4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
$400-6000 \mathrm{MHz}$	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
$3-300$	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3%

Page: 5/11

[^0]| 10 g | 20.1% |
| :---: | :---: |

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

6.3 MECHANICAL DIMENSIONS

Frequency MHz	L mm		h mm		d mm	
	required	measured	required	measured	required	measured
300	$420.0 \pm 1 \%$.		$250.0 \pm 1 \%$.		$6.35 \pm 1 \%$.	

Page: 6/11

[^1]SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.273.4.18.SATU.A

450	$290.0 \pm 1 \%$.		$166.7 \pm 1 \%$.		$6.35 \pm 1 \%$.	
750	$176.0 \pm 1 \%$.		$100.0 \pm 1 \%$.		$6.35 \pm 1 \%$.	
835	$161.0 \pm 1 \%$.		$89.8 \pm 1 \%$.		$3.6 \pm 1 \%$.	
900	$149.0 \pm 1 \%$.		$83.3 \pm 1 \%$.		$3.6 \pm 1 \%$.	
1450	$89.1 \pm 1 \%$.		$51.7 \pm 1 \%$.		$3.6 \pm 1 \%$.	
1500	$80.5 \pm 1 \%$.		$50.0 \pm 1 \%$.		$3.6 \pm 1 \%$.	
1640	$79.0 \pm 1 \%$.		$45.7 \pm 1 \%$.		$3.6 \pm 1 \%$.	
1750	$75.2 \pm 1 \%$.		$42.9 \pm 1 \%$.		$3.6 \pm 1 \%$.	
1800	$72.0 \pm 1 \%$.		$41.7 \pm 1 \%$.		$3.6 \pm 1 \%$.	
1900	$68.0 \pm 1 \%$.		$39.5 \pm 1 \%$.		$3.6 \pm 1 \%$.	
1950	$66.3 \pm 1 \%$.		$38.5 \pm 1 \%$.		$3.6 \pm 1 \%$.	
2000	$64.5 \pm 1 \%$.		$35.5 \pm 1 \%$.		$3.6 \pm 1 \%$.	
2100	$61.0 \pm 1 \%$.		$32.6 \pm 1 \%$.		$3.6 \pm 1 \%$.	
2300	$55.5 \pm 1 \%$.		$30.4 \pm 1 \%$.		$3.6 \pm 1 \%$.	PASS
2450	$51.5 \pm 1 \%$.		$28.8 \pm 1 \%$.	PASS		
2600	$48.5 \pm 1 \%$.	PASS		$25.0 \pm 1 \%$.		$3.6 \pm 1 \%$.
3000	$41.5 \pm 1 \%$.		$26.4 \pm 1 \%$.		$3.6 \pm 1 \%$.	
3500	$37.0 \pm 1 \%$.		$26.4 \pm 1 \%$.		$3.6 \pm 1 \%$.	
3700	$34.7 \pm 1 \%$.					

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity $\left\{\varepsilon_{r}{ }^{\prime}\right\}$		Conductivity $(\sigma) \mathbf{S} / \mathrm{m}$	
	required	measured	required	measured
300	$45.3 \pm 5 \%$		$0.87 \pm 5 \%$	
450	$43.5 \pm 5 \%$		$0.87 \pm 5 \%$	
750	$41.9 \pm 5 \%$		$0.89 \pm 5 \%$	
835	$41.5 \pm 5 \%$		$0.90 \pm 5 \%$	
900	$41.5 \pm 5 \%$		$0.97 \pm 5 \%$	
1450	$40.5 \pm 5 \%$		$1.20 \pm 5 \%$	
1500	$40.4 \pm 5 \%$		$1.23 \pm 5 \%$	
1640	$40.2 \pm 5 \%$		$1.31 \pm 5 \%$	
1750	$40.1 \pm 5 \%$		$1.37 \pm 5 \%$	

