ANNEX C: DIPOLE CERTIFICATE

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 108

Certificate No: D1900V2-5d054_Nov04

ETC (Auden) Client **CALIBRATION CERTIFICATE** D1900V2 - SN: 5d054 Object QA CAL-05.v6 Calibration procedure(s) Calibration procedure for dipole validation kits November 12, 2004 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Calibrated by, Certificate No.) Scheduled Calibration ID# Primary Standards Oct-05 12-Oct-04 (METAS, No. 251-00412) GB37480704 Power meter EPM E442 12-Oct-04 (METAS, No. 251-00412) Oct-05 Power sensor HP 8481A US37292783 Aug-05 10-Aug-04 (METAS, No 251-00402) SN: 5086 (20g) Reference 20 dB Attenuator 10-Aug-04 (METAS, No 251-00402) Aug-05 Reference 10 dB Attenuator SN: 5047.2 (10r) 26-Oct-04 (SPEAG, No. ET3-1507_Oct04) Oct-05 Reference Probe ET3DV6 SN 1507 Jul-05 22-Jul-04 (SPEAG, No. DAE4-601_Jul04) SN 601 DAF4 Scheduled Check ID# Check Date (in house) Secondary Standards In house check: Oct-05 18-Oct-02 (SPEAG, in house check Oct-03) MY41092317 Power sensor HP 8481A 27-Mar-02 (SPEAG, in house check Dec-03) In house check: Dec-05 100698 RF generator R&S SML-03 In house check: Nov 04 18-Oct-01 (SPEAG, in house check Nov-03) US37390585 S4206 Network Analyzer HP 8753E Function Name Laboratory Technician Judith Müller Calibrated by: Technical Manager Katja Pokovic Approved by: Issued: November 17, 2004 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Page 55 of 71

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Report No.: 06-10-MAS-190-03 Page 56 of 71

FCC ID: G9HT-1961AH

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

the following parameters and salediations were	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.45 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	1000 P	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	9.41 mW / g
SAR normalized	normalized to 1W	37.6 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	36.4 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.94 mW / g
SAR normalized	normalized to 1W	19.8 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	19.1 mW / g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Report No.: 06-10-MAS-190-03 Page 57 of 71

FCC ID: G9HT-1961AH

Body TSL parameters

The following parameters and calculations were applied.

the following parameters and salisations were	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.6 ± 6 %	1.58 mho/m ± 6 %
Body TSL temperature during test	(21.5 ± 0.2) °C	10000	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	10.4 mW / g
SAR normalized	normalized to 1W	41.6 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	39.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.51 mW / g
SAR normalized	normalized to 1W	22.0 mW / g
SAR for nominal Body TSL parameters ¹	normalized to 1W	21.1 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Report No.: 06-10-MAS-190-03 Page 58 of 71

FCC ID: G9HT-1961AH

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.9 Ω + 3.0 jΩ	
Return Loss	- 24.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.4 Ω + 4.2 jΩ	
Return Loss	- 27.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.198 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 19, 2004

DASY4 Validation Report for Head TSL

Date/Time: 11/10/04 09:26:02

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d054

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL 1900 MHz;

Medium parameters used: f = 1900 MHz; $\sigma = 1.45$ mho/m; $\varepsilon_r = 38.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

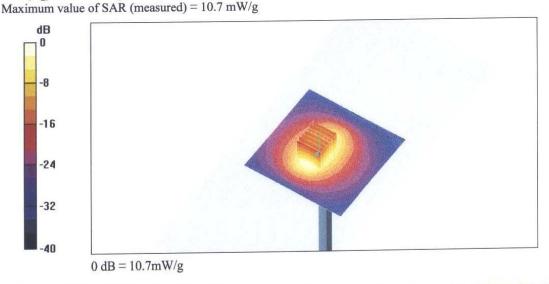
Probe: ET3DV6 - SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 26.10.2004

• Sensor-Surface: 4mm (Mechanical Surface Detection)

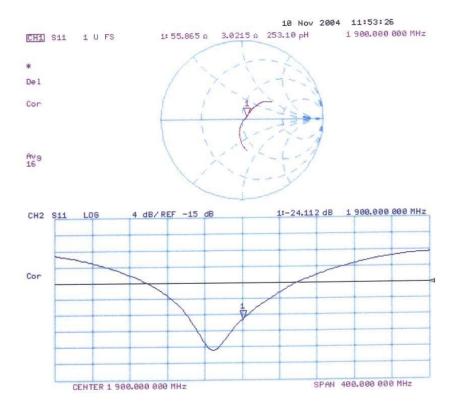
Electronics: DAE4 Sn601; Calibrated: 22.07.2004

Phantom: Flat Phantom quarter size -SN:1001; Type: QD000P50AA; Serial: SN:1001;

Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.2 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


