	•	
	_	
26		
<u> </u>	計算を	
<u> </u>		
.2.	JL//	
	ŧŦ#	
	-	

	TEST I	REPORT
REPORT DATE:	April 22, 1998	REPORT NO: 98141D
CONTENTS:	See Table of Contents	
SUBMITTOR:	THOMSON CONSUMER Audio & Communications 101 West 103rd Street Indianapolis, IN 46290-1102 USA	ELECTRONICS, INC. Product Dev.
SUBJECT:	Model No:	2-9776(XXXX)
	FCC ID:	G9H2-9776
TEST SPECIFICATION	FCC CFR 47 15.233 AND Sections: 15.35, 15.107, 1 NOTE: Tests Conducted A	5.109, 15.207 and 15.209
DATE SAMPLE RECEIVED:	April 3, 1998	DATE April 3, 14-16 & 20, 1998 TESTED:
RESULTS:	Equipment tested complies	with referenced specification.
ALTERATIONS	None	
Tested by:	Original signed by: Jim Sims Horem De Sile	Approved and recommendation of the Certified by: R. G. MARSYALL 20/98 Robert G. Marshall, P. Eng.
	Ed Chang/Hiran De Silva	Date:

THIS REPORT SHALL NOT BE REPRODUCED, EXCEPT IN FULL, WITHOUT THE WRITTEN APPROVAL OF MARSTECH

LIMITED. This report was prepared by Marstech Limited for the account of the "Submittor". The material in it reflects Marstech's judgement in light of the information available to it at the time of preparation. Any use which a Third Party makes of this report, or any reliance on decisions to be made based on it, are the responsibility of such Third Parties. Marstech accepts no responsibility for damages, if any, suffered by any Third Party as a result of decisions made or actions based on this report

TECHNICAL REPORT - FCC 2.1033(b)

Applicant

FCC Identifier

Thomson Consumer Electronics, Inc. Audio & Communications Product Dev. 101 West 103rd Street Indianapolis, IN 46290-1102 USA G9H2-9776

Manufacturer

Integrated Display Technology Ltd. Block D, Xixian Chen Tian Industrial Estate Xixian Town, Bao An City China

Marstech Report No. 98141D

TABLE OF CONTENTS

Exhibit Descri	ption	FCC Ref.	Page	
Α	Installation and Operating Instructions Furnished to the User.	2.1033(b)(3)		Exhibit A Exhibit A(1)-1
В	Description of Circuit Functions	2.1033(b)(4)		Exhibit B Exhibit B(1)-1
С	Block Diagram	2.1033(b)(5)		Exhibit C Exhibit (1)-1 to -2
	Schematic Diagram			Exhibit C(2)-1 to -5
D	Report of Measurements	2.1033(b)(6)		Exhibit D
	Device Measured			Exhibit D(1)-1
	Test Facility and Equipment			Exhibit D(2)-1 to -3
	Test Results and Methods			Exhibit D(3)-1 to -31
E	Photographs	2.1033(b)(7)		Exhibit E
	Label			Exhibit E(1)-1 to -2
	Equipment			Exhibit E(2)-1 to -7
Thomson/2-97 FCC ID: G9H2				

EXHIBIT D

(FCC Ref. 2.1033(b)(6))

"Report of Measurements"

Thomson/2-9776(XXXX) FCC ID: G9H2-9776 Marstech Report No. 98141D

EXHIBIT D(1)

DEVICE MEASURED

(FCC Ref. 2.1033(b)(6))

APPLICANT:

Thomson Consumer Electronics, Inc.

Audio & Communications Product Dev.

101 West 103rd Street

Indianapolis, IN 46290-1102 USA

MANUFACTURER:

Integrated Display Technology Ltd.