Page: 7/11

[^2]SAR REFERENCE DIPOLE CALIBRATION REPORT
Ref: ACR.273.4.18.SATU.A

1800	$40.0 \pm 5 \%$		$1.40 \pm 5 \%$	
1900	$40.0 \pm 5 \%$		$1.40 \pm 5 \%$	
1950	$40.0 \pm 5 \%$		$1.40 \pm 5 \%$	
2000	$40.0 \pm 5 \%$		$1.40 \pm 5 \%$	
2100	$39.8 \pm 5 \%$		$1.49 \pm 5 \%$	
2300	$39.5 \pm 5 \%$		$1.67 \pm 5 \%$	
2450	$39.2 \pm 5 \%$		$1.80 \pm 5 \%$	
2600	$39.0 \pm 5 \%$	PASS	$1.96 \pm 5 \%$	PASS
3000	$38.5 \pm 5 \%$		$2.40 \pm 5 \%$	
3500	$37.9 \pm 5 \%$		$2.91 \pm 5 \%$	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 39.8 sigma : 1.99
Distance between dipole center and liquid	10.0 mm
Area scan resolution	$\mathrm{dx}=8 \mathrm{~mm} / \mathrm{dy}=8 \mathrm{~mm}$
Zoon Scan Resolution	$\mathrm{dx}=5 \mathrm{~mm} / \mathrm{dy}=5 \mathrm{~mm} / \mathrm{dz}=5 \mathrm{~mm}$
Frequency	2600 MHz
Input power	20 dBm
Liquid Temperature	$21^{\circ} \mathrm{C}$
Lab Temperature	$21^{\circ} \mathrm{C}$
Lab Humidity	$45^{\circ} \%$

Frequency MHz	$\mathbf{1} \mathrm{g}$ SAR (W/kg/W)		$\mathbf{1 0 g} \mathrm{SAR}(\mathrm{W} / \mathrm{kg} / \mathrm{W})$	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	

Page: 8/11

[^3]| 1900 | 39.7 | | 20.5 | |
| :---: | :---: | :---: | :---: | :---: |
| 1950 | 40.5 | | 20.9 | |
| 2000 | 41.1 | | 21.1 | |
| 2100 | 43.6 | | 21.9 | |
| 2300 | 48.7 | | 23.3 | |
| 2450 | 52.4 | | 24 | |
| 2600 | 55.3 | $56.91(5.69)$ | 24.6 | $24.69(2.47)$ |
| 3000 | 63.8 | | 25.7 | |
| 3500 | 67.1 | | 25 | |
| 3700 | 67.4 | | 24.2 | |

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity $\left(\varepsilon_{r}{ }^{\prime}\right)$		Conductivity $(\sigma) \mathbf{S} / \mathbf{m}$	
	required	measured	required	measured
150	$61.9 \pm 5 \%$		$0.80 \pm 5 \%$	
300	$58.2 \pm 5 \%$		$0.92 \pm 5 \%$	
450	$56.7 \pm 5 \%$		$0.94 \pm 5 \%$	
750	$55.5 \pm 5 \%$		$0.96 \pm 5 \%$	
835	$55.2 \pm 5 \%$		$0.97 \pm 5 \%$	
900	$55.0 \pm 5 \%$		$1.05 \pm 5 \%$	
915	$55.0 \pm 5 \%$		$1.06 \pm 5 \%$	
1450	$54.0 \pm 5 \%$		$1.30 \pm 5 \%$	
1610	$53.8 \pm 5 \%$		$1.40 \pm 5 \%$	
1800	$53.3 \pm 5 \%$		$1.52 \pm 5 \%$	
1900	$53.3 \pm 5 \%$		$1.52 \pm 5 \%$	
2000	$53.3 \pm 5 \%$		$1.52 \pm 5 \%$	
2100	$53.2 \pm 5 \%$		$1.62 \pm 5 \%$	

Page: 9/11

[^4]SAR REFERENCE DIPOLE CALIBRATION REPORT
Ref: ACR.273.4.18.SATU.A

2300	$52.9 \pm 5 \%$		$1.81 \pm 5 \%$	
2450	$52.7 \pm 5 \%$		$1.95 \pm 5 \%$	
2600	$52.5 \pm 5 \%$	PASS	$2.16 \pm 5 \%$	PASS
3000	$52.0 \pm 5 \%$		$2.73 \pm 5 \%$	
3500	$51.3 \pm 5 \%$		$3.31 \pm 5 \%$	
3700	$51.0 \pm 5 \%$		$3.55 \pm 5 \%$	
5200	$49.0 \pm 10 \%$		$5.30 \pm 10 \%$	
5300	$48.9 \pm 10 \%$		$5.42 \pm 10 \%$	
5400	$48.7 \pm 10 \%$		$5.53 \pm 10 \%$	
5500	$48.6 \pm 10 \%$		$5.65 \pm 10 \%$	
5600	$48.5 \pm 10 \%$		$5.77 \pm 10 \%$	
5800	$48.2 \pm 10 \%$		$6.00 \pm 10 \%$	

