

FCC Radio Test Report

FCC ID: GDDMXU-270

Report No. : BTL-FCCP-2-2207T123

Equipment: CHERRY KW X ULP Keyboard

Model Name : MXU-270 Brand Name : CHERRY

Applicant: Cherry Europe GmbH

Address : Cherrystr. Auerbach_OPf. Germany 91275

Radio Function : Short Range Devices

FCC Rule Part(s)
Measurement

: FCC CFR Title 47, Part 15, Subpart C

: ANSI C63.10-2013

Procedure(s)

Date of Receipt : 2022/8/2

Date of Test : 2022/8/2 ~ 2022/8/26

Issued Date : 2022/9/14

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Eric Lee. Engineer

Approved by

Jerry Chuang, Supervisor

Testing Laboratory

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2207T123 Page 2 of 44 Report Version: R00

CONTENTS REVISION HISTORY 4 5 SUMMARY OF TEST RESULTS 1.1 **TEST FACILITY** 6 MEASUREMENT UNCERTAINTY 1.2 6 1.3 TEST ENVIRONMENT CONDITIONS 6 1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 7 1.5 **DUTY CYCLE** 7 2 **GENERAL INFORMATION** 8 2.1 **DESCRIPTION OF EUT** 8 2.2 **TEST MODES** 10 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 11 2.4 SUPPORT UNITS 12 3 AC POWER LINE CONDUCTED EMISSIONS TEST 13 13 3.1 LIMIT 3.2 **TEST PROCEDURE** 13 3.3 **DEVIATION FROM TEST STANDARD** 13 TEST SETUP 3.4 14 3.5 **TEST RESULT** 14 4 RADIATED EMISSIONS TEST 15 4.1 LIMIT 15 4.2 **TEST PROCEDURE** 16 4.3 **DEVIATION FROM TEST STANDARD** 16 4.4 **TEST SETUP** 16 4.5 **EUT OPERATING CONDITIONS** 17 4.6 TEST RESULT - 30 MHZ TO 1 GHZ 18 4.7 TEST RESULT - ABOVE 1 GHZ 18 5 **BANDWIDTH TEST** 19 5.1 APPLIED PROCEDURES / LIMIT 19 5.2 **TEST PROCEDURE** 19 **DEVIATION FROM STANDARD** 5.3 19 5.4 **TEST SETUP** 19 5.5 **EUT OPERATION CONDITIONS** 19 5.6 **TEST RESULTS** 19 6 LIST OF MEASURING EQUIPMENTS 20 7 **EUT TEST PHOTO** 21 **EUT PHOTOS** 21 APPENDIX A AC POWER LINE CONDUCTED EMISSIONS 22 APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ 27 **RADIATED EMISSIONS - ABOVE 1 GHZ** 30 APPENDIX C APPENDIX D **BANDWIDTH** 43

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-2-2207T123	R00	Original Report.	2022/9/14	Valid

Project No.: 2207T123 Page 4 of 44 Report Version: R00

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.249(a)(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass	
15.215(c)	Bandwidth	APPENDIX D	Pass	

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

Project No.: 2207T123 Page 5 of 44 Report Version: R00

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

□ CB16 □ CB08 □ CB11 □ CB15 □ CB16

⊠ SR05

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

□ C06 ⊠ CB21 □ CB22

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately $\mathbf{95}$ %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 $\mathbf{U}_{\text{cispr}}$ requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB21	1 GHz ~ 6 GHz	5.21
CDZI	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

Test Item	U,(dB)
Bandwidth	0.5334

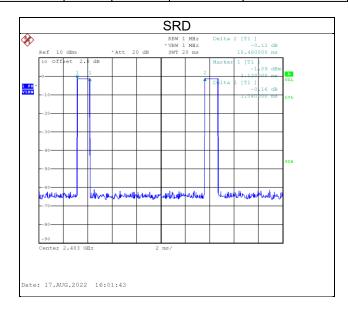
NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	21 °C, 51 %	AC 120V	Jay Tien
Radiated emissions below 1 GHz	28 °C, 62 %	DC 5V	Mark Wang
Radiated emissions above 1 GHz	28 °C, 62 %	DC 5V	Mark Wang
Bandwidth	23.9 °C, 56 %	DC 5V	Paul Shen

Project No.: 2207T123 Page 6 of 44 Report Version: R00


1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

Test Software	MXU-270 V0.1					
Frequency	2403 MHz 2441 MHz 2480 MHz Data Rate					
SRD	DEF	DEF	DEF	2 Mbps		

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle
iviode	(ms)	(ON)	(ms)	(ms)	(%)
SRD	1.040	1	1.040	10.480	9.92%

