

FCC / ISED Test Report

FOR: **Badger Meter**

Model Name: **ORION Cellular INTL**

Product Description:

This product reads connected water meters and transmits the readings over the cellular network. There is a 915 MHz ISM band proprietary XCVR

> FCC ID: GIF2017OCEV5INTL IC ID: 1046A-OCEV5INTL

Applied Rules and Standards: 47 CFR Part 15.247 (DSS) RSS-247 Issue 2 (FHSs) & RSS-Gen Issue 4

REPORT #: EMC_BADGE_010_17001_15.247_DSS

DATE: 03/08/2018

A2LA Accredited

IC recognized # 3462B-2

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: + 1 (408) 586 6200 • Fax: + 1 (408) 586 6299 • E-mail: info@cetecom.com • http://www.cetecom.com CETECOM Inc. is a Delaware Corporation with Corporation number: 2905571

V4.0 2012-07-25

03/08/2018

Page 2 of 46

FCC ID: GIF2017OCEV5INTL IC ID: 1046A-OCEV5INTL

TABLE OF CONTENTS

AS	SSESSMENT	3
ΑI	DMINISTRATIVE DATA	4
2.1 2.2 2.3	IDENTIFICATION OF THE TESTING LABORATORY ISSUING THE EMC TEST REPORT IDENTIFICATION OF THE CLIENT IDENTIFICATION OF THE MANUFACTURER.	4
E	QUIPMENT UNDER TEST (EUT)	5
3.1 3.2 3.3 3.4 3.5	EUT SPECIFICATIONS EUT SAMPLE DETAILS ACCESSORY EQUIPMENT (AE) DETAILS. TEST SAMPLE CONFIGURATION JUSTIFICATION FOR WORST CASE MODE OF OPERATION	6 6
SI	UBJECT OF INVESTIGATION	8
M	EASUREMENT RESULTS SUMMARY	8
M	EASUREMENTS	9
6.1 6.2 6.3	MEASUREMENT UNCERTAINTY	9
M	EASUREMENT PROCEDURES	10
7.1 7.2	RADIATED MEASUREMENTRF CONDUCTED MEASUREMENT PROCEDURE	
TE	EST RESULT DATA	13
8.1 8.2 8.3 8.4 8.5 8.6 8.7	MAXIMUM PEAK CONDUCTED OUTPUT POWER. BAND EDGE COMPLIANCE. 20DB BANDWIDTH. CARRIER FREQUENCY SEPARATION. NUMBER OF HOPPING CHANNELS. TIME OF OCCUPANCY (DWELL TIME) TRANSMITTER SPLIRIOUS FMISSIONS AND RESTRICTED BANDS	18 25 27 29
-		
	AI 2.1 2.2 2.3 E 3.1 3.2 3.3 3.4 3.5 SI M M 6.1 6.2 6.3 M 7.1 7.2 TI 8.1 8.2 8.3 8.4 8.5 8.6 8.7 TI TI TI	2.2 IDENTIFICATION OF THE CLIENT

EMC_BADGRE_010_17001_15.247_DSS

03/08/2018

Page 3 of 46

FCC ID: GIF2017OCEV5INTL IC ID: 1046A-OCEV5INTL

1 Assessment

The following device as further described in section 3 of this report was evaluated against the applicable criteria specified in FCC rules Parts 15.247 of Title 47 of the Code of Federal Regulations and the relevant ISED Canada standard RSS-247.

No deviations were ascertained.

Responsible for Testing Laboratory:

	James Donnellar	ı
03/08/2018 Complian	nce (Lab Manager)	
Date Sectio	n Name	Signature
- Collo	Traine	- Jighatare

Responsible for the Report:

		Issa Ghanma	
03/08/2018	Compliance	(EMC Engineer)	
Date	Section	Name	Signature

The test results of this test report relate exclusively to the test item specified in Section3.

CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM Inc. USA.

Page 4 of 46

FCC ID: GIF2017OCEV5INTL IC ID: 1046A-OCEV5INTL

2 Administrative Data

03/08/2018

2.1 Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.
Department:	Compliance
Street Address:	411 Dixon Landing Road
City/Zip Code	Milpitas, CA 95035
Country	USA
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
Lab Manager:	James Donnellan
Responsible Project Leader:	Cathy Palacios

2.2 Identification of the Client

Applicant's Name:	Badger Meter
Street Address:	4545 W. Brown Deer Road
City/Zip Code	Milwaukee, WI 53223
Country	USA
Contact Person:	Randy Schultz
Phone No.	(414) 371-5941
e-mail:	rschultz@badgermeter.com

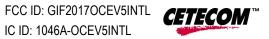
2.3 Identification of the Manufacturer

Manufacturer's Name:	Same as Applicant
Manufacturers Address:	
City/Zip Code	
Country	

03/08/2018

Page 5 of 46 FCC ID: GIF2017OCEV5INTL

C ID: 1046A-OCEV5INTL


3 Equipment Under Test (EUT)

3.1 EUT Specifications

Model No:	68305				
FCC-ID:	GIF2017OCEV5INTL				
IC-ID:	1046A-OCEV5INTL				
HVIN:	ORION Cellular INTL				
PMN:	ORION Cellular INTL				
Product Description:	This product reads connected water meters and transmits the readings over the cellular network. There is a 915 MHz ISM band proprietary XCVR.				
Frequency Range / number of channels:	Nominal band: 902 MHz – 928MHz Center to center: 904.93 MHz (ch 1) – 923.75 MHz (ch 48), 48 Channels				
Type(s) of Modulation:	GFSK				
Modes of Operation:	Hopping				
Antenna Information as declared:	-SR4L002. No MIMO capability. -Antenna type: Chip -Antenna gain824 – 960 MHz: Peak: 1.00 dBi Average (Linear): -1.5 dBi				
Max. measured output Powers:	8.55 dBm				
Power Supply/ Rated Operating Voltage Range:	Low: 2.8V / Nominal: 3.6V / High: 3.66V DC				
Operating Temperature Range	Low: -20 °C / Nominal: 20 °C / High:40 °C				
Other Radios included in the device:	Cellular: Manufacturer: Telite Model: HE910-D FCC ID: RI7HE910 / IC: 5131A-HE910				
Sample Revision	□Prototype Unit; ■Production Unit; □Pre-Production				
EUT Dimensions	130 X 75 X 60 mm				
Weight	383 grams				
EUT Diameter	0 < 60 cm 0 Other				

EMC_BADGRE_010_17001_15.247_DSS

03/08/2018 Page 6 of 46

3.2 EUT Sample details

EUT#	Serial Number	HW Version	SW Version	Notes/Comments
1	94	7	1.5.584	Conducted measurement
2	307	7	1.5.584	Radiated measurement

3.3 Accessory Equipment (AE) details

AE#	Туре	Model	Manufacturer	Serial Number
1				

3.4 Test Sample Configuration

EUT Set-up #	Combination of AE used for test set up						
1	EUT#1	The radio of the EUT was configured to a fixed channel using Serial Console tool provided by the client to configure the EUT. The measurement equipment was connected to the 50 ohm RF port of the EUT.					
2	EUT#2	The radio of the EUT was configured to a fixed channel using Serial Console tool provided by the client to configure the EUT.					

EMC_BADGRE_010_17001_15.247_DSS

03/08/2018

FCC ID: GIF2017OCEV5INTL IC ID: 1046A-OCEV5INTL

3.5 Justification for Worst Case Mode of Operation

During the testing process, the EUT was tested with transmitter sets in test mode on low, mid and high channels, and 100% duty cycle and maximum power.

Page 7 of 46

For radiated measurements, all data in this report shows the worst case between horizontal and vertical antenna polarizations and for all orientations of the EUT.

For conducted measurements, the highest power and the widest occupied bandwidth mode of operation (GFSK), was used to evaluate the worst case performance of the EUT, including the band edge compliance and TX radiated spurious emissions testing. Maximum peak conducted output power and spectrum bandwidth, were measured in all supported modulation modes for the EUT.

EMC_BADGRE_010_17001_15.247_DSS

03/08/2018 Page 8 of 46

FCC ID: GIF2017OCEV5INTL IC ID: 1046A-OCEV5INTL

4 Subject of Investigation

The objective of the measurements done by CETECOM Inc. was to assess the performance of the EUT according to the relevant requirements specified in FCC rules Part 15.247 of Title 47 of the Code of Federal Regulations and Radio Standard Specification RSS-247 Issue 2 of ISED Canada.

This test report is to support a request for new equipment authorization under the:

FCC ID: GIF2017OCEV5INTLIC ID: 1046A-OCEV5INTL

Testing procedures are based on ANSI C63.10:2013 including section 7.8 for FHSS systems.