Block D, Xixian Chen Tian Industrial Estate

Xixian Town, Bao An City

China

FCC IDENTIFIER:

G9H2-9776

TRADE NAME:

GE

MODEL NUMBER:

2-9776(XXXX)

SERIAL NO.:

N/M

Marstech Limited 11 Kelfield Street

Etobicoke, Ontario M9W 5A1 CANADA TECHNICIANS:

Jim Sims - Com-Serve Corp. Hiran De Silva - Marstech Limited Edward Chang - Marstech Limited

Date: <u>May 26/98</u>

Thomson/2-9776(XXXX) FCC ID: G9H2-9776

Marstech Report No. 98141D

EXHIBIT D(2)

TEST FACILITY AND EQUIPMENT LIST

FACILITIES

Radiated

ANSI C63.4 (FCC OET/55) open field 3 meter test range. This test range is

protected from the cold and moisture by a non-conductive enclosure.

Conducted

2.5m Anechoic Chamber

EQUIPMENT

NOTE:

The Anritsu 2601 A spectrum analyzer, the Hewlett-Packard spectrum analyzer and the Advantest R3261A spectrum analyzer are calibrated annually, and that calibration is directly traceable to the National Research Council of Canada (NRC). This equipment is only used by qualified technicians and only for the purpose of EMI measurements. The three meter test range has been carefully evaluated to the ANSI document C63.4 and will be remeasured for reflections and losses every three years.

Thomson/2-9776(XXXX) FCC ID: G9H2-9776 Marstech Report No. 98141D

FEDERAL COMMUNICATIONS COMMISSION

7435 Oakland Mills Road
Columbia, MD 21046
Telephone: 301-725-1585 (ext-218)
Facsimile: 301-344-2050

September 23, 1997

N REPLY REFER TO 31040/SIT 1300F2

Electrohome Electronics Ltd 809 Wellington Street, North Kitchener, Ontario N2G 4J6, Canada

Attention:

Gerry Gallagher

Re: Measurement facility located at Roseville

(3 meter site)

Gentlemen:

Your submission of the description of the subject measurement facility has been reviewed and found to be in compliance with the requirements of Section 2.948 of the FCC Rules. The description has, therefore, been placed on file and the name of your organization added to the Commission's list of facilities whose measurement data will be accepted in conjunction with applications for certification or notification under Parts 15 or 18 of the Commission's Rules. Our list will also indicate that the facility complies with the radiated and AC line conducted test site criteria in ANSI C63.4-1992. Please note that this filing must be updated for any changes made to the facility, and at least every three years the data on file must be certified as current.

Fer your request, the above mentioned facility has been also added to our list of those who perform these measurement services for the public on a fee basis. This list is published periodically and is also available on the Laboratory's Public Access Link as described in the enclosed Public Notice.

Sincerely,

Thomas W. Phillips Electronics Engineer

2 la uvhilley

Customer Service Branch

FCC ID: G9H2-9776 EXHIBIT D(2)-2 Marstech Report No. 98141D

MARSTECH LIMITED

EXHIBIT D(2)