Project No.: 2207T123 Page 7 of 44 Report Version: R00

GENERAL INFORMATION

2.1 **DESCRIPTION OF EUT**

Equipment	CHERRY KW X ULP Keyboard
Model Name	MXU-270
Brand Name	CHERRY
Model Difference	N/A
Power Source	(1) DC voltage supplied from USB Port. (2) Battery supplied.
Power Rating	(1) DC 5V; max. 500 mA (2) 2800mAh 3.7V 10.36Wh; Charge limited Voltage 4.2V
Products Covered	1* RF module: NORDIC / nRF52833
Frequency Range	2400 MHz ~ 2483.5 MHz
Operation Frequency	2403 MHz ~ 2480 MHz
Modulation Technology	GFSK
Transfer Rate	2 Mbps
Field Strength	93.06 dBuV/m
Test Model	MXU-270
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.
 (2) Channel List:

nannei List:	Frequency		Frequency		Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
01	2403	27	2429	53	2455
02	2404	28	2430	54	2456
03	2405	29	2431	55	2457
04	2406	30	2432	56	2458
05	2407	31	2433	57	2459
06	2408	32	2434	58	2460
07	2409	33	2435	59	2461
08	2410	34	2436	60	2462
09	2411	35	2437	61	2463
10	2412	36	2438	62	2464
11	2413	37	2439	63	2465
12	2414	38	2440	64	2466
13	2415	39	2441	65	2467
14	2416	40	2442	66	2468
15	2417	41	2443	67	2469
16	2418	42	2444	68	2470
17	2419	43	2445	69	2471
18	2420	44	2446	70	2472
19	2421	45	2447	71	2473
20	2422	46	2448	72	2474
21	2423	47	2449	73	2475
22	2424	48	2450	74	2476
23	2425	49	2451	75	2477
24	2426	50	2452	76	2478
25	2427	51	2453	77	2479
26	2428	52	2454	78	2480

Project No.: 2207T123 Page 8 of 44 Report Version: R00

(3) Table for Filed Antenna:

Ant.	Brand	Model	Antenna Type	Connector	Gain (dBi)
1	Unictron Technologies Corp.	AA055C	Chip	N/A	-1.7

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

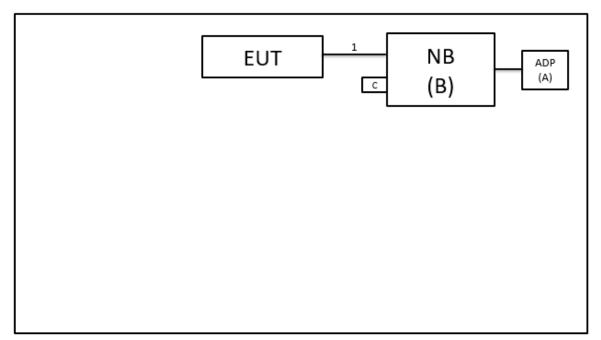
Project No.: 2207T123 Page 9 of 44 Report Version: R00

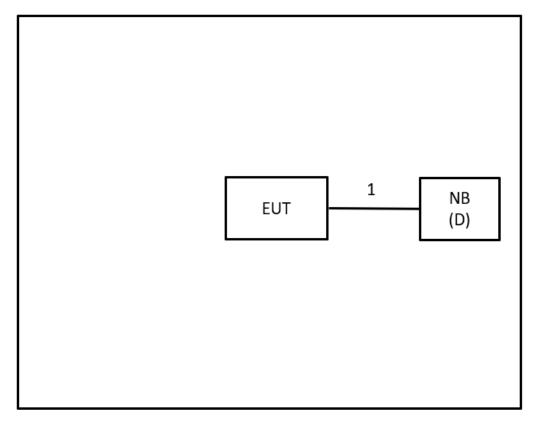
2.2 **TEST MODES**

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	SRD	78	-
Transmitter Radiated Emissions	SRD	01/39/78	Fundamental
(above 1GHz)	SRD	01/39/78	Harmonic
Bandwidth	SRD	01/39/78	-

NOTE:

- (1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.
- (2) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.
 (3) There were no emissions found below 30 MHz within 20 dB of the limit.


Project No.: 2207T123 Page 10 of 44 Report Version: R00


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC Power Line Conducted Emissions Test

Radiated Emissions Test

Project No.: 2207T123 Page 11 of 44 Report Version: R00

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	ADP	ASUS	ADP-90YD B	N/A	Furnished by test lab.
В	NB	ASUS	X450J	N/A	Furnished by test lab.
С	Dongle	CHERRY	MXU-270R	N/A	Supplied by test requester
D	NB	HP	TPN-I119	N/A	Furnished by test lab.