5 <u>Measurement Results Summary</u>

Test Specification	Test Case	Temperature and Voltage Conditions	Mode	Pass	NA	NP	Result
§15.247(b)(2) RSS-247 5.1(c)	Maximum Peak Conducted Output Power	Nominal	GFSK				Complies
§15.247(d) RSS-247 5.5 RSS-Gen 8.10	Band Edge Compliance	Nominal	GFSK				Complies
§15.247(a)(1) RSS-247 5.1(c)	Spectrum Bandwidth	Nominal	GFSK	•			Complies
§15.247(a)(1) RSS-247 5.1(b)	Carrier Frequency Separation	Nominal	GFSK	•			Complies
§15.247(a)(1) RSS-247 5.1(c)	Number of Hopping Channels	Nominal	GFSK	•			Complies
§15.247(a)(1)(iii) RSS-247 5.1(c)	Time of occupancy	Nominal	GFSK	•			Complies
§15.247(d) §15.209 (a) RSS-Gen 6.13	TX Spurious emissions-Radiated	Nominal	GFSK				Complies
§15.207(a) RSS-Gen 8.8	AC Conducted Emissions	Nominal	-				Note1 Note2 Complies

Note1: NA= Not Applicable; NP= Not Performed. **Note2**: The unit does not connect to AC main power.

EMC_BADGRE_010_17001_15.247_DSS

03/08/2018

Page 9 of 46

FCC ID: GIF2017OCEV5INTL IC ID: 1046A-OCEV5INTL

6 Measurements

6.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus, with 95% confidence interval (in dB delta to result), based on a coverage factor k=1.

Radiated measurement

9 kHz to 30MHz ±2.5 dB (Magnetic Loop Antenna) 30 MHz to 1000 MHz ±2.0 dB (Biconilog Antenna) 1 GHz to 40 GHz ±2.3 dB (Horn Antenna)

Conducted measurement

RF conducted measurement ±0.5 dB

6.2 Environmental Conditions During Testing:

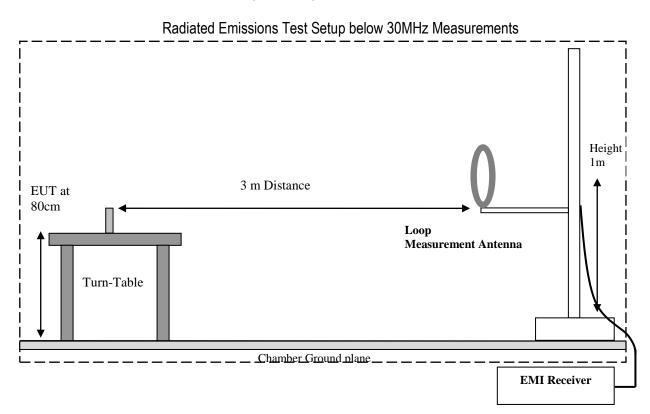
The following environmental conditions were maintained during the course of testing:

• Ambient Temperature: 20-25°C

• Relative humidity: 40-60%

6.3 Dates of Testing:

11/28/2017 - 1/24/2017

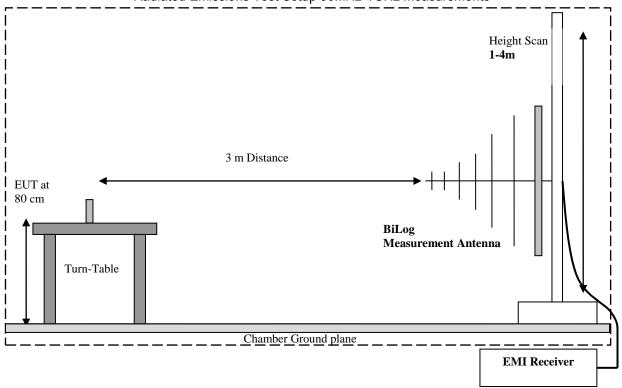


7 <u>Measurement Procedures</u>

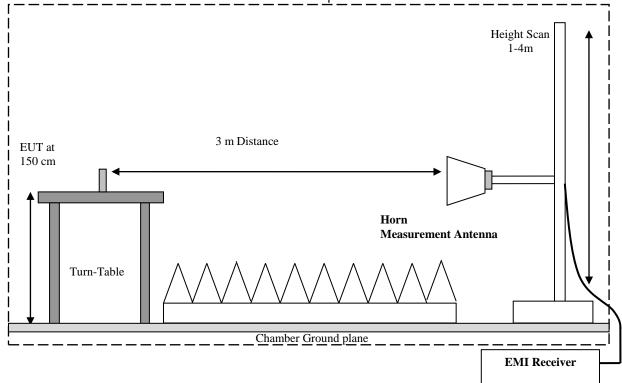
7.1 Radiated Measurement

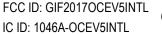
The radiated measurement is performed according to: ANSI C63.10 (2013)

- The exploratory measurement is accomplished by running a matrix of 16 sweeps over the required frequency range with R&S Test-SW EMC32 for 4 positions of the turntable, two orthogonal positions of the EUT and both antenna polarizations. This procedure exceeds the requirement of the above standards to cover the 3 orthogonal axis of the EUT. A max peak detector is utilized during the exploratory measurement. The Test-SW creates an overall maximum trace for all 12 sweeps and saves the settings for each point of this trace. The maximum trace is part of the test report.
- The 10 highest emissions are selected with an automatic algorithm of EMC32 searching for peaks in the noise floor and ensuring that broadband signals are not selected multiple times.
- The maxima are then put through the final measurement and again maximized in a 90deg range of the turntable, fine search in frequency domain and height scan between 1m and 4m.
- The above procedure is repeated for all possible ways of power supply to EUT and for all supported modulations.
- In case there are no emissions above noise floor level only the maximum trace is reported as described above.
- The results are split up into up to 4 frequency ranges due to antenna bandwidth restrictions. A magnetic loop is used from 9 kHz to 30 MHz, a Biconilog antenna is used from 30 MHz to 1 GHz, and two different horn antennas are used to cover frequencies up to 40 GHz.


03/08/2018

Page 11 of 46


FCC ID: GIF2017OCEV5INTL IC ID: 1046A-OCEV5INTL


Radiated Emissions Test Setup 30MHz-1GHz Measurements

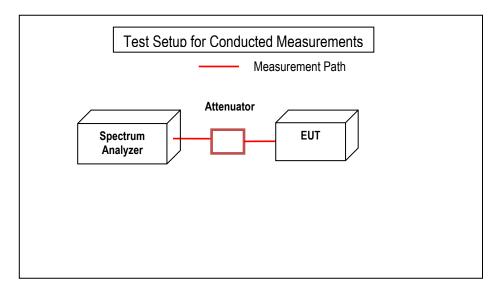
03/08/2018 Page 12 of 46

7.1.1 Sample Calculations for Field Strength Measurements

Field Strength is calculated from the Spectrum Analyzer/ Receiver readings, taking into account the following parameters:

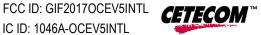
- 1. Measured reading in dBµV
- 2. Cable Loss between the receiving antenna and SA in dB and
- 3. Antenna Factor in dB/m

All radiated measurement plots in this report are taken from a test SW that calculates the Field Strength based on the following equation:


FS (dB μ V/m) = Measured Value on SA (dB μ V)- Cable Loss (dB)+ Antenna Factor (dB/m)

Example:

Frequency (MHz)	Measured SA (dBμV)	Cable Loss (dB)	Antenna Factor Correction (dB)	Field Strength Result (dBµV/m)
1000	80.5	3.5	14	98.0


7.2 RF Conducted Measurement Procedure

Reference: ANSI C63.10 (2013) Section 6.9, 6.10, and 7.8

- Connect the equipment as shown in the above diagram.
- Adjust the settings of the SA (Rohde-Schwarz Spectrum Analyzer) to connect the EUT at the required mode of test.
- Measurements are to be performed with the EUT set to the low, middle and high channels and for worst case modulation schemes.

03/08/2018 Page 13 of 46

8 Test Result Data

8.1 Maximum Peak Conducted Output Power

8.1.1 Measurement according to ANSI C63.10 Section 7.8.5

Spectrum Analyzer settings:

- Span = approximately 5 times the 20 dB bandwidth
- RBW > the 20 dB bandwidth of the emission being measured
- VBW ≥ RBW
- Sweep = Auto Couple
- Detector function = Peak
- Trace = Max hold
- Use the marker-peak function to set the marker to the peak of the emission.