SPECTRUM ANALYZER -

ANRITSU MS2601A S/N MT64544 - NEXT

CALIBRATION APRIL 1999

MULTIMETER -

FLUKE 75

POWER SUPPLY -

IN HOUSE

OVEN -

IN HOUSE

FREEZER -

IN HOUSE

Thomson/2-9776(XXXX) FCC ID: G9H2-9776 Marstech Report No. 98141D

SUMMARY OF RESULTS

	COMPLIANCE (yes) (no)
FIELD STRENGTH OF THE CARRIER FREQUENCIES	
Handset: 48 MHz and 49 MHz bands Base Station: 43/44 MHz and 46 MHz bands	(x) () (x) ()
OCCUPIED BANDWIDTH	
Handset: 48 MHz and 49 MHz bands Base Station: 43/44 MHz and 46 MHz bands	(x) () (x) ()
SPURIOUS RADIATED EMISSIONS	
Handset: 48 MHz and 49 MHz bands Base Station: 43/44 MHz and 46 MHz bands	(x) () (x) ()
LINE CONDUCTED SPURIOUS EMISSIONS	
Base Station: Telephone Mode: 43/44 MHz and 46 MHz bands	(x) ()
TRANSMITTER ENVIRONMENTAL TESTS	
Handset: Base Station:	(x) () (x) ()
EQUIPMENT REQUIREMENTS AND IDENTIFICATION	
a) Manufacturers or applicants name: b) FCC ID: c) Serial number: d) Antenna: e) Operator controls: f) Security Coding g) Equipment/Packaging Marking	(x) () (x) () (N/M) () (x) () (x) () (x) () (x) ()

Thomson/2-9776(XXXX) FCC ID: G9H2-9776 Marstech Report No. 98141D

CARRIER FREQUENCY FIELD STRENGTH

RESULTS

Handset: Maximum field strength of 5,506 μ V/M: Channel # 01 Handset: Maximum field strength of 4,410 μ V/M: Channel # 25

Base Station:

Modes:

Telephone: Maximum field strength of 4,061 μ V/M: Channel # 01 Telephone: Maximum field strength of 2,557 μ V/M: Channel # 25

TEST CONDITIONS

Equipment Positioning:

Handset:

vertical or upright

Base Station:

standing on its back with the antenna extended in the vertical plane.

Antenna Polarization:

Handset:

vertical

Base Station:

vertical

Antenna Type:

T.1: tuned half wave dipole

Measurement Bandwidth:

100 KHz (IF)

Supply Voltages:

Handset:

3.6 VDC from an internal battery.

Base Station:

120 VAC/60 Hz to 15 VDC (adapter)

METHODS OF MEASUREMENT

The cordless phone components were placed in turn on a one metre high, non-metallic turntable. Measurements were made in a minimum of 3 positions for the handset and 2 for the base station. If adjustable, the whip antennas were fully extended.

For each of the above conditions the turntable was rotated through 360 degrees while the receiving antenna, at three (3) metres from the EUT, was varied in height from 1 to 4 metres and set in both planes of polarization to find the maximum signal strength. The unmodulated carrier level was measured using a spectrum analyzer and a substitution signal from an RF generator. The measured level was converted to a field strength using the antenna correction factors and cable losses.

All base station measurements were made with the equipment under test connected to an artificial telephone line network, with 48 VDC applied.

Thomson/2-9776(XXXX) FCC ID: G9H2-9776 Marstech Report No. 98141D

OCCUPIED BANDWIDTH RESULTS

RESULTS

The highest level emission resulting from the modulation process exceeding the specified frequency range of \pm 10 KHz (20 KHz) over the carrier frequency was:

Handset:

Unmodulated carrier level: -35 dB (30 dB external pad) Channel # 01 Unmodulated carrier level: -36 dB (30 dB external pad) Channel # 25

- a) At the maximum frequency deviation at 2,500 Hz: Channel # 01 -74 dB at -12.5 KHz.
- b) At the maximum frequency deviation at 2,500 Hz: Channel # 25 -78 dB at +12.5 KHz.

Base Station:

