Figure 3: Emission plot for the preliminary radiated measurements	11

Page 3 of 15

1. GENERAL

These tests were performed using the test procedure outlined in ANSI C63.4, 2003 for intentional radiators, and in accordance with the limits set forth in FCC Part 15.249 for Part 15 Low Power Transceiver. The EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards.

We attest to the accuracy of data. All measurements reported herein were performed by SK TECH CO., LTD. and were made under Chief Engineer's supervision.

We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

2. TEST SITE

SK TECH CO., LTD.

2.1 Location

#820-2, Wolmoon-ri, Wabu-up, Namyangju-si, Kyunggi-do, 472-905 South Korea (FCC Registered Test Site Number: 90752)

(OPEN AREA TEST SITE INDUSTRY CANADA NUMBER: IC 5429)

This test site is in compliance with ISO/IEC 17025 for general requirements for the competence of testing and calibration laboratories.

This laboratory is recognized as a Conformity Assessment Body (CAB) for CAB's Designation Number: KR0007 by FCC, is accredited by NVLAP for NVLAP Lab. Code: 200220-0.

Page 4 of 15

2.2 List of Test and Measurement Instruments

No.	Description	Manufacturer	Model No.	Serial No.	Calibrated until	Used
1	Spectrum Analyzer	Agilent	E4405B	US40520856	2009.07	
2	EMC Spectrum Analyzer	Agilent	E7405A	US40240203	2010.03	
3	EMI Test Receiver	Rohde&Schwarz	ESIB40	100277	2010.02	\boxtimes
4	EMI Test Receiver	Rohde&Schwarz	ESVS10	825120/008	2009.07	
5	EMI Test Receiver	Rohde&Schwarz	ESHS10	862970/019	2009.07	
6	Artificial Mains Network	Rohde&Schwarz	ESH3-Z5	836679/018	2009.07	
7	Pre-amplifier	HP	8447F	3113A05153	2009.07	\boxtimes
8	Pre-amplifier	MITEQ	AFS44	1116321	2009.10	\boxtimes
9	Pre-amplifier	MITEQ	AFS44	1116322	2009.07	
10	Power Meter	Agilent	E4417A	MY45100426	2009.07	
11	Power Meter	Agilent	E4418B	US39402176	2009.10	
12	Power Sensor	Agilent	E9327A	MY44420696	2009.07	
13	Power Sensor	Agilent	8482A	MY41094094	2009.07	
14	Attenuator (10dB)	HP	8491B	38067	2009.07	\boxtimes
15	High Pass Filter	Wainwright	WHKX3.0/18G	8	2009.07	\boxtimes
16	VHF Precision Dipole Antenna (TX/RX)	Schwarzbeck	VHAP	1014 / 1015	2009.12	
17	UHF Precision Dipole Antenna (TX/RX)	Schwarzbeck	UHAP	989 / 990	2009.12	
18	Loop Antenna	Schwarzbeck	HFH2-Z2	863048/019	2009.11	
19	TRILOG Broadband Antenna	Schwarzbeck	VULB9160	3141	2009.05	\boxtimes
20	Horn Antenna	AH Systems	SAS-200/571	304	N/A	
21	Horn Antenna	EMCO	3115	00040723	2009.03	
22	Horn Antenna	EMCO	3115	00056768	2009.06	\boxtimes
23	Horn Antenna	Schwarzbeck	BBHA9170	BBHA9170318	2010.08	\boxtimes
24	Vector Signal Generator	Agilent	E4438C	MY42080359	2009.07	
25	PSG analog signal generator	Agilent	E8257D-520	MY45141255	2009.07	
26	DC Power Supply	HP	6622A	3448A032223	2009.11	
27	DC Power Supply	HP	6268B	2542A-07856	2009.07	
28	PCS Interface	HP	83236B	3711J00881	2010.03	
29	CDMA Mobile Test Set	HP	8924C	US35360253	2010.03	
30	Hygro/Thermo Graph	SATO	PC-5000TRH-II	-	2009.07	\boxtimes
31	Temperature/Humidity Chamber	All Three	ATM-50M	20030425	2010.03	
32	Temperature/Humidity Chamber	DAEJIN	DJ-THC02	06071	2010.03	

2.3 Test Date

Date of Test: March 11, 2009 ~ March 12, 2009

2.4 Test Environment

See each test item's description.