7.4 SAR MEASUREMENT RESULT WITH BODY LIOUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 52.5 sigma :2.23
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx $=8 \mathrm{~mm} / \mathrm{dy}=8 \mathrm{~mm}$
Zoon Scan Resolution	$\mathrm{dx}=5 \mathrm{~mm} / \mathrm{dy}=5 \mathrm{~mm} / \mathrm{dz}=5 \mathrm{~mm}$
Frequency	2600 MHz
Input power	20 dBm
Liquid Temperature	$21^{\circ} \mathrm{C}$
Lab Temperature	$21^{\circ} \mathrm{C}$
Lab Humidity	$45^{\circ} \%$

Frequency MHz	$\mathbf{1 g} \mathrm{gAR}(\mathrm{W} / \mathrm{kg} / \mathrm{W})$	10 g SAR $(\mathrm{W} / \mathrm{kg} / \mathrm{W})$
	measured	measured
2600	$54.14(5.41)$	$24.13(2.41)$

Page: 10/11

[^5]SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.273.4.18.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet

| Equipment
 Description | Manufacturer/
 Model | Identification No. | Current
 Calibration Date | Next Calibration
 Date |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SAM Phantom | MVG | SN-20/09-SAM71 | Validated. No cal
 required. | Validated. No cal
 required. |
| COMOSAR Test Bench | Version 3 | NA | Validated. No cal
 required. | Validated. No cal
 required. |
| Network Analyzer | Rhode \& Schwarz
 ZVA | SN100132 | $02 / 2016$ | $02 / 2019$ |
| Calipers | Carrera | CALIPER-01 | $01 / 2017$ | $01 / 2020$ |
| Reference Probe | MVG | EPG122 SN 18/11 | $10 / 2017$ | $10 / 2018$ |
| Multimeter | Keithley 2000 | 1188656 | $01 / 2017$ | $01 / 2020$ |
| Signal Generator | Agilent E4438C | MY49070581 | $01 / 2017$ | $01 / 2020$ |
| Amplifier | Aethercomm | SN 046 | Characterized prior to
 test. No cal required. | Characterized prior to
 test. No cal required. |
| Power Meter | HP E4418A | US38261498 | $01 / 2017$ | $01 / 2020$ |
| Power Sensor | HP ECP-E26A | US37181460 | $01 / 2017$ | $01 / 2020$ |
| Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to
 test. No cal required. | Characterized prior to
 test. No cal required. |
| Temperature and
 Humidity Sensor | Control Company | 150798832 | $11 / 2017$ | $11 / 2020$ |

Page: 11/11

[^6]

Liquid depth $\geqq 15 \mathrm{~cm}$

Head Setup Photo (Left Cheek)

Head Setup Photo (Left Tilt)

Head Setup Photo (Right Cheek)

Head Setup Photo (Right Tilt)

10mm body-worn Front Side Setup Photo (hotspot)

10mm body-worn Back Side Setup Photo (hotspot)

10mm body-worn Left Side Setup Photo (hotspot)

10mm body-worn Right Side Setup Photo (hotspot)

10mm body-worn Top Side Setup Photo (hotspot)

10mm body-worn Bottom Side Setup Photo (hotspot)

8. EUT PHOTOGRAPHS

Fig. 1

Fig. 2

The End of Test Report

[^0]: This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of $M V G$.

[^1]: This document shall not be reproduced, except in full or in part, without the written approval of MVG The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of $M V G$.

[^2]: This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

[^3]: This document shall not be reproduced, except in full or in part, without the written approval of MVG The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

[^4]: This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

[^5]: This document shall not be reproduced, except in full or in part, without the written approval of MVG The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

[^6]: This document shall not be reproduced, except in full or in part, without the written approval of MVG The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