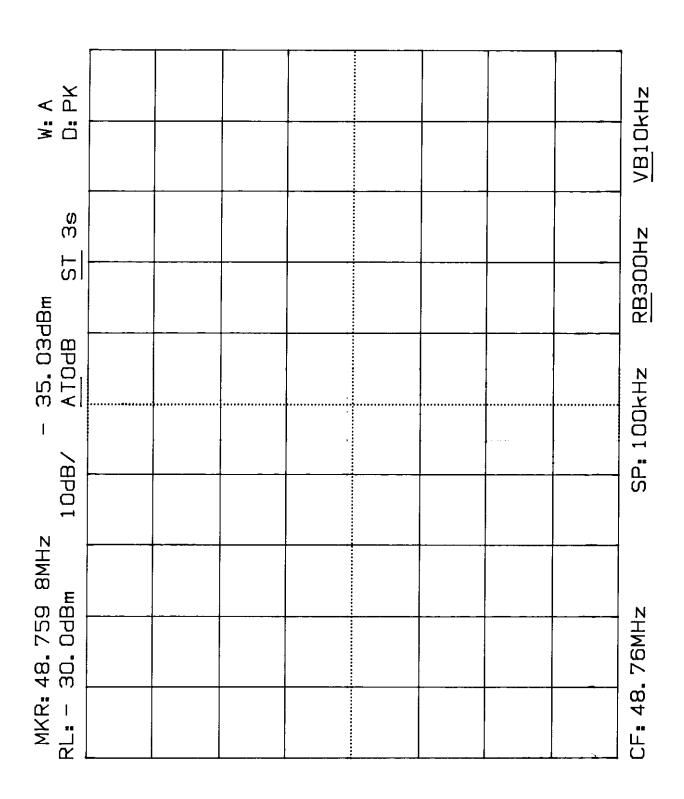
Unmodulated carrier level: -48 dB (30 dB external pad) Channel # 01 Unmodulated carrier level: -52 dB (30 dB external pad) Channel # 25

Telephone:

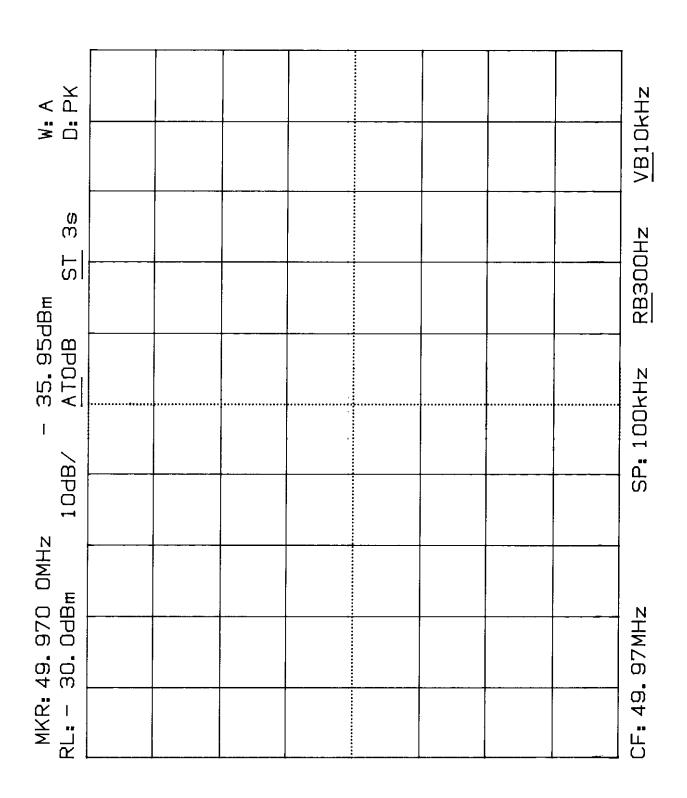
- a) At the maximum frequency deviation at 2,500 Hz: Channel # 01 -77 dB at -12.5 KHz.
- b) At the maximum frequency deviation at 2,500 Hz: Channel # 25 -81 dB at -12.5 KHz.

METHODS OF MEASUREMENT

Each transmitter was operated in turn under the standard test conditions specified, and at the maximum output power. An external 2,500 Hz audio signal was coupled to the standard input port and adjusted to a level which produced 85% of the measured "Maximum Frequency Deviation". In this case, the base station and the handset modulation in-band emissions, meet the requirements at maximum frequency deviation. Levels for compliance have therefore been evaluated at these levels. Any internal modulation source that normally operates on a continuous basis was disabled.


A portion of the radio frequency power delivered by the transmitter into the standard output termination was coupled to a spectrum analyzer.