Page 5 of 15

3. DESCRIPTION OF THE EQUIPMENT UNDER TEST

The product specification described herein was obtained from the product data sheet or user's manual.

3.1 Rating and Physical Characteristics

Power source	DC 3.0V Alkaline battery (AA size 1.5 $V \times 2$)
Transmit Frequency	2403.5 MHz ~ 2479.9 MHz (1212.4 kHz step)
Spread spectrum mode	Adaptive Frequency Hopping
Number of Channels	64 Channels, Number of Hopping Channels used: 4 channels
RF Output power	< 10 dBm (PEAK)
Type of Modulation	MSK
X-tal or Oscillator	X-tal: 26 MHz
Antenna Type	Integrated PCB patch antenna
External Ports	None

3.2 Equipment Modifications

Test button was added to make EUT in TEST MODE such as a transmitting frequency selection

3.3 Submitted Documents

Block diagram

Schematic diagram

Antenna Specification

Part List

User manual

Page 6 of 15

4. MEASUREMENT CONDITIONS

4.1 Description of test configuration

The measurements were taken in the TEST MODE provided by the applicant so that the operating frequency of the EUT could be changed with the frequency hopping turned off. The TEST MODE was established by pushing the test button on the EUT when turning the power on, and then controlled by striking the keys as below:

T/R: Transmitter/Receiver mode selection

M/N: Modulated/Un-modulated selection

1/2/3: Hopping disenabled and the operating channel selection (CH1, CH33, or CH64)

The test modulation was the representative signals of the normal use. Period was approximately 8.2 ms and transmission duration was about $700 \mu s$.

4.2 List of Peripherals

Equipment Type	Manufacturer	Model	S/N
-	-	-	-

^{**} The EUT was tested as a stand-alone device.

4.3 Type of Used Cables

#	STA	START		D	CA	BLE
TT .	NAME	I/O PORT	NAME	I/O PORT	LENGTH(m)	SHIELDED
-	-	-	-	-	-	-

4.4 Uncertainty

Magazinam ant Itana	Combined Standard Uncertainty	Expanded Uncertainty
Measurement Item	Uc	$U = kUc \ (k = 2)$
Conducted RF power	± 1.49 dB	± 2.98 dB
Radiated disturbance	$\pm 2.30 \text{ dB}$	± 4.60 dB
Conducted disturbance	± 1.96 dB	± 3.92 dB

Page 7 of 15

5. TEST AND MEASUREMENTS

Summary of Test Results

Requirement	CFR 47 Section	Report Section	Test Result
Antenna Requirement	15.203	5.1	PASS
Radiated emissions	15.249(a)&(d), 15.209(a)	5.2	PASS
AC power line Conducted emissions	15.207(a)	-	N/A**

^{**} The EUT is powered from DC 3.0V alkaline batteries

5.1 ANTENNA REQUIREMENT

5.1.1 Regulation

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

5.1.2 Result: PASS

The transmitter has an integral PCB antenna.

Page 8 of 15

5.2 RADIATED EMISSIONS

5.2.1 Regulation

According to §15.249(a), the filed strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental	Field strength of	Field strength of	Field strength of	Field strength of
frequency	Fundamental	Fundamental	Harmonics	Harmonics
(MHz)	(mV/m @ 3m)	$(dB\mu V/m @ 3m)$	$(\mu V/m \ @ \ 3m \)$	(dBµV/m @ 3m)
902 – 928	50	94	500	54
2400 – 2483.5	50	94	500	54
5725 – 5875	50	94	500	54
24000 - 24250	250	108	2500	68

According to §15.249(d), emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

According to §15.209(a), for an intentional device, the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Field strength (µV/m @ 3m)	Field strength (dBµV/m @ 3m)
30–88	100	40.0
88–216	150	43.5
216–960	200	46.0
Above 960	500	54.0

^{**} The emission limits shown in the above tables are based on measurement instrumentation employing a CISPR quasi-peak detector below 1000 MHz and an average detector above 1000 MHz. However, the peak field strength of any emission shall not exceed the average limit by more than 20 dB.