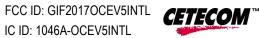
8.1.2 Limits:

Maximum Peak Output Power:

FCC 15.247: (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:

• (2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

RSS-247 5.4:


a. For FHSs operating in the band 902-928 MHz, the maximum peak conducted output power shall not
exceed 1.0 W, and the e.i.r.p. shall not exceed 4 W if the hopset uses 50 or more hopping channels; the
maximum peak conducted output power shall not exceed 0.25 W and the e.i.r.p. shall not exceed 1 W if the
hopset uses less than 50 hopping channels.

8.1.3 Test conditions and setup:

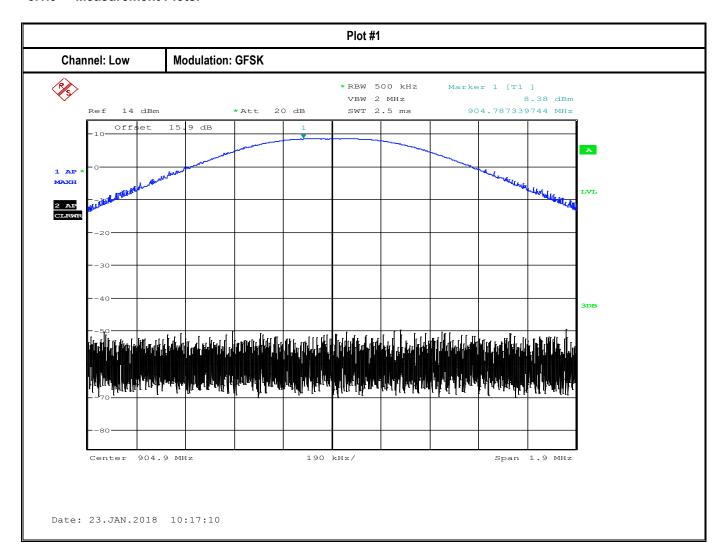
Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input	Antenna Gain
23° C	1	GFSK	3.66 VDC	Peak:1.00 dBi Average: -1.5 dBi

EMC_BADGRE_010_17001_15.247_DSS

03/08/2018 Page 14 of 46

8.1.4 Measurement result:

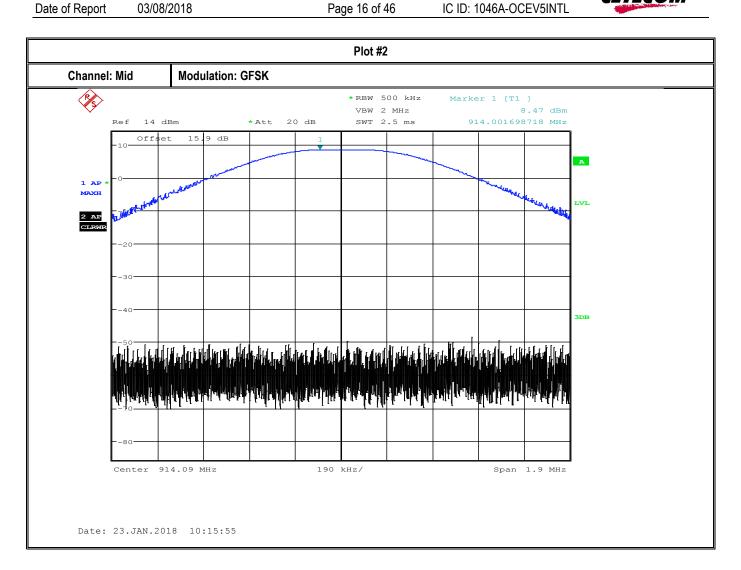
Plot #	Frequency (MHz)	EUT operating mode	Maximum Peak Conducted Output Power (dBm)	EIRP (dBm)	FCC Limit (dBm)	ISED Limit (dBm)	Result
1	904.9	GFSK	8.38	9.38	23.98	23.98(Pk) / 30(EIRP)	Pass
2	914.1	GFSK	8.47	9.47	23.98	23.98(Pk) / 30(EIRP)	Pass
3	923.7	GFSK	8.55	9.55	23.98	23.98(Pk) / 30(EIRP)	Pass


Page 15 of 46

FCC ID: GIF2017OCEV5INTL CETECOM IC ID: 1046A-OCEV5INTL

8.1.5 **Measurement Plots:**

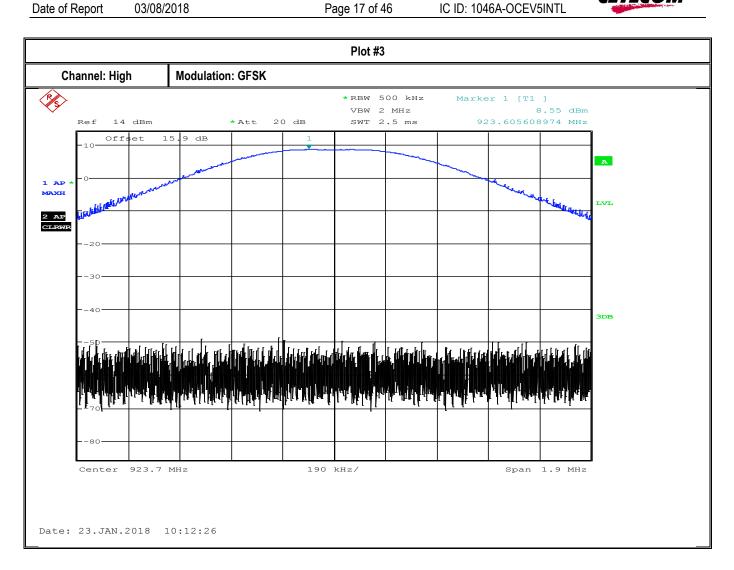
03/08/2018

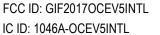


EMC_BADGRE_010_17001_15.247_DSS

Page 16 of 46

FCC ID: GIF2017OCEV5INTL CETECOM IC ID: 1046A-OCEV5INTL





EMC_BADGRE_010_17001_15.247_DSS

03/08/2018 Page 17 of 46 FCC ID: GIF2017OCEV5INTL CETECOM IC ID: 1046A-OCEV5INTL

8.2 Band Edge Compliance

8.2.1 Measurement according to ANSI C63.10 Section 6.10

Spectrum Analyzer settings for non-restricted band edge:

- Span: wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation.
- RBW ≥ 1% of the span
- VBW ≥ RBW
- Sweep Time: Auto couple
- Detector = Peak
- Trace = Max hold
- Allow the trace to stabilize. Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge.
- Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission.
- Now, using the same instrument settings, enable the hopping function of the EUT.
- Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

Spectrum Analyzer settings for restricted band:

Peak measurements are made using a peak detector and RBW=1 MHz

8.2.2 Limits: Restricted Band FCC 15.209 and RSS-Gen 8.10

- PEAK LIMIT= 74 dBµV/m @3 m =-21.23 dBm
- AVG. LIMIT= 54 dBµV/m @3 m =-41.23 dBm
- Start frequency & stop frequency according to frequency range specified in the restricted band table in FCC section 15.205

Restricted bands of operation:

 Except as shown in CFR 47 Part 15.205 paragraph (d), only spurious emissions are permitted in any of the frequency bands listed below

EMC_BADGRE_010_17001_15.247_DSS

03/08/2018 Page 19 of 46

FCC ID: GIF2017OCEV5INTL

IC ID: 1046A-OCEV5INTL

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

8.2.3 Limits: Non-restricted Band §15.247 and RSS-247 5.5

FCC15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

EMC_BADGRE_010_17001_15.247_DSS

03/08/2018 Page 20 of 46

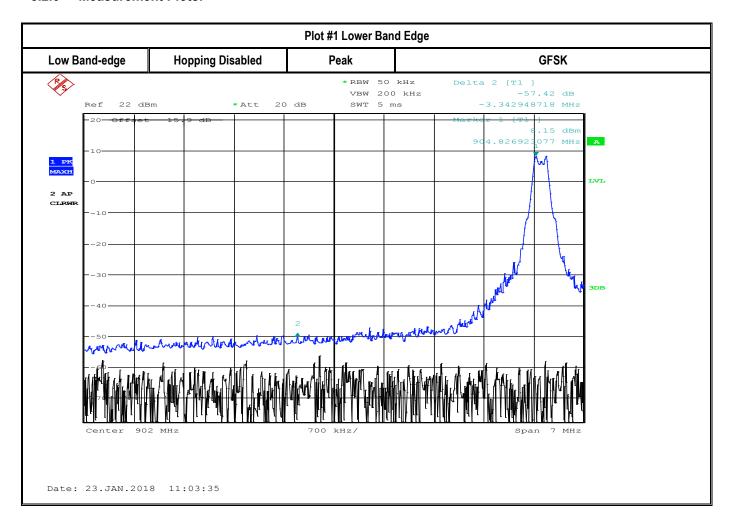
8.2.4 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input	Antenna gain
22° C	1	GFSK - fixed channel GFSK - hopping	3.66 VDC	Peak:1.00 dBi Average: -1.5 dBi