ı						
	Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
l	1	N/A	N/A	1.5m	USB cable	Supplied by test requester

Project No.: 2207T123 Page 12 of 44 Report Version: R00

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dΒμV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.50 - 5.0	56	46
5.0 - 30.0	60	50

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

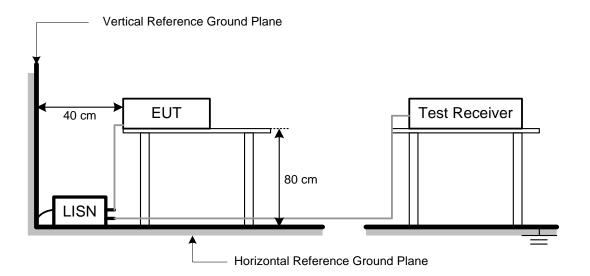
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2207T123 Page 13 of 44 Report Version: R00

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency	Radiated (dBu	Measurement Distance	
(MHz)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

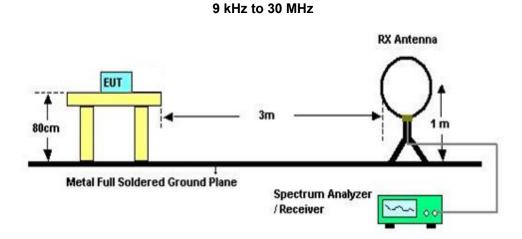
Reading Level		Correct Factor		Measurement Value
19.11	+	2.11	=	21.22

Measurement Value		Limit Value		Margin Level
21.22	ı	54	=	-32.78

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RBW / VBW	1MHz / 3MHz for Peak,		
(Emission in restricted band)	1MHz / 1/T for Average		

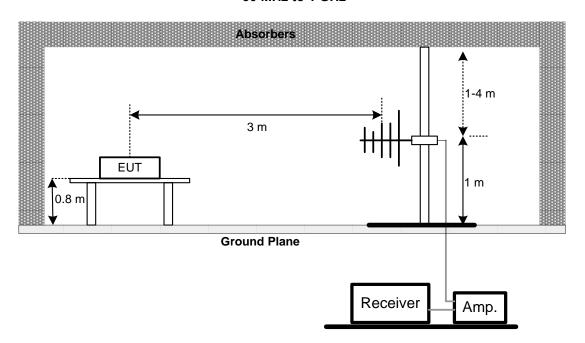
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2207T123 Page 15 of 44 Report Version: R00

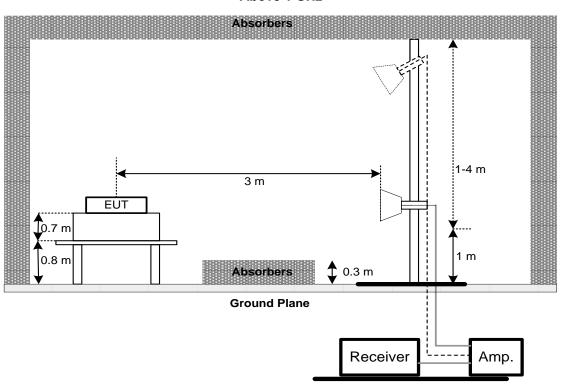

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

Report No.: BTL-FCCP-2-2207T123 TEST RESULT - 30 MHZ TO 1 GHZ 4.6 Please refer to the APPENDIX B. **TEST RESULT - ABOVE 1 GHZ** Please refer to the APPENDIX C. NOTE: (1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2207T123 Page 18 of 44 Report Version: R00

5 BANDWIDTH TEST

5.1 APPLIED PROCEDURES / LIMIT

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

Project No.: 2207T123 Page 19 of 44 Report Version: R00

6 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	TWO-LINE V-NETWORK	R&S	ENV216	101051	2022/6/15	2023/6/14					
2	Test Cable	EMCI	EMCRG58-BM-BM-90 00	210501	2022/5/2	2023/5/1					
3	EMI Test Receiver	R&S	ESR 7	101433	2021/11/24	2022/11/23					
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A					