Reference Value = 81.7 V/m; Power Drift = 0.1 dB

Peak SAR (extrapolated) = 16.5 W/kg

SAR(1 g) = 9.41 mW/g; SAR(10 g) = 4.94 mW/g

Impedance Measurement Plot for Head TSL

Date/Time: 11/12/04 16:26:29

FCC ID: G9HT-1961AH

DASY4 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d054

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Muscle 1800 MHz;

Medium parameters used: f = 1900 MHz; $\sigma = 1.58$ mho/m; $\varepsilon_r = 51.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1507; ConvF(4.43, 4.43, 4.43); Calibrated: 26.10.2004

Sensor-Surface: 4mm (Mechanical Surface Detection)

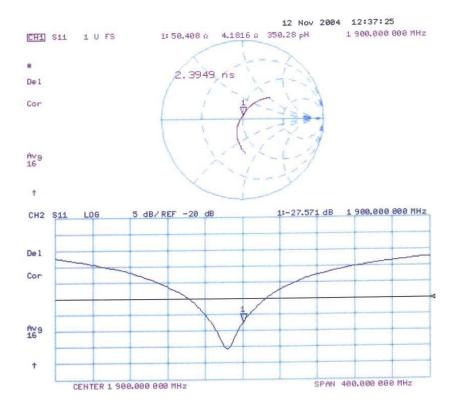
Electronics: DAE4 Sn601; Calibrated: 22.07.2004

Phantom: Flat Phantom half size; Type: QD000P49AA; Serial: SN:1001;

Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.1 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 88.2 V/m; Power Drift = 0.1 dB

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.51 mW/gMaximum value of SAR (measured) = 11.8 mW/g

Impedance Measurement Plot for Body TSL

ANNEX D: PROBE CERTIFICATE

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

C

CALIBRATION	CERTIFICAT	E	
Object	EX3DV4 - SN:	3578	
Calibration procedure(s)	To be the father of the best limit of the property	and QA CAL-14.v3 cedure for dosimetric E-field probes	
Calibration date:	March 20, 2006		
Condition of the calibrated item	In Tolerance		
The measurements and the unce	ertainties with confidence	ational standards, which realize the physical units or probability are given on the following pages and a	re part of the certificate.
All calibrations have been conduc	cted in the closed labora	tory facility: environment temperature (22 ± 3)°C ar	nd humidity < 70%.
0-11-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	TT		
Calibration Equipment used (M&	E critical for calibration)		
	ID #		Scheduled Calibration
Primary Standards	1	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466)	Scheduled Calibration May-06
Primary Standards Power meter E4419B	ID#	Cal Date (Calibrated by, Certificate No.)	May-06
Primary Standards Power meter E4419B Power sensor E4412A	ID # GB41293874	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466)	May-06 May-06
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ID# GB41293874 MY41495277	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466)	May-06 May-06 May-06
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	ID # GB41293874 MY41495277 MY41498087	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466)	May-06 May-06 May-06 Aug-06
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499)	May-06 May-06 May-06 Aug-06 May-06
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500)	May-06 May-06 May-06 Aug-06 May-06 Aug-06
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467)	May-06 May-06 May-06 Aug-06 May-06
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Recondary Standards	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06)	May-06 May-06 May-06 Aug-06 May-06 Aug-06 Jan-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06)	May-06 May-06 May-06 Aug-06 May-06 Aug-06 Jan-07 Feb-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00500) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house)	May-06 May-06 May-06 Aug-06 May-06 Aug-06 Jan-07 Feb-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585 Name	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	May-06 May-06 May-06 Aug-06 Aug-06 Jan-07 Feb-07 Scheduled Check In house check: Nov-07 In house check: Nov 06 Signature
Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	May-06 May-06 May-06 Aug-06 Aug-06 Jan-07 Feb-07 Scheduled Check In house check: Nov-07 In house check: Nov 06 Signature
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585 Name	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	May-06 May-06 May-06 Aug-06 Aug-06 Aug-06 Jan-07 Feb-07 Scheduled Check In house check: Nov-07 In house check: Nov 06

Certificate No: EX3-3578_Mar06

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConF DCP sensitivity in TSL / NORMx,y,z diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3578 Mar06

Page 2 of 9

Report No.: 06-10-MAS-190-03 Page 65 of 71

FCC ID: G9HT-1961AH

EX3DV4 SN:3578

March 20, 2006

Probe EX3DV4

SN:3578

Manufactured: Calibrated:

November 4, 2005 March 20, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3578_Mar06

Page 3 of 9

EX3DV4 SN:3578

March 20, 2006

DASY - Parameters of Probe: EX3DV4 SN:3578

Sensitivity in Fre	Diode Compression ^B				
NormX	0.500 ± 10.1%	$\mu V/(V/m)^2$	DCP X	93 mV	
NormY	0.506 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	93 mV	
NormZ	0.550 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	93 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

900 MHz

Typical SAR gradient: 5 % per mm

Sensor Cente	er to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	3.1	1.1
SAR _{be} [%]	With Correction Algorithm	0.2	0.4