8.2.5 Measurement result:

Plot #	EUT operating mode	Band Edge	Band Edge Delta (dBc)	Limit (dBc)	Result
1	GFSK fixed channel	Lower, non-restricted	57.42	> 20	Pass
2	GFSK hopping	Lower, non-restricted	45.32	> 20	Pass

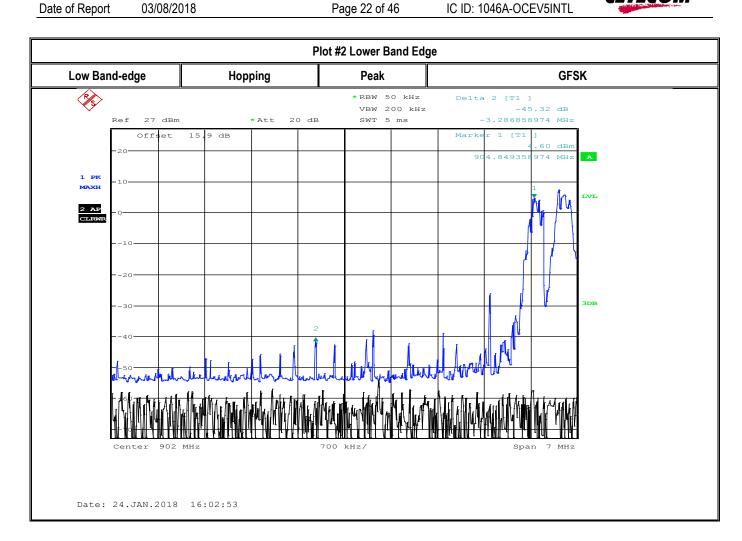
Plot #	EUT operating mode	Band Edge	Band Edge Delta (dBc)	Limit (dBm)	Result
3	GFSK fixed channel	Upper, non-restricted peak	59.86	>20	Pass
4	GFSK hopping	Upper, non-restricted peak	54.00	>20	Pass


Page 21 of 46

FCC ID: GIF2017OCEV5INTL **CETECOM**™ IC ID: 1046A-OCEV5INTL

8.2.6 **Measurement Plots:**

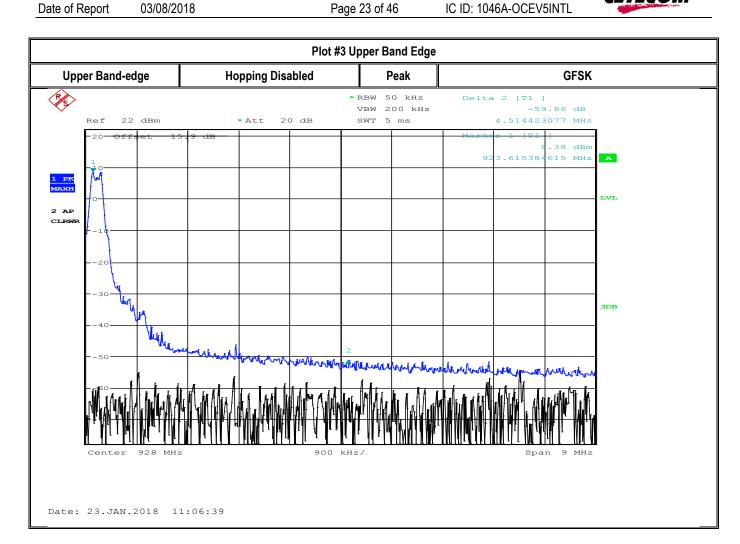
03/08/2018



EMC_BADGRE_010_17001_15.247_DSS

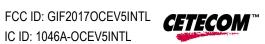
Page 22 of 46

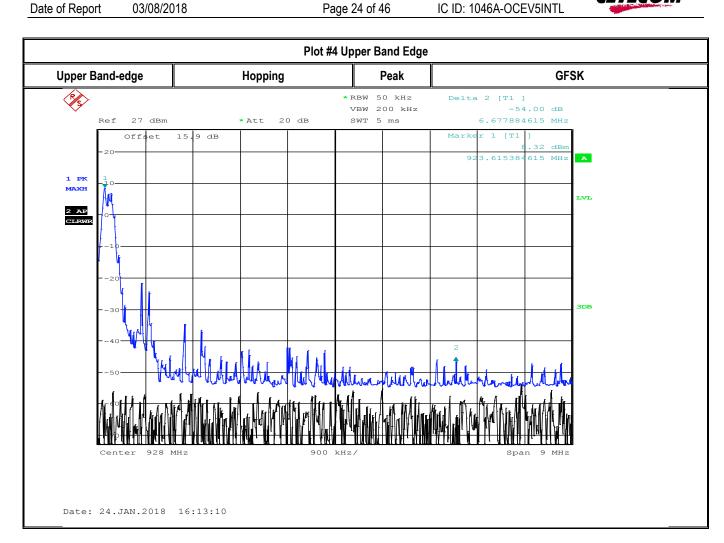
FCC ID: GIF2017OCEV5INTL CETECOM IC ID: 1046A-OCEV5INTL



EMC_BADGRE_010_17001_15.247_DSS

Page 23 of 46


FCC ID: GIF2017OCEV5INTL **CETECOM**™ IC ID: 1046A-OCEV5INTL



EMC_BADGRE_010_17001_15.247_DSS

03/08/2018 Page 24 of 46

03/08/2018 Page 25 of 46

FCC ID: GIF2017OCEV5INTL IC ID: 1046A-OCEV5INTL

8.3 20dB Bandwidth

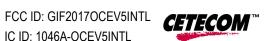
8.3.1 Measurement according to ANSI C63.10 Section 6.9.2

Spectrum Analyzer settings:

- Span: approximately 2 to 3 times the 20 dB bandwidth, centered on the hopping channel
- RBW ≥ 1% of the 20 dB bandwidth
- Sweep Time = Auto couple
- Detector = Peak
- Trace = Max hold

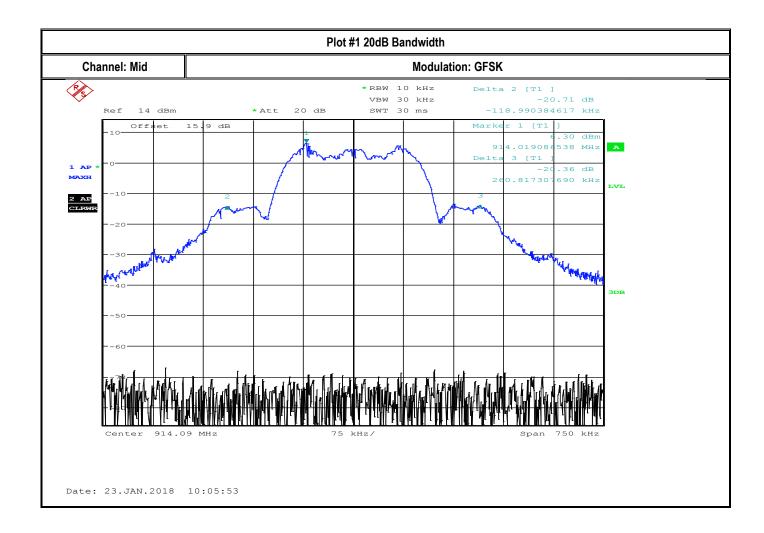
8.3.2 Limits: FCC 15.247 (a) (1) (i), RSS-247 5.1(c)

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.


8.3.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input
22° C	1	GFSK	3.66 VDC

8.3.4 Measurement result:


Plot #	EUT operating mode	20 dB Bandwidth (KHz)
1	GFSK fixed channel	379.8

Page 26 of 46 IC ID: 1046A-OCEV5INTL

8.3.5 Measurement Plots:

03/08/2018

8.4 Carrier Frequency Separation

8.4.1 Measurement according to ANSI C63.10 Section 7.8.2

Spectrum Analyzer settings:

- Span = Wide enough to capture the peaks of the two adjacent channels
- RBW ≥ 1% of the span
- VBW \geq RBW or 3 x
- Sweep = Auto couple
- Detector function = Peak
- Trace = Max hold
- Use marker-delta function to determine the separation between the peaks of the two adjacent channels.