	Radiated Emissions									
Item	Kind of Equipment	Manufacturer	facturer Type No.		Calibrated Date	Calibrated Until				
1	Preamplifier	EMCI	EMC330N	980850	2021/9/23	2022/9/22				
2	Preamplifier	EMCI	EMC118A45SE	980819	2022/3/8	2023/3/7				
3	Preamplifier	EMCI	EMC001340	980555	2022/4/6	2023/4/5				
4	Test Cable	EMCI	EMC104-SM-SM-1000	220319	2022/3/15	2023/3/14				
5	Test Cable	EMCI	EMC104-SM-SM-3000	220322	2022/3/15	2023/3/14				
6	Test Cable	EMCI	EMC104-SM-SM-7000	220324	2022/3/15	2023/3/14				
7	EXA Signal Analyzer	keysight	sight N9020A		2022/3/7	2023/3/6				
8	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2022/6/16	2023/6/15				
9	Horn Antenna	RFSPIN	DRH18-E	211202A18E N	2022/5/18	2023/5/17				
10	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2022/5/18	2023/5/17				
11	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2022/5/20	2023/5/19				
12	6dB Attenuator	EMCI	EMCI-N-6-06	AT-N0625	2022/5/20	2023/5/19				
13	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A				

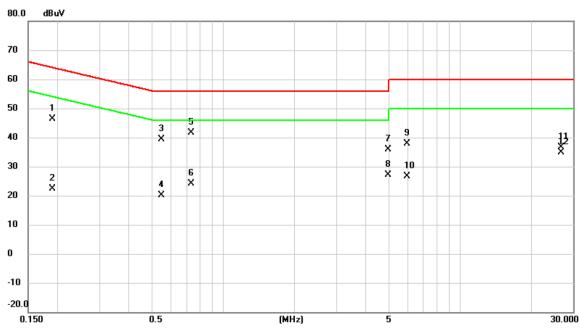
	Bandwidth									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Spectrum Analyzer	R&S	FSP38	101139	2022/3/2	2023/3/1				

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2207T123 Page 20 of 44 Report Version: R00

7 EUT TEST PHOTO
Please refer to document Appendix No.: TP-2207T123-FCCP-1 (APPENDIX-TEST PHOTOS).
8 EUT PHOTOS
Please refer to document Appendix No.: EP-2207T123-1 (APPENDIX-EUT PHOTOS).

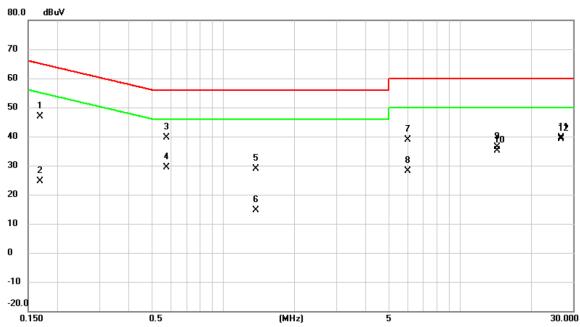
Project No.: 2207T123 Page 21 of 44 Report Version: R00



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2207T123 Page 22 of 44 Report Version: R00

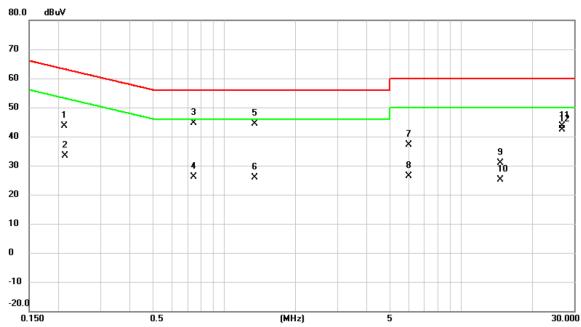
Test Mode	Normal	Tested Date	2022/8/17
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1905	36.87	9.63	46.50	64.01	-17.51	QP	
2		0.1905	12.65	9.63	22.28	54.01	-31.73	AVG	
3		0.5503	29.83	9.62	39.45	56.00	-16.55	QP	
4		0.5503	10.62	9.62	20.24	46.00	-25.76	AVG	
5	*	0.7327	31.88	9.64	41.52	56.00	-14.48	QP	
6		0.7327	14.38	9.64	24.02	46.00	-21.98	AVG	
7		4.9650	26.07	9.75	35.82	56.00	-20.18	QP	
8		4.9650	17.33	9.75	27.08	46.00	-18.92	AVG	
9		5.9820	28.21	9.77	37.98	60.00	-22.02	QP	
10		5.9820	16.97	9.77	26.74	50.00	-23.26	AVG	
11		26.6235	26.76	9.76	36.52	60.00	-23.48	QP	
12		26.6235	25.03	9.76	34.79	50.00	-15.21	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

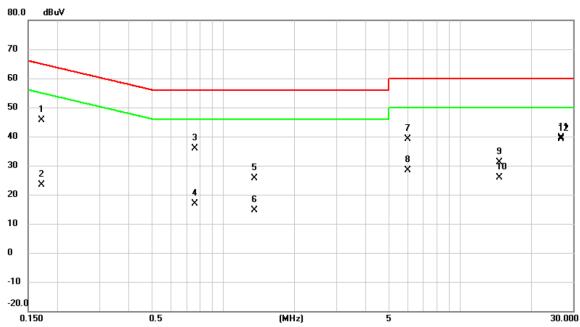
Test Mode	Normal	Tested Date	2022/8/17
Test Frequency	-	Phase	Neutral



