FCC §15.247 (i) , §1.1310 , §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247(i)and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure								
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)				
0.3-1.34	614	1.63	*(100)	30				
1.34–30	824/f	2.19/f	*(180/f ²)	30				
30-300	27.5	0.073	0.2	30				
300-1500	/	/	f/1500	30				
1500-100,000	/	/	1.0	30				

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculation Formula:

Prediction of power density at the distance of the applicable MPE limit:

 $S = PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_i}{S_{Limit,i}} \leq 1$$

Calculated Data:

	Frequency (MHz)	EIRP		Evaluation	Power	MPE
Mode		(dBm)	(mW)	Distance (cm)	Density (mW/cm ²)	Limit (mW/cm ²)
915MHz Radio	903.24- 926.76	24	251.19	20.00	0.05	0.6
Bluetooth	2402-2480	4.2	2.63	20.00	0.0005	1.0

Note: the conducted output power including turn up tolerance for 915MHz radio is 18dBm, antenna gain is 6 dBi, that declared by manufacturer.

The 915MHz radio and Bluetooth can transmit simultaneously:

$$\sum_{i} \frac{S_i}{S_{\textit{Limit},i}}$$

 $= S_{915}/Limit_{915} + S_{BT}/Limit_{BT}$

= 0.05/0.6 + 0.0005/1.0

=0.08

Result: Compliance, The device meets MPE requirement for Devices Used by the General Public (Uncontrolled Environment) at distance ≥ 20 cm.