According to §15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

Page 9 of 15

5.2.2 Test Procedure

- 1. The preliminary radiated measurements were performed to determine the frequency producing the maximum emissions in an anechoic chamber at a distance of 3 or 1 meter. [Remark: The EUT was set to un-modulated transmitting condition in the preliminary radiated measurements]
- 2. The EUT was placed on the top of the 0.8-meter height, 1 × 1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360°.
- 3. The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 30 to 1000 MHz using the TRILOG broadband antenna, and using the horn antenna from 1000 MHz to 18000 MHz or to tenth harmonic of the highest fundamental frequency, whichever is higher.
- 4. To obtain the final measurement data, the EUT was arranged on a turntable situated on a 4×4 meter at the Open Area Test Site. The EUT was tested at a distance 3 meters.
- 5. Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.
- 6. The EUT is situated in three orthogonal planes (if appropriate)
- 7. The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT.
- 8. If the emission on which a radiated measurement must be made is located at the edge of the authorized band of operation, then the alternative "marker-delta" method may be employed.

Marker-Delta Method at the edge of the authorized band of operation:

- 1. Perform an in-band field strength measurement of the fundamental emission using the RBW and detector function as the above Spurious Radiated Emissions test procedure.
- 2. Choose a spectrum analyzer span that encompasses both the peak of the fundamental emission and the band-edge emission under investigation. Set the analyzer RBW to 1% of the total span (but never less than 30 kHz) with a video bandwidth equal to or greater than the RBW. Record the peak levels of the fundamental emission and the relevant band-edge emission (i.e., run several sweeps in peak hold mode). Observe the stored trace and measure the amplitude delta between the peak of the fundamental and the peak of the band-edge emission. This is not a field strength measurement; it is only a relative measurement to determine the amount by which the emission drops at the band-edge relative to the highest fundamental emission level.
- 3. Subtract the delta measured in step (2) from the field strengths measured in step (1). The resultant field strengths (CISPR QP, average, or peak, as appropriate) are then used to determine band-edge compliance as required by Section 15.205.
- 4. The above "delta" measurement technique may be used for measuring emissions that are up to two "standard" bandwidths away from the band-edge, where a "standard" bandwidth is the bandwidth specified by C63.4 for the frequency being measured. For example, for band-edge measurements in the restricted band that begins at 2483.5 MHz, C63.4 specifies a measurement bandwidth of at least 1 MHz. Therefore you may use the "delta" technique for measuring emissions up to 2 MHz removed from the band-edge. Radiated emissions that are removed by more than two "standard" bandwidths must be measured as the above Spurious Radiated Emissions test procedure.