No. IV	1k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1685	37.17	9.63	46.80	65.03	-18.23	QP	
2	0.1685	15.09	9.63	24.72	55.03	-30.31	AVG	
3	0.5752	30.06	9.62	39.68	56.00	-16.32	QP	
4	0.5752	19.80	9.62	29.42	46.00	-16.58	AVG	
5	1.3740	19.10	9.67	28.77	56.00	-27.23	QP	
6	1.3740	4.88	9.67	14.55	46.00	-31.45	AVG	
7	6.0338	28.98	9.78	38.76	60.00	-21.24	QP	
8	6.0338	18.33	9.78	28.11	50.00	-21.89	AVG	
9	14.3363	26.56	9.90	36.46	60.00	-23.54	QP	
10	14.3363	25.25	9.90	35.15	50.00	-14.85	AVG	
11	26.6235	29.62	9.98	39.60	60.00	-20.40	QP	
12 *	26.6235	29.15	9.98	39.13	50.00	-10.87	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2022/8/17
Test Frequency	-	Phase	Line

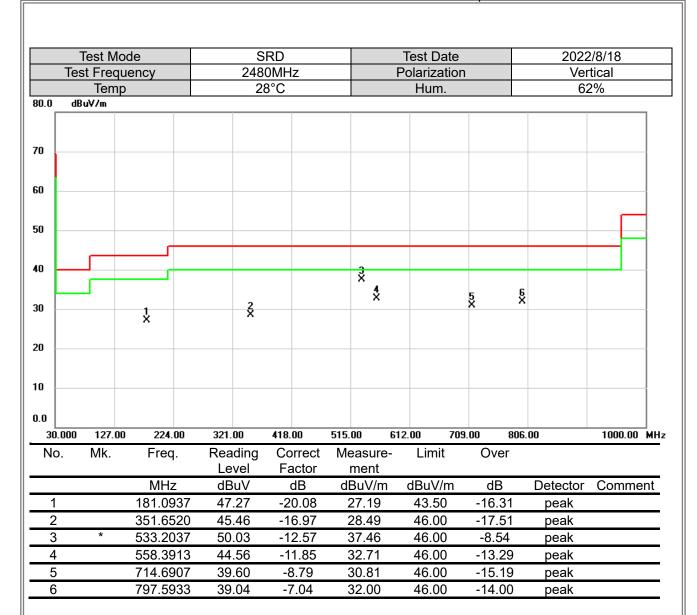


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2117	33.97	9.63	43.60	63.14	-19.54	QP	
2	0.2130	23.71	9.63	33.34	53.09	-19.75	AVG	
3	0.7417	35.10	9.64	44.74	56.00	-11.26	QP	
4	0.7417	16.49	9.64	26.13	46.00	-19.87	AVG	
5	1.3448	34.59	9.67	44.26	56.00	-11.74	QP	
6	1.3448	16.33	9.67	26.00	46.00	-20.00	AVG	
7	6.0113	27.27	9.77	37.04	60.00	-22.96	QP	
8	6.0113	16.59	9.77	26.36	50.00	-23.64	AVG	
9	14.6738	21.07	9.83	30.90	60.00	-29.10	QP	
10	14.6738	15.40	9.83	25.23	50.00	-24.77	AVG	
11	26.6235	33.92	9.76	43.68	60.00	-16.32	QP	
12 *	26.6235	32.68	9.76	42.44	50.00	-7.56	AVG	

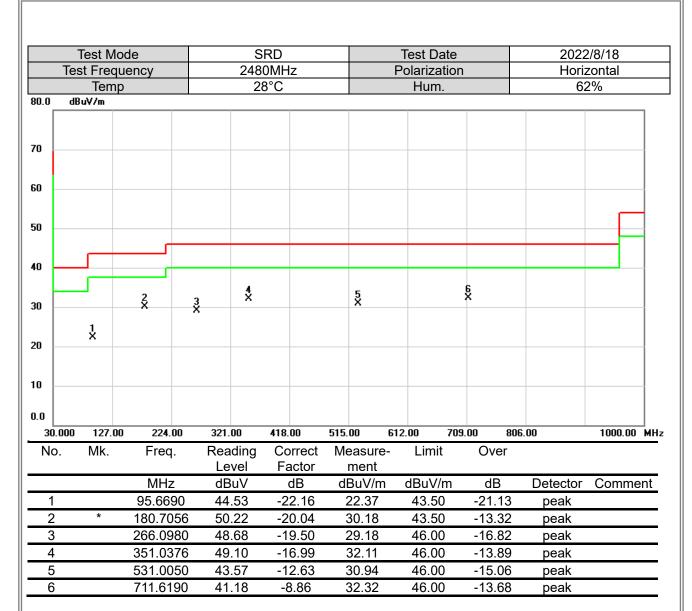
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2022/8/17
Test Frequency	-	Phase	Neutral