TSL

1750 MHz

Typical SAR gradient: 10 % per mm

Sensor Cente	er to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	2.5	1.0
SAR _{be} [%]	With Correction Algorithm	0.2	0.3

Sensor Offset

Probe Tip to Sensor Center

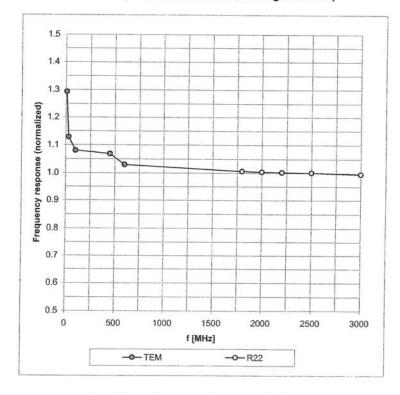
1.0 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3578_Mar06

Page 4 of 9

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8).


^B Numerical linearization parameter: uncertainty not required.

EX3DV4 SN:3578

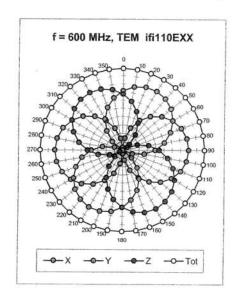
March 20, 2006

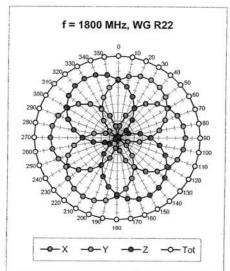
Frequency Response of E-Field

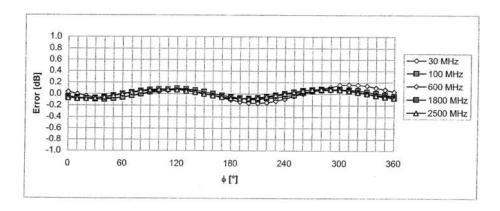
(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3578_Mar06


Page 5 of 9


FCC ID: G9HT-1961AH

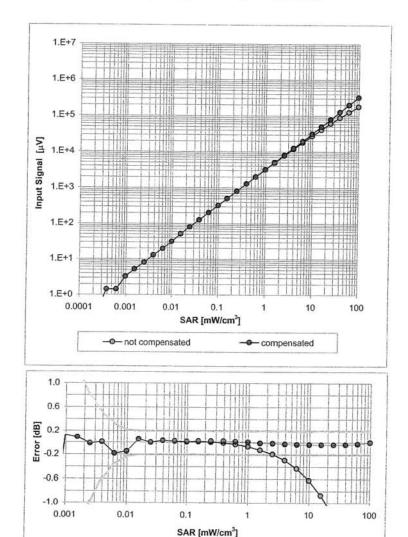

EX3DV4 SN:3578

March 20, 2006

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3578_Mar06


Page 6 of 9

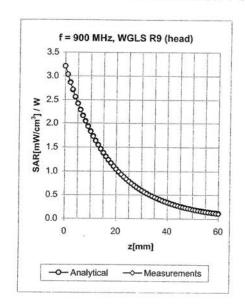
EX3DV4 SN:3578

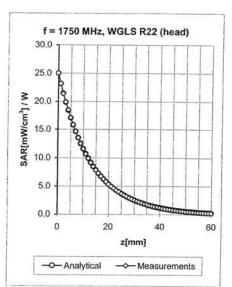
March 20, 2006

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: EX3-3578_Mar06


Page 7 of 9

EX3DV4 SN:3578

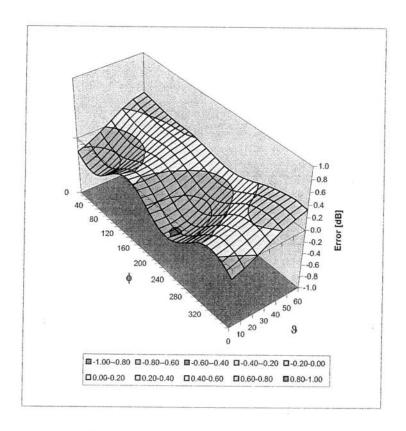
March 20, 2006

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.66	0.66	8.38 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.59	0.80	7.30 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.59	0.80	6.98 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.52	0.80	6.47 ± 11.8% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.78	0.64	8.15 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.63	0.68	7.03 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.42	0.87	6.75 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.59	0.73	6.47 ± 11.8% (k=2)
5200	± 50 / ± 100	Body	49.0 ± 5%	$5.30 \pm 5\%$	0.35	1.75	4.11 ± 13.1% (k=2)
5800	± 50 / ± 100	Body	48.2 ± 5%	$6.00 \pm 5\%$	0.32	1.75	3.89 ± 13.1% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3578_Mar06


Page 8 of 9

EX3DV4 SN:3578

March 20, 2006

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3578_Mar06

Page 9 of 9