8.4.2 Limits: FCC 15.247 (a) (1) & RSS-247 5.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

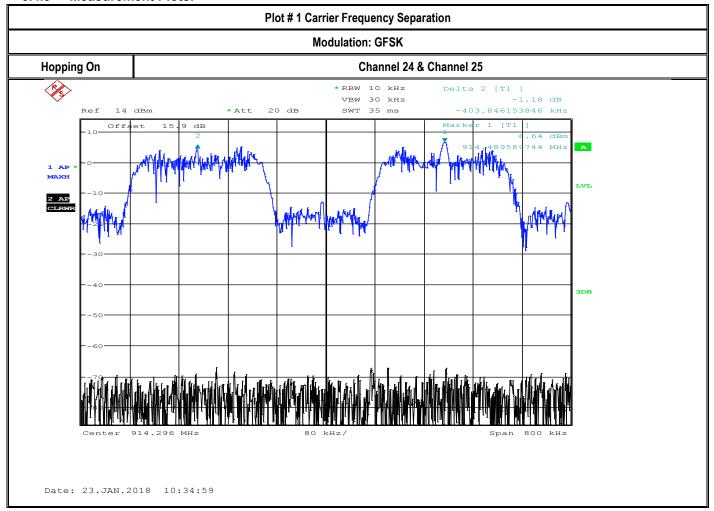
8.4.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up#	EUT operating mode	Power Input
23° C	1	GFSK Hopping	3.66VDC

8.4.4 Measurement result:

Plot #	Carrier Frequency Separation (KHz)	Limit (KHz)	Result
1	403.8	> 379.8	Pass

EMC_BADGRE_010_17001_15.247_DSS


Page 28 of 46

FCC ID: GIF2017OCEV5INTL CETECOM IC ID: 1046A-OCEV5INTL

8.4.5 **Measurement Plots:**

03/08/2018

8.5 Number of hopping channels

8.5.1 Measurement according to ANSI C63.10 Section 7.8.3

Spectrum Analyzer settings:

- Span = the entire frequency band of operation
- RBW ≥ 50 KHz
- VBW \geq RBW or 3X
- Sweep = Auto couple
- Detector function = Peak
- Trace = Max hold

8.5.2 Limits: FCC 15.247 (a) (1) (i) & RSS-247 5.1 (c)

At least 25 hopping frequencies.

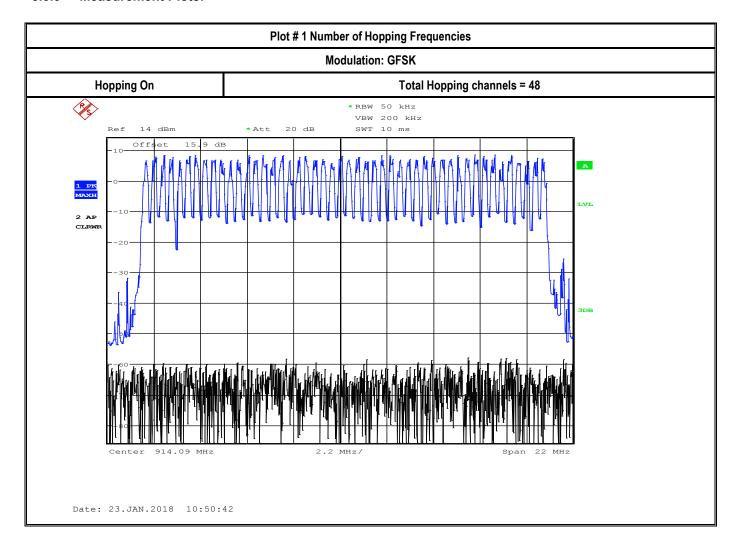
8.5.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input
23° C	1	GFSK hopping	3.66 VDC

Page 29 of 46

8.5.4 Measurement result:

Plot #	Number of Hopping Frequencies	Limit	Result
1	48	>25	Pass


Page 30 of 46

FCC ID: GIF2017OCEV5INTL CETECOM IC ID: 1046A-OCEV5INTL

8.5.5 **Measurement Plots:**

03/08/2018

8.6 Time of Occupancy (Dwell Time)

8.6.1 Measurement according to ANSI C63.10 Section 7.8.4

Spectrum Analyzer settings:

Duration of Pulse Measurement

- RBW = 1 MHz
- VBW = 3 MHz
- Span = 0
- Sweep Time = 10 ms
- Sweep Mode = Single
- Detector =Peak
- Trigger = Video

Observation Period

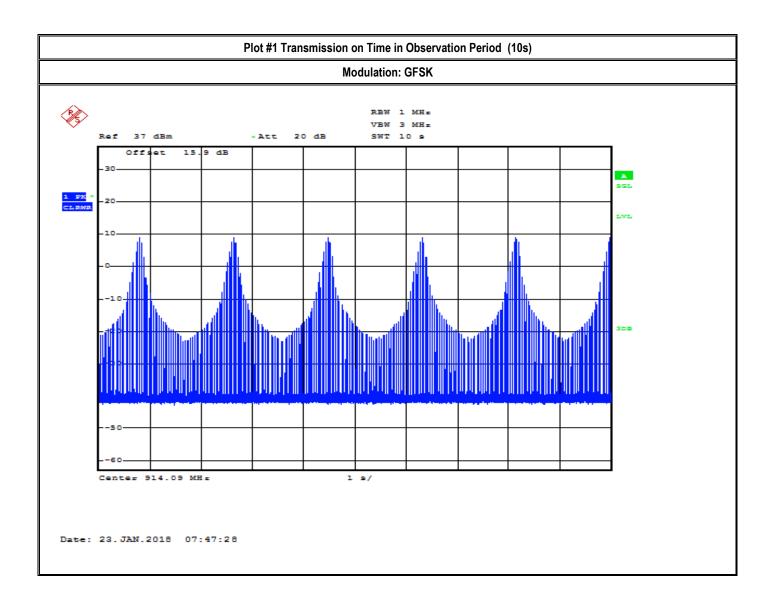
- RBW = 1 MHz
- VBW = 3 MHz
- Span = 0
- Sweep Time = 31.6 s
- Sweep Mode = Single
- Detector = Peak
- Trigger = Free Run

8.6.2 Limits: FCC 15.247 (a) (1) (i) RSS-247 5.1(c)

For FHSs in the band 902-928 MHz: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20-second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 10-second period. The maximum 20 dB bandwidth of the hopping channel shall be 500 kHz.

8.6.3 Test conditions and setup:

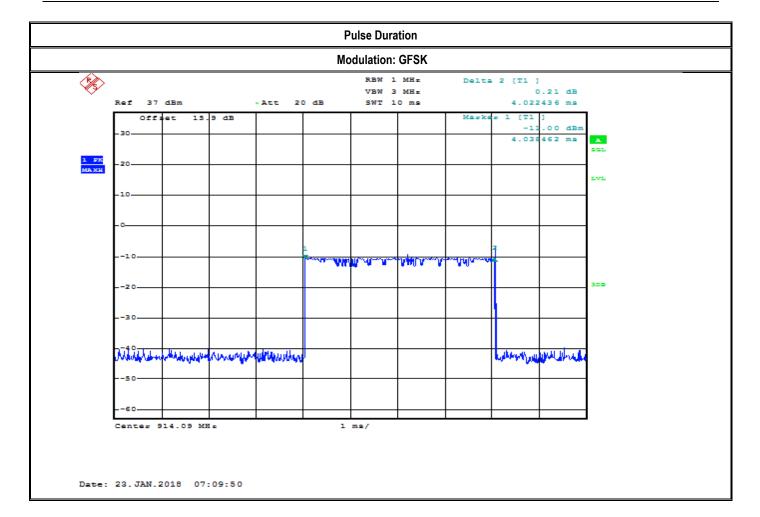
Ambient Temperature	EUT Set-Up#	EUT operating mode	Power Input		
23° C	1	GFSK hopping	3.66 VDC		



8.6.4 Measurement result:

Plot #	Modulation	Timing	Number of hops 10s	Pulse Width (ms)	Total Dwell Time in 10s (ms)	Limit (ms)	Result
1	GFSK	DH5	6	4.03	24.18	< 400 in 10s	Pass *Note

Note: According to the customer declaration the unit was tested in a test mode (worst case) but in Reality, the unit transmit rate is defaulted to once per 15 seconds.


8.6.5 Measurement Plots:

EMC_BADGRE_010_17001_15.247_DSS

03/08/2018 Page 33 of 46 FCC ID: GIF2017OCEV5INTL **CETECOM™** IC ID: 1046A-OCEV5INTL

8.7 Transmitter Spurious Emissions and Restricted Bands

8.7.1 Measurement according to ANSI C63.10

Analyzer Settings:

- Frequency = 9 KHz 30 MHz
- RBW = 9 KHz
- Detector = Peak
- Frequency = 30 MHz 1 GHz
- Detector = Peak / Quasi-Peak
- RBW = 120 KHz (<1 GHz)
- Frequency > 1 GHz
- Detector = Peak / Average
- RBW = 1MHz

Plots reported here represent the worst case emissions for horizontal and vertical antenna polarizations and for three orientations of the EUT. Unless mentioned otherwise, the emissions outside the limit lines in the plots are from the transmit signal.