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1712	36.01	9.63	45.64	64.90	-19.26	QP	
2	0.1712	13.73	9.63	23.36	54.90	-31.54	AVG	
3	0.7575	26.13	9.65	35.78	56.00	-20.22	QP	
4	0.7575	7.18	9.65	16.83	46.00	-29.17	AVG	
5	1.3515	16.07	9.67	25.74	56.00	-30.26	QP	
6	1.3515	4.85	9.67	14.52	46.00	-31.48	AVG	
7	6.0113	29.41	9.78	39.19	60.00	-20.81	QP	
8	6.0113	18.50	9.78	28.28	50.00	-21.72	AVG	
9	14.6940	21.27	9.90	31.17	60.00	-28.83	QP	
10	14.6940	16.02	9.90	25.92	50.00	-24.08	AVG	
11	26.6235	29.64	9.98	39.62	60.00	-20.38	QP	
12 *	26.6235	29.19	9.98	39.17	50.00	-10.83	AVG	


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ


Project No.: 2207T123 Page 27 of 44 Report Version: R00

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2207T123 Page 30 of 44 Report Version: R00

	Test Mo			RD		Test Date			2/8/18
Tes	t Frequ	ency		3MHz		Polarization	1		tical
	Temp		2	8°C		Hum.		62	2%
0.0 dB	uV/m								
0									
0									
0									
					Å				
					2 X				
.									
physical	an de de la companya	hayan en handra de handra	hadan daya da	Marinelum	Mary Jangania	May May May May	~*************	en manamadian application and the grant	Marchalander
ı									
.0									
2353.00	0 2363.00	2373.00	2383.00	2393.00	2403.00 2	413.00 242	23.00 243	3.00	2453.00 M
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
		MHz	Level dBuV	Factor dB	ment dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2403.000	91.60	-5.75	85.85	114.00	-28.15	peak	20111110111
1		2700.000	01.00	0.10					

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = 0

Т	est Mod	de	S	RD			Test Dat	е	2022	2/8/18
Tes	t Freque	ency	240	3MHz		F	Polarizati	on	Horiz	zontal
	Temp		28	3°C			Hum.		62	2%
30.0 dB	iV/m									
20										
10										
00										
·					À					
,										
ı					2 X					
ı					A					
,										
Mayrellan	الهدوره والمعاورة المراهوالدي	hryscotystyrtekrollprysekrokon	garmagis (p ^a l-s) projection deprintment	han and the state of the state of	per VII	horonglish	hrandrighershistasia	فبينوهن ويوطون بوالب فحطود مالفتو	harmounderen	Martin Market by
,										
,										
).0										
	2363.00		2383.00	2393.00	2403.00	24		2423.00 24	33.00	2453.00 M
No.	Mk.	Freq.	Reading Level	Correct Factor	Measu men		Limit	Over		
		MHz	dBuV	dB	dBuV/		dBuV/m	ı dB	Detector	Comment
1	*	2403.000	98.81	-5.75	93.06	3	114.00	-20.94	peak	
2		2403.000	93.06	-20.31	72.75	5	94.00	-21.25	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = 0

•	Test Mod	de	S	RD		Test Dat	е	2022	2/8/18
Tes	st Frequ	ency	244	1MHz		Polarizati	on	Ver	tical
	Temp		2	8°C		Hum.		62	2%
30.0 dB	luV/m								
20									
10									
00									
) 🗀					ı				
,					$-\Lambda$				
					2 X				
)					$+$ 1\-				
) <u> </u>					+				
graphyre.	hawarahan maka	Acres Carrenage Person	and the property of the second	madrando la copolica de	aral Jankel	the material and the second	warphlikathradeppm	thakhirkan takisan	w _a daniphyriaddish _a bhadh
,									
o									
0.0									
2391.00	0 2401.00	2411.00	2421.00	2431.00	2441.00	2451.00 2	2461.00 247	71.00	2491.00 M
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	n dB	Detector	Comment
1	*	2441.000	92.39	-5.70	86.69	114.00	-27.31	peak	
2		2441.000	86.69	-20.31	66.38	94.00	-27.62	AVG	<u></u>