Page 10 of 15

5.2.3 Test Results:	PASS
---------------------	------

5.2.3 Tes	st Kesuit	s:				P	ASS					
Table 1:	Measure	d valı	ues of th	e Field	strength							
Frequency	Receiver Bandwidth	Pol.	Antenna Height	Turn Table	Reading	Amp Gain	ATT	AF	CL	Actual	Limit	Margir
[MHz]	[kHz]	[V/H]	[m]	[degree]	[dB(µV)]	[dB]	[dB]	dB(1/m)	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]
	is in 15.24				/3		. ,		. ,			. ,
AVERAGI		(u)	1 dilda									
2403.5	1000	Н	1.95	300	75.34	42.76	10.04	28.33	4.96	75.91	94.00	18.09
2403.5	1000	V	1.23	157	68.62	42.76	10.04	28.33	4.96	69.19	94.00	24.81
2442.3	1000	Н	1.92	288	75.02	42.76	10.04	28.33	4.96	75.59	94.00	18.41
2442.3	1000	V	1.23	152	68.42	42.76	10.04	28.33	4.96	68.99	94.00	25.01
2479.9	1000	Н	1.85	289	75.42	42.80	10.04	28.66	5.79	77.11	94.00	16.89
2479.9	1000	V	1.18	149	68.92	42.80	10.04	28.66	5.79	70.61	94.00	23.39
PEAK						I				l		
2403.5	1000	Н	1.95	300	97.02	42.76	10.04	28.33	4.96	97.59	114.00	16.41
2403.5	1000	V	1.23	157	90.11	42.76	10.04	28.33	4.96	90.68	114.00	23.32
2442.3	1000	Н	1.92	288	96.73	42.76	10.04	28.33	4.96	97.30	114.00	16.70
2442.3	1000	V	1.23	152	90.13	42.76	10.04	28.33	4.96	90.70	114.00	23.30
2479.9	1000	Н	1.85	289	97.15	42.80	10.04	28.66	5.79	98.84	114.00	15.16
2479.9	1000	V	1.18	149	90.70	42.80	10.04	28.66	5.79	92.39	114.00	21.61
Emission	is in 15.24	19 (a)	– Harmo	onics								
AVEAGE												
4807.0	1000	Н	1.69	247	45.14	43.90	0.67	33.45	7.04	42.40	54.00	11.60
4807.0	1000	V	1.09	151	38.18	43.90	0.67	33.45	7.04	35.44	54.00	18.56
4884.7	1000	Н	1.44	315	45.01	43.95	0.68	33.55	7.16	42.45	54.00	11.55
4884.7	1000	V	1.08	159	38.12	43.95	0.68	33.55	7.16	35.56	54.00	18.44
4959.8	1000	Н	1.74	292	43.50	44.00	0.68	33.64	7.30	41.12	54.00	12.88
4959.8	1000	V	1.12	197	37.18	44.00	0.68	33.64	7.30	34.80	54.00	19.20
7210.6	1000	Н	1.45	269	41.26	42.98	0.57	35.59	8.48	42.92	54.00	11.08
7210.6	1000	V	1.27	143	35.75	42.98	0.57	35.59	8.48	37.41	54.00	16.59
7326.9	1000	Н	1.35	338	37.12	42.92	0.56	35.74	8.48	38.98	54.00	15.02
7326.9	1000	V	1.00	0		42.92	0.56	35.74	8.48		54.00	
7439.7	1000	Н	1.29	269	38.35	42.86	0.56	35.89	8.48	40.42	54.00	13.58
7439.7	1000	V	1.00	0		42.86	0.56	35.89	8.48		54.00	
9614.0	1000	Н	1.37	335	36.14	41.42	0.56	37.86	10.39	43.53	54.00	10.47
9614.0	1000	V	1.00	0		41.42	0.56	37.86	10.39		54.00	
DEAU												
PEAK 4807.0	1000	Н	1.69	247	64.78	43.90	0.67	33.45	7.04	62.04	74.00	11.96
4807.0	1000	V	1.09	151	57.04	43.90	0.67	33.45	7.04	54.30	74.00	19.70
4884.7	1000	H	1.09	315	64.28	43.95	0.67	33.55	7.16	61.72	74.00	12.28
4884.7	1000	V	1.08	159	56.29	43.95	0.68	33.55	7.16	53.73	74.00	20.27
4959.8	1000	H	1.74	292	62.02	44.00	0.68	33.64	7.10	59.64	74.00	14.36
4959.8	1000	V	1.12	197	55.19	44.00	0.68	33.64	7.30	52.81	74.00	21.19
7210.6	1000	H	1.45	269	60.39	42.98	0.57	35.59	8.48	62.05	74.00	11.95
7210.6	1000	V	1.43	143	52.81	42.98	0.57	35.59	8.48	54.47	74.00	19.53
7326.9	1000	H	1.35	338	50.10	42.92	0.56	35.74	8.48	51.96	74.00	22.04
7326.9	1000	V	1.00	0		42.92	0.56	35.74	8.48		74.00	