8.7.2 Limits: FCC 15.247(d)/15.209(a) /RSS-Gen 6.13

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

Test Report #: EMC_BADGRE_010_17001_15.247_DSS

Date of Report 03/08/2018 Page 35 of 46 IC ID: 1046A-OCEV5INTL

FCC ID: GIF2017OCEV5INTL

 Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

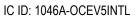
- PEAK LIMIT= 74dB μV/m
- AVG. LIMIT= 54dB μV/m
- Except as shown in CFR 47 Part 15.205 paragraph (d), only spurious emissions are permitted in any of the frequency bands listed below

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
0.009-0.490	2400/F(kHz)	300					
0.490-1.705	24000/F(kHz)	30					
1.705-30.0	30	30					
30-88	100**	3					
88-216	150**	3					
216-960	200**	3					
Above 960	500	3					

Radiated spurious emissions shall be measured for the transmit frequencies, transmit power, and data rate for the lowest, middle and highest channel in each frequency band of operation and for the highest gain antenna for each antenna type, and using the appropriate parameters and test requirements described in 5.4. The highest (or worst-case) data rate shall be recorded for each measurement.

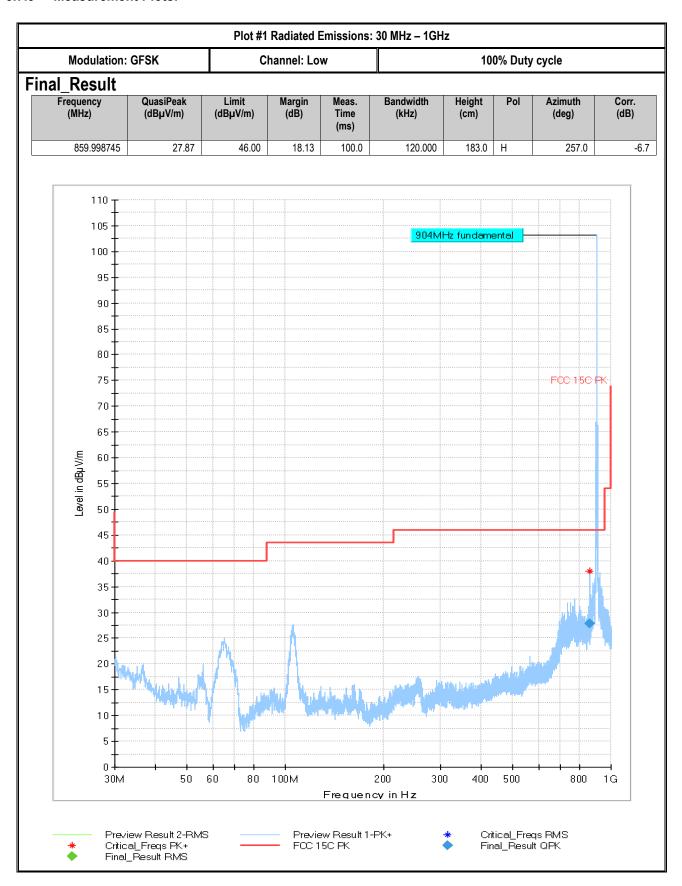
For testing at distance other than the specified in the standard, the limit conversion is calculated by using 40 dB/decade extrapolation as follow:

Conversion factor (CF) = $40 \log (D/d) = 40 \log (300 \text{ m} / 3 \text{ m}) = 80 \text{ dB}$


8.7.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input
23° C	2	GFSK fixed channel	3.8 VDC

8.7.4 Measurement result:


Plot #	Channel #	Scan Frequency	Limit	Result
1-3	Low	30 MHz – 18 GHz	See section 8.7.2	Pass
4-7	Mid	9 kHz – 26 GHz	See section 8.7.2	Pass
8-10	High	30 MHz – 18 GHz	See section 8.7.2	Pass

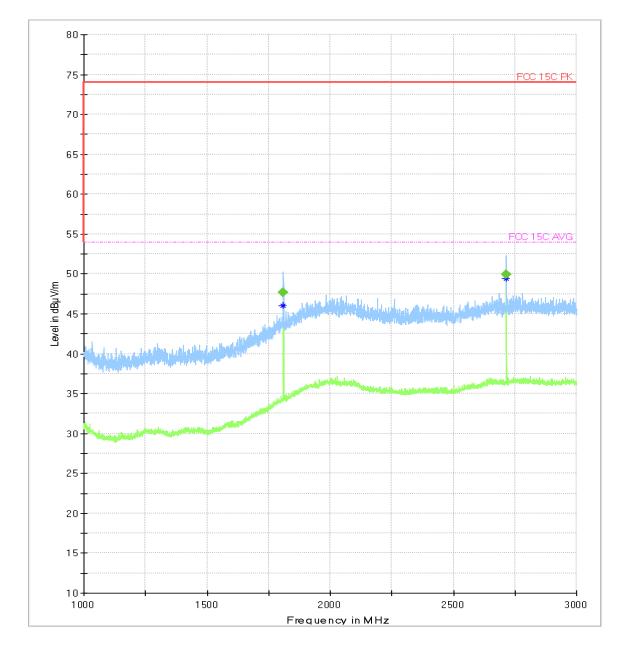
The duty cycle correction factor was calculated using the following formula:

8.7.5 **Measurement Plots:**

Page 36 of 46

EMC_BADGRE_010_17001_15.247_DSS

03/08/2018 Page 37 of 46 FCC ID: GIF2017OCEV5INTL CETECON IC ID: 1046A-OCEV5INTL



Plot # 2 Radiated Emissions: 1-3 GHz Channel: Low 100% Duty cycle

Final Result

Modulation: GFSK

Frequency (MHz)	RMS (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
1809.865000	47.72	53.98	6.26	10.0	1000.000	128.0	Н	327.0	-10.9
2714.655000	49.97	53.98	4.01	10.0	1000.000	139.0	Н	-5.0	-9.8

Preview Result 2-RMS Critical_Freqs PK+ Final_Result QPK

Preview Result 1-PK+ FCC 15C PK Final_Result RMS

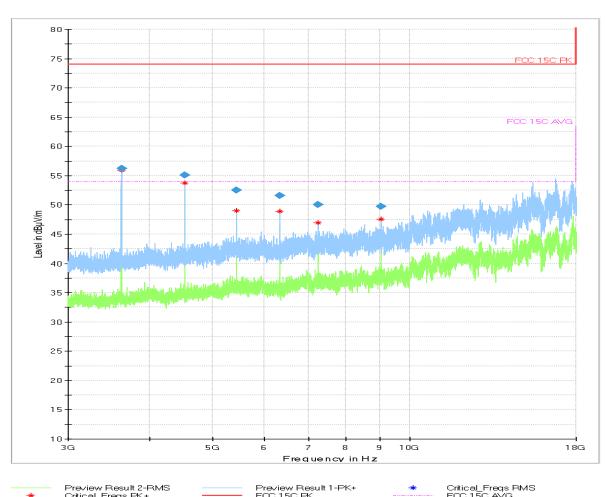
Critical_Freqs RMS FCC 15C AVG

03/08/2018

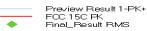
Page 38 of 46 IC ID: 1046A-OCEV5INTL

Plot # 3 Radiated Emissions: 3-18 GHz

Channel: Low 100% Dynamic Duty cycle **Modulation: GFSK**

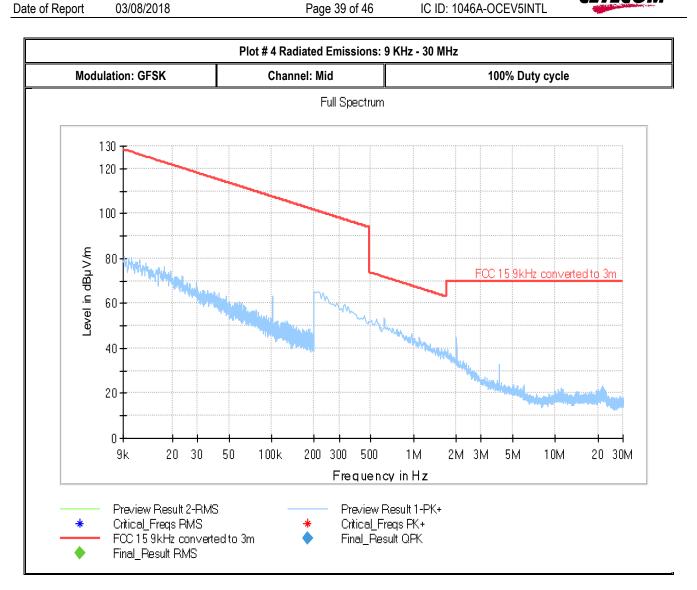

Final_Result

Date of Report


Frequency (MHz)	MaxPeak (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
3619.498000	56.25	73.99	17.74	10.0	1000.000	148.0	Н	165.0	-34.3
4524.224667	55.06	73.99	18.93	10.0	1000.000	219.0	Н	297.0	-32.5
5429.774000	52.51	73.99	21.48	10.0	1000.000	263.0	V	218.0	-29.9
6334.285333	51.62	73.99	22.36	10.0	1000.000	188.0	Н	8.0	-29.5
7238.564000	50.08	73.99	23.91	10.0	1000.000	247.0	V	196.0	-28.1
9048.686000	49.69	73.98	24.29	10.0	1000.000	154.0	V	216.0	-24.2