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = 0

	Test Mo	de	S	RD		Test Date		2022	2/8/18
Те	st Frequ	iency		1MHz		Polarization	า		zontal
	Temp		2	8°C		Hum.		62	2%
30.0 d	BuV/m								
20									
0									
00									
					Å				
,									
·					2 X				
,									
,				LL LL	$\mathbb{A} \setminus \mathbb{A}$				
-2-4/166/10	y mande de la complexación de la	Mary warman Marine	eneral methodological and and	documental de Marilla	H Whyn	Mandage 1980 Makana Makan	material stages of the second	4 marian Caranter Caranter	grant the second of the second of
,									
, 📙									
0.0									
2391.0	00 2401.0	0 2411.00	2421.00	2431.00	2441.00		61.00 247	1.00	2491.00 M
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2441.000	97.95	-5.70	92.25	114.00	-21.75	peak	
2		2441.000	92.25	-20.31	71.94	94.00	-22.06	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = 0

	Test Mod			RD		Test Date			2/8/18
Tes	st Frequ			0MHz		Polarization	1		tical
20.0	Temp		2	8°C		Hum.		62	2%
30.0 dB	uV/m								
20									
10									
00									
)					ţ				
) 					$-\Lambda$				
					2 X				
)		1			$\int \int \int \int dx$				
I SAULAIN	(NEWHARAN)	there my water property	der garanter der er der der der er der der der er der d	Maran Jallon Shiran Hall Ma	er source,	- missister in military in an analysis	and activity of the second of the	ROBERT PARAMETERS	Mark Charles September 18 Miles
)									
,									
).0									
	0 2440.00		2460.00	2470.00				0.00	2530.00 MI
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2480.000	91.83	-5.65	86.18	114.00	-27.82	peak	
2		2480.000	86.18	-20.31	65.87	94.00	-28.13	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = 0

-	Test Mod	de	S	RD		Test Date	е	2022	2/8/18
Tes	st Frequ	ency		0MHz		Polarization	on		zontal
	Temp		2	8°C		Hum.		62	2%
130.0 dB	uV/m								
120									
110									
100									
90					1				
во					A				
70					2 X				
60									
50									
40	laghard was shaped and shall	and the state of t	Martin of the state of the stat	are and a second	y" \maketa	formalistan of the formal and the second	arma or said follower to be	which the special of the street	vetra, vojeka krevidansk
30									
20									
10.0									
2430.00	0 2440.00	2450.00	2460.00	2470.00	2480.00	2490.00 2	2500.00 251	0.00	2530.00
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure ment	e- Limit	Over		
		MHz	dBuV	dB	dBuV/m	n dBuV/m	n dB	Detector	Commen
1	*	2480.000	93.02	-5.65	87.37	114.00	-26.63	peak	
2		2480.000	87.37	-20.31	67.06	94.00	-26.94	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = 0

	Test Mo	de			SRD		Test Da	ate	2022	2/8/18
Te	est Frequ	iency			03MHz		Polariza	tion		rtical
	Temp)			28°C		Hum		62	2%
130.0 d	BuV/m									
120										
110										
100										
30										
30 -										
70										
60 <u> </u>										
50										
10		X .								
30										
20		2 X								
10.0										
	00 3550.0			8650.00	11200.00	13750.00	16300.00		21400.00	26500.00 MH
No.	Mk.	Freq	-	Readino Level	g Correct Factor	Measure ment	e- Limit	Ove	Γ	
		MHz	<u> </u>	dBuV	dB	dBuV/n	n dBuV/	m dB	Detector	Comment
1	*	4806.0	000	39.33	0.66	39.99	74.00	-34.0		
2	•	4806.0	000	39.99	-20.31	19.68	54.00	-34.3	2 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = 0

	Test Mo	ode			SRD		Test Date		2022	2/8/18
Te	st Frequ	uency			3MHz		Polarizatio	n		zontal
	Temp)		2	28°C		Hum.		62	2%
130.0 d	BuV/m									
120										
110										
100										
90										
80										
70										
60										
50										
40		1 X								
30										
20		2 X								
10.0	00 0550	20 010		0050 00	11200.00	10750.00	10000 00 10	000 00 01	100.00	20500 00 144
No.	00 3550.0 Mk.	oo 6100 Freq		8650.00 Reading	11200.00 Correct	13750.00 Measure		850.00 214 Over	00.00	26500.00 MH:
NO.	IVIIV.	1 164		Level	Factor	ment	LIIIII	Ovei		
		MHz	<u> </u>	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	4806.0	000	38.78	0.66	39.44	74.00	-34.56	peak	
2		4806.0	000	39.44	-20.31	19.13	54.00	-34.87	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = 0