Page 11 of 15

Table 1: M	Ieasured	value	s of the	Field s	trength (Contin	ued)					
Frequency	Receiver Bandwidth	Pol.	Antenna Height	Turn Table	Reading	Amp Gain	ATT	AF	CL	Actual	Limit	Margin
[MHz]	[kHz]	[V/H]	[m]	[degree]	$[\text{dB}(\mu V)]$	[dB]	[dB]	dB(1/m)	[dB]	$\left[dB(\mu V/m)\right]$	$\left[dB(\mu V/m)\right]$	[dB]
PEAK												
7439.7	1000	Н	1.29	269	53.69	42.86	0.56	35.89	8.48	55.76	74.00	18.24
7439.7	1000	V	1.00	0		42.86	0.56	35.89	8.48		74.00	
9614.0	1000	Н	1.37	335	50.10	41.42	0.56	37.86	10.39	57.49	74.00	16.51
9614.0	1000	V	1.00	0		41.42	0.56	37.86	10.39		74.00	
Emissions in 15.249 (d) and 15.209 (a) – Spurious												
QAUSI-PE	AK											
301.17	120	Н	1.0	106	37.54	26.38	-	12.87	1.78	25.81	46	20.19
301.17	120	V	1.0	180	30.05	26.38	-	12.87	1.78	18.32	46	27.68
946.85	120	Н	1.0	14	31.44	26.88	-	24.05	3.11	31.72	46	14.28
946.85	120	V	1.0	0		26.88	-	24.05	3.11		46	
951.17	120	Н	1.5	3	31.78	26.90	-	24.13	3.11	32.12	46	13.88
951.17	120	V	1.0	0		26.90	-	24.13	3.11		46	
AVERAGE												
2400.0	1000	Н	1.95	300	38.68	42.76	10.04	28.33	4.96	39.25	54	14.75
2400.0	1000	V	1.23	157	37.83	42.76	10.04	28.33	4.96	38.40	54	15.60
2483.5	1000	Н	1.85	289	39.05	42.80	10.04	28.66	5.79	40.74	54	13.26
2483.5	1000	V	1.18	149	38.11	42.80	10.04	28.66	5.79	39.80	54	14.20
PEAK	1					ı						
2400.0	1000	Н	1.95	300	68.99	42.76	10.04	28.33	4.96	69.56	74	4.44 **
2400.0	1000	V	1.23	157	62.75	42.76	10.04	28.33	4.96	63.32	74	10.68
2483.5	1000	Н	1.85	289	70.63	42.80	10.04	28.66	5.79	72.32	74	1.68 **
2483.5	1000	V	1.18	149	64.51	42.80	10.04	28.66	5.79	66.20	74	7.80

Margin (dB) = Limit - Actual

[Actual = Reading - Amp Gain + ATT + AF + CL]

- 1. H = Horizontal, V = Vertical Polarization
- 2. ATT = Attenuation (10dB pad and/or Insertion Loss of HPF)
- 3. AF = Antenna Factor, CL = Cable Loss

Remark "---" means the emission level was too low to be measured or in the noise floor.

^{**} The measured result is within the test standard limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliance based on the 95 % level of confidence. However, the result indicates that compliance is more probable than non-compliance. [REMARK: Marker-Delta Method at the edge of the authorized band of operation was not used, because the measurement results were within the limits]

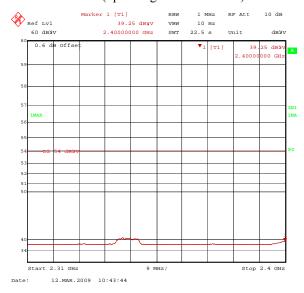
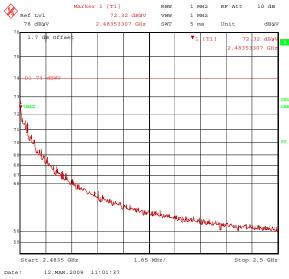
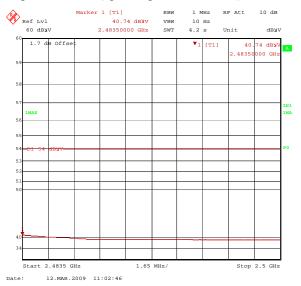

Page 12 of 15

Figure 1. Plot of the Band Edge

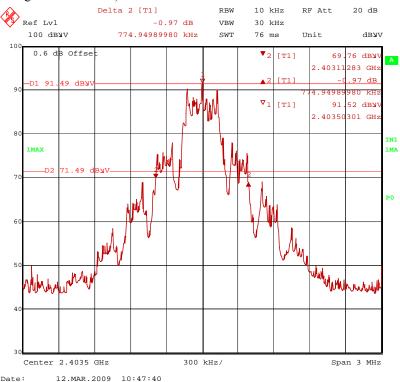

Lowest Channel (operating at 2403.5 MHz): PEAK

Ref Lvl 69.56 dBWV 2.40000000 GHz 1 MHz 5 ms VBW 0.6 dB Offs


Lowest Channel (operating at 2403.5 MHz): AVERAGE

Highest Channel (operating at 2479.9 MHz): PEAK

Highest Channel (operating at 2479.9 MHz): AVERAGE


NOTE: The Measurement results were calibrated to the field strength by using the offset [0.57 dB for lower band-edge, 1.69 dB for upper band-edge]. Table 1 contains the correction factors at the operating frequencies such as antenna factor, cable loss, etc.