Corrected Final Result by applying duty cycle factor

	a	ניקקש ני		, J, J.J					
Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
3619.498000	44.05	53.99	9.94	10.0	1000.000	148.0	Н	165.0	-12.20
4524.224667	42.86	53.99	11.13	10.0	1000.000	219.0	Н	297.0	-12.20
5429.774000	40.31	53.99	13.68	10.0	1000.000	263.0	V	218.0	-12.20
6334.285333	39.42	53.99	14.57	10.0	1000.000	188.0	Н	8.0	-12.20
7238.564000	37.88	53.99	16.11	10.0	1000.000	247.0	V	196.0	-12.20
9048.686000	37.49	53.99	16.50	10.0	1000.000	154.0	V	216.0	-12.20



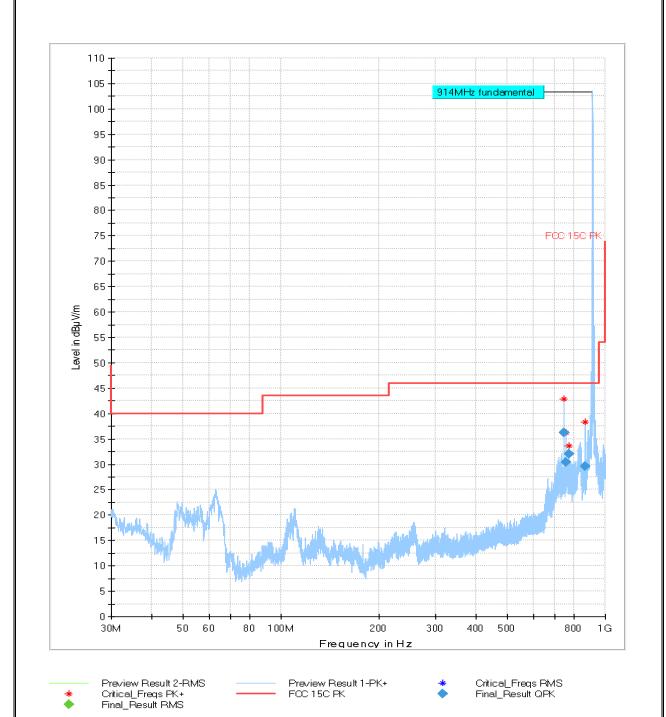
EMC_BADGRE_010_17001_15.247_DSS

Page 39 of 46

FCC ID: GIF2017OCEV5INTL CETECOM IC ID: 1046A-OCEV5INTL

Test Report #: EMC_BADGRE_010_17001_15.247_DSS

03/08/2018 Page 40 of 46 FCC ID: GIF2017OCEV5INTL **CETECOM**™ IC ID: 1046A-OCEV5INTL


Plot #5 Radiated Emissions: 30 MHz - 1GHz

Modulation: GFSK Channel: Mid 100% Duty cycle

Final Result

Date of Report

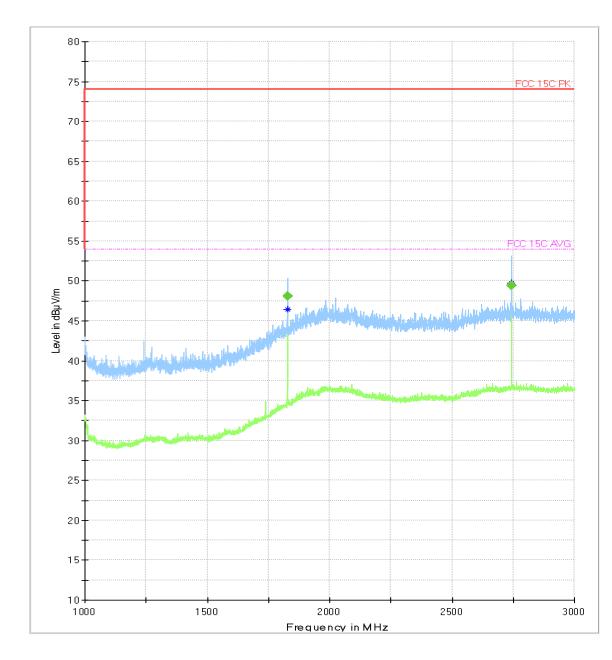
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
745.009320	36.29	46.00	9.71	100.0	120.000	169.0	Н	254.0	-8.0
758.039305	30.44	46.00	15.56	100.0	120.000	166.0	Н	253.0	-7.6
771.049000	32.03	46.00	13.97	100.0	120.000	127.0	Н	257.0	-7.9
869.101045	29.57	46.00	16.43	100.0	120.000	175.0	Н	250.0	-6.3

EMC_BADGRE_010_17001_15.247_DSS

03/08/2018

Modulation: GFSK

Page 41 of 46


FCC ID: GIF2017OCEV5INTL CETECOM IC ID: 1046A-OCEV5INTL

Plot #6 Radiated Emissions: 1-3 GHz Channel: Mid 100% Duty cycle

Final Result

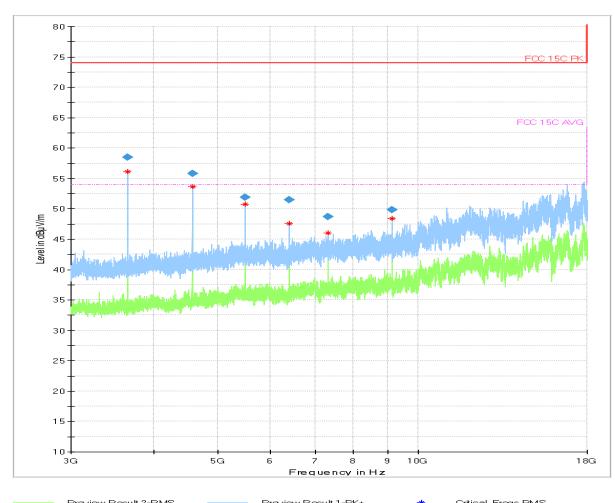
Frequency (MHz)	RMS (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
1828.250000	48.11	53.98	5.87	10.0	1000.000	133.0	Н	314.0	-10.6
2742.190000	49.48	53.98	4.50	10.0	1000.000	146.0	Η	280.0	-9.7

Preview Result 2-RMS Critical_Freqs PK+ Final_Result QPK

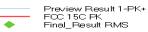
Preview Result 1-PK+ FCC 15C PK Final_Result RMS

Critical_Freqs RMS FCC 15C AVG

Plot #7 Radiated Emissions: 3-18 GHz

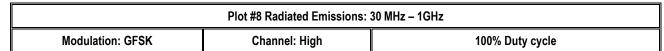

Modulation: GFSK Channel: Mid 100% Duty cycle

Final_Result

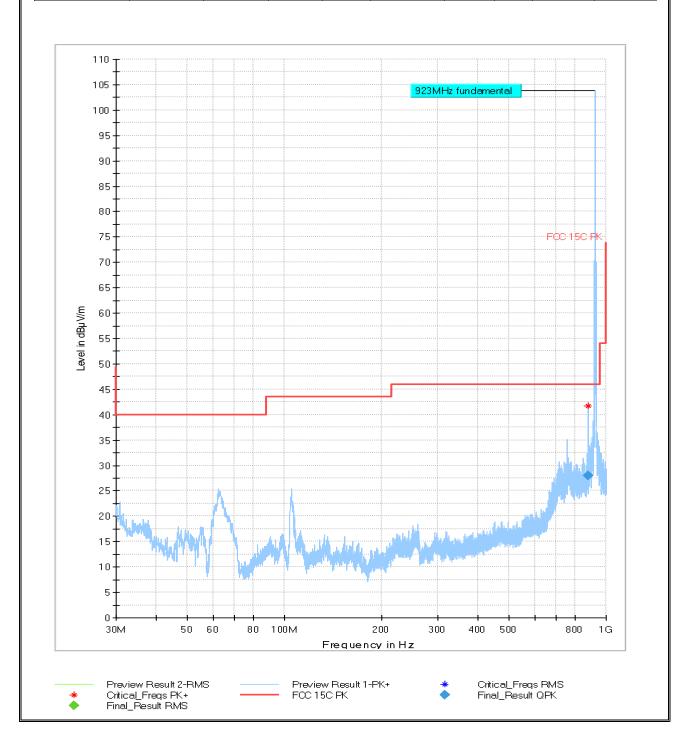

Frequency (MHz)	MaxPeak (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
3656.046667	58.48	73.99	15.51	10.0	1000.000	253.0	Н	177.0	-34.3
4570.845333	55.77	73.99	18.22	10.0	1000.000	100.0	Н	305.0	-32.7
5484.828000	51.94	73.99	22.05	10.0	1000.000	212.0	V	222.0	-29.9
6399.184000	51.47	73.99	22.52	10.0	1000.000	194.0	Н	5.0	-29.4
7312.672667	48.70	73.99	25.28	10.0	1000.000	271.0	V	184.0	-28.3
9141.760000	49.79	73.98	24.19	10.0	1000.000	108.0	V	210.0	-24.3