	Test Mo			SRD		Test Date			2/8/18
Te	est Frequ			41MHz		Polarization	1		tical
	Temp)		28°C		Hum.		62	2%
130.0 d	BuV/m								
120									
10									
100									
10									
30 -									
'o 💳									
SO									
50			1 ×						
ю			2						
30			X						
20									
10.0									
	00 3550.0			11200.00				100.00	26500.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	7323.000		5.56	53.07	74.00	-20.93	peak	
2		7323.000	53.07	-20.31	32.76	54.00	-21.24	AVG	

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.
 Average Correct Factor = 20Log(duty cycle) = 0

	Test Mo	de		S	RD			Test D	ate		2022/8/18		
	st Frequ				1MHz			Polariza				zontal	
	Temp				8°C			Hum				2%	
130.0 di	BuV/m												
120													
110													
100													
90													
80													
70													
60													
50			×										
40													
30			2 X										
20													
10.0													
	00 3550.00			0.00	11200.00	13750		16300.00	18850.00	21400.00		26500.00 MF	
No.	Mk.	Freq.		ading evel	Correct Factor		asure- nent	Limi	t Ov	er			
		MHz	dE	₿uV	dB		uV/m	dBuV	/m dl	B De	tector	Comment	
1	*	7323.00	0 44	.36	5.56	49	9.92	74.0	0 -24	.08 р	eak		
2		7323.00	0 49	.92	-20.31	29	9.61	54.0	0 -24	.39 <i>A</i>	₩G		

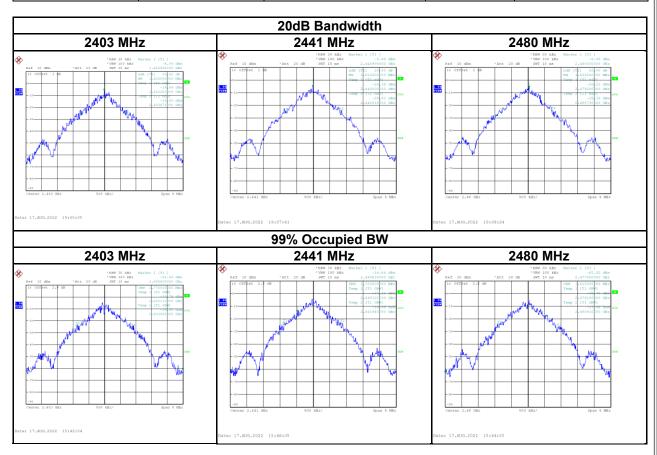
- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = 0

-	Test Mod	de			S	RD				Test Da	ite		2022	2/8/18	
Test Frequency				2480MHz				Polarization					Vertical		
Temp				28°C				Hum.					62	62%	
130.0 dB	uV/m														
120															
110															
100															
90															
80															
70															
60				1											
50				×.											
40				2											
30				x											
20															
10.0															
	0 3550.00			865		11200.0		3750.00		300.00	18850.00		400.00	26500.00 MH	
No.	Mk.	Freq.			iding vel	Corre Facto		اeasu) ment		Limit	C	ver			
		MHz		dE	₿uV	dB		dBuV/ı		dBuV/r	m (dB	Detector	Comment	
1	*	7440.00	00	46	.80	5.60		52.40)	74.00	-2	1.60	peak		
2		7440.00	00	52	.40	-20.3	1	32.09)	54.00	-2	1.91	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = 0

-	Test Mod	de		S	RD			Т	est Da	ite		2022	2/8/18	
Tes		2480MHz				Polarization					Horizontal			
Temp				28°C				Hum.					62%	
130.0 dB	uV/m													
120														
110														
100														
90														
80														
70														
60														
50			X X											
40														
30			2 X											
20														
10.0														
	0 3550.00			0.00	11200.00	1375	asure		00.00 Limit	18850.	00 21 Over	400.00	26500.00 MH	
No.	Mk.	Freq.		ading evel	Correct Factor		asure nent	-	LIIIIII		Ovei			
		MHz		₿uV	dB		3uV/m	-	dBuV/r	n	dB	Detector	Comment	
1	*	7440.00	0 43	.49	5.60	4	9.09		74.00	-	24.91	peak		
2		7440.00	0 49	.09	-20.31	2	28.78		54.00	-	25.22	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = 0


Report No.: BTL-FCCP-2-2207T123 APPENDIX D BANDWIDTH

Project No.: 2207T123 Page 43 of 44 Report Version: R00

Test Mode: SRD

Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result
2403	1.42	1.77	500	Pass
2441	1.61	1.72	500	Pass
2480	1.53	1.81	500	Pass

End of Test Report