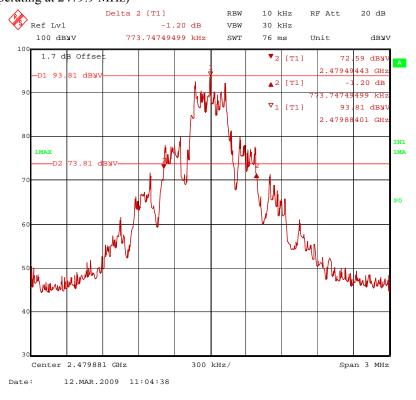
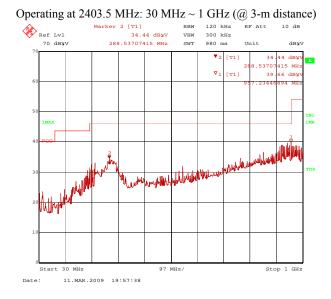
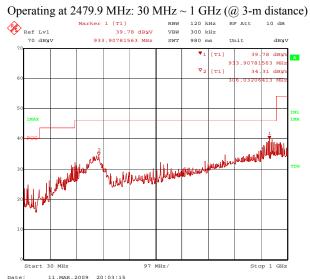
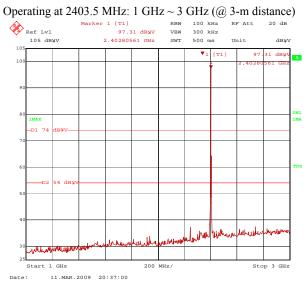

Page 13 of 15

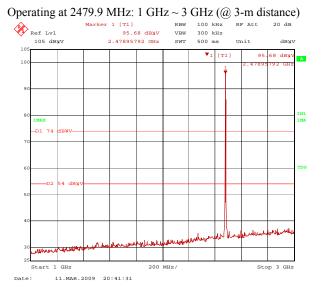
Figure 2. Plot of the 20dB bandwidth

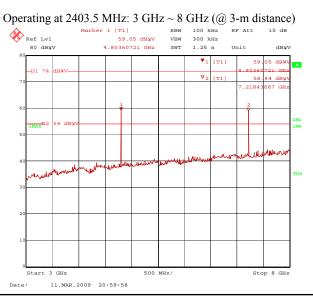
Lowest Channel (operating at 2403.5 MHz)

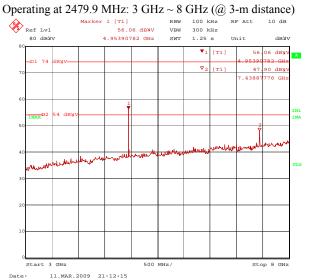

Highest Channel (operating at 2479.9 MHz)

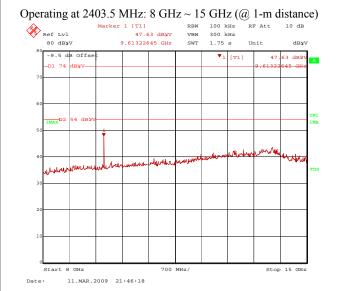


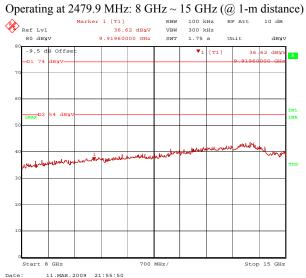



Page 14 of 15









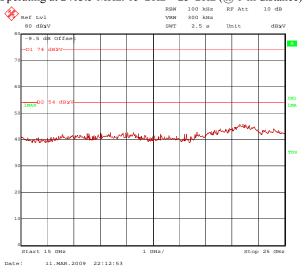
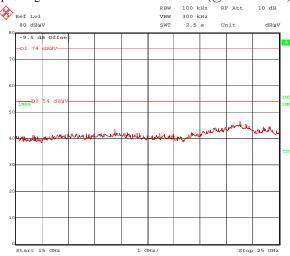

Page 15 of 15

Figure 3. Emission plot for the preliminary radiated measurements (continued)



Operating at 2403.5 MHz: 15 GHz ~ 25 GHz (@ 1-m distance)

Operating at 2479.9 MHz: 8 GHz ~ 15 GHz (@ 1-m distance)

11.MAR.2009 22:24:53