Corrected Final_Result by applying duty cycle factor

Frequency (MHz)	MaxPeak (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
3656.046667	46.28	53.98	7.70	10.0	1000.000	253.0	Н	177.0	-12.20
4570.845333	43.57	53.98	10.41	10.0	1000.000	100.0	Н	305.0	-12.20
5484.828000	39.74	53.98	14.24	10.0	1000.000	212.0	V	222.0	-12.20
6399.184000	39.27	53.98	14.71	10.0	1000.000	194.0	Н	5.0	-12.20
7312.672667	36.50	53.98	17.48	10.0	1000.000	271.0	V	184.0	-12.20
9141.760000	37.59	53.98	16.39	10.0	1000.000	108.0	٧	210.0	-12.20



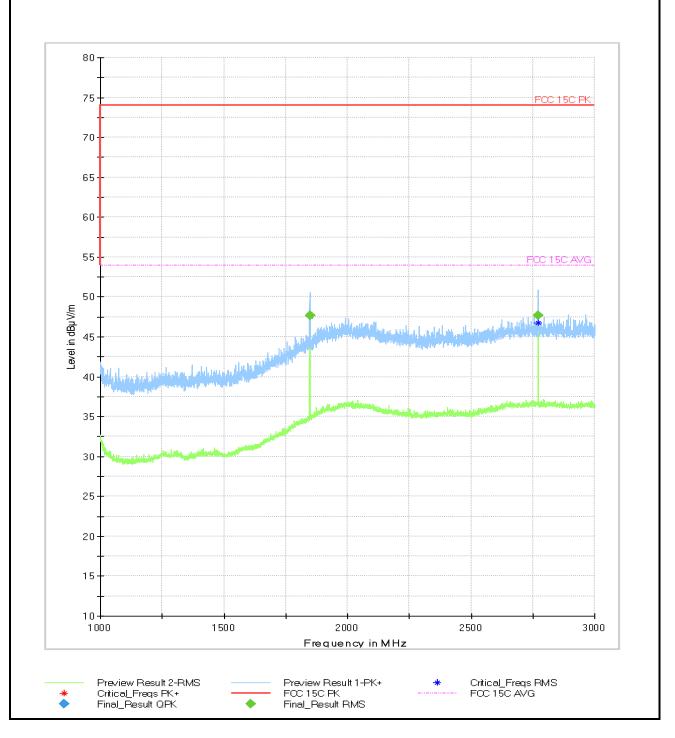
EMC_BADGRE_010_17001_15.247_DSS


03/08/2018 Page 43 of 46 FCC ID: GIF2017OCEV5INTL CETECOM IC ID: 1046A-OCEV5INTL

Final Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
878.770325	28.04	46.00	17.96	100.0	120.000	177.0	Н	256.0	-6.1

EMC_BADGRE_010_17001_15.247_DSS


03/08/2018 Page 44 of 46 FCC ID: GIF2017OCEV5INTL CETECOM IC ID: 1046A-OCEV5INTL

Plot # 9 Radiated Emissions: 1-3 GHz and Restricted Bands Modulation: GFSK Channel: High 100% Duty cycle

Final Result

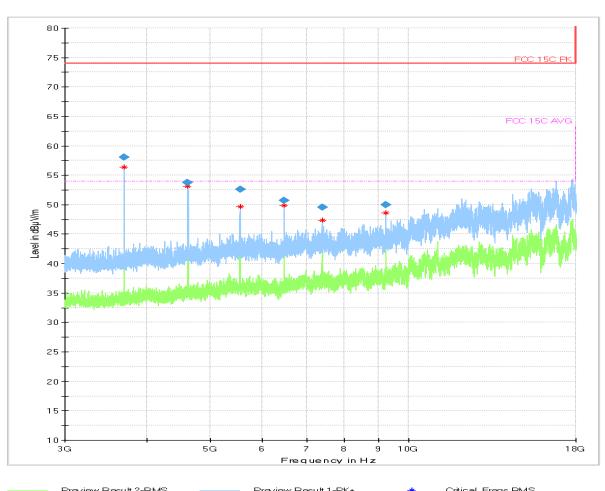
Frequency (MHz)	RMS (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
1847.145000	47.68	53.98	6.30	10.0	1000.000	151.0	Н	321.0	-10.4
2770.905000	47.63	53.98	6.35	10.0	1000.000	164.0	I	48.0	-9.5

EMC_BADGRE_010_17001_15.247_DSS 03/08/2018 Page 45 of 46

FCC ID: GIF2017OCEV5INTL IC ID: 1046A-OCEV5INTL

Plot #10 Radiated Emissions: 3-18 GHz

Modulation: GFSK Channel: High 100% Duty cycle


Final Result

Date of Report

Frequency (MHz)	MaxPeak (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
6466.150667	50.72	73.99	23.27	10.0	1000.000	231.0	Н	4.0	-28.7
7389.068667	49.61	73.99	24.38	10.0	1000.000	284.0	Н	132.0	-28.0
3694.498000	58.01	73.99	15.98	10.0	1000.000	187.0	Н	163.0	-34.3
9236.484667	49.95	73.98	24.03	10.0	1000.000	116.0	V	209.0	-23.9
4618.772000	53.74	73.99	20.25	10.0	1000.000	215.0	V	137.0	-32.6
5541.737333	52.57	73.99	21.42	10.0	1000.000	268.0	V	210.0	-30.0

Corrected Final_Result by applying duty cycle factor

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
6466.150667	38.52	53.99	15.47	10.0	1000.000	231.0	Н	4.0	-12.20
7389.068667	37.41	53.99	16.58	10.0	1000.000	284.0	Н	132.0	-12.20
3694.498000	45.81	53.99	8.18	10.0	1000.000	187.0	Н	163.0	-12.20
9236.484667	37.75	53.99	16.24	10.0	1000.000	116.0	V	209.0	-12.20
4618.772000	41.54	53.99	12.45	10.0	1000.000	215.0	V	137.0	-12.20
5541.737333	40.37	53.99	13.62	10.0	1000.000	268.0	V	210.0	-12.20

03/08/2018 Page 46 of 46

FCC ID: GIF2017OCEV5INTL IC ID: 1046A-OCEV5INTL

9 <u>Test setup photos</u>

Setup photos are included in supporting file name: "EMC_BADGE_010_17001_15.247_DSS_Setup_Photos.pdf"

10 Test Equipment And Ancillaries Used For Testing

Equipment Type	Manufacturer	Model	Serial #	Calibration Cycle	Last Calibration Date
PASSIVE LOOP ANTENNA	ETS LINDGREN	6512	00164698	3 YEARS	08/08/2017
BOLOG ANTENNA	TESEO	CBL 6141B	41106	3 YEARS	11/01/2017
HORN ANTENNA	ETS LINDGREN	3117	00167061	3 YEARS	08/08/2017
SIGNAL ANALYZER	R&S	FSU26	200065	2 YEARS	03/07/2017
SIGNAL ANALYZER	R&S	FSV 40	101022	2 YEARS	07/05/2017
COMPACT DIGITAL BAROMETER	CONTROL COMPANY	35519-055	91119547	1 YEARS	06/05/2017
THRMOMETER HUMIDIY DICKSON		TM320	16253639	1 YEARS	11/02/2017

Note:

Equipment used meets the measurement uncertainty requirements as required per applicable standards for 95% confidence levels.

Calibration due dates, unless defined specifically, falls on the last day of the month. Items indicated "N/A" for cal status either do not specifically require calibration or is internally characterized before use.

11 Revision History

Date	Report Name	Changes to report	Report prepared by
03/08/2018	EMC_BADGE_010_17001_15.247_DSS	Initial Version	Issa Ghanma