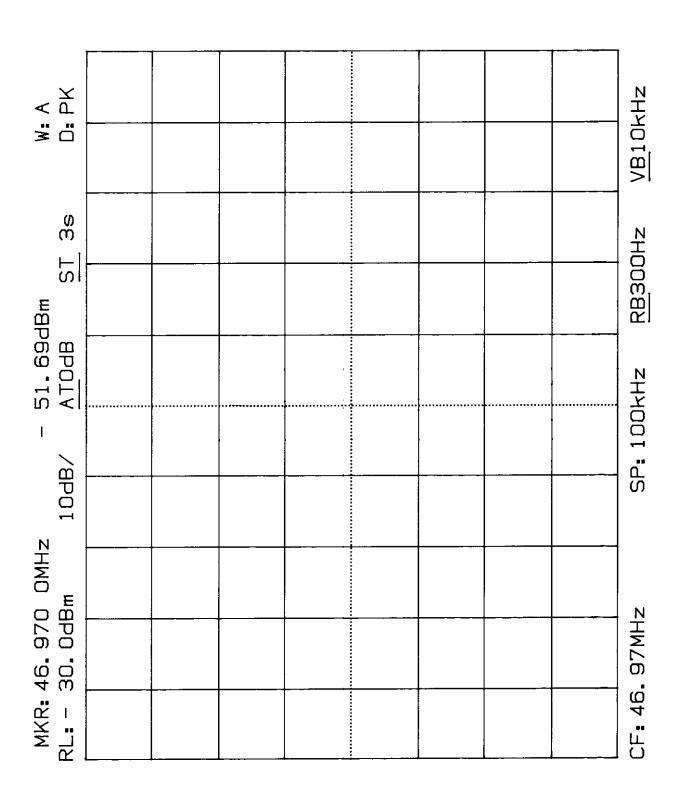
If the cordless telephone contained an internal modulation source that normally operates continuously or for more than three (3) seconds, then the above test was also repeated with the external 2,500 Hz disconnected.

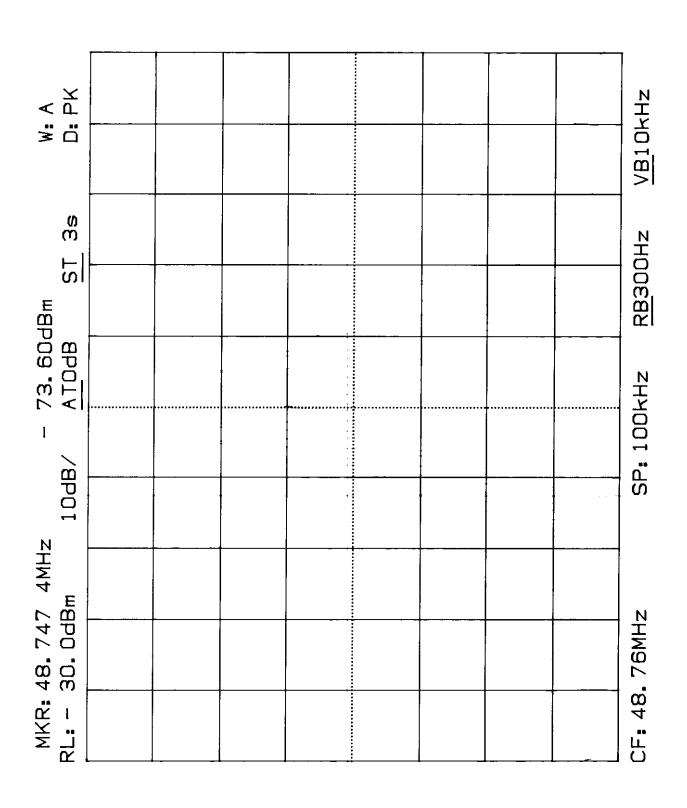

Please refer to the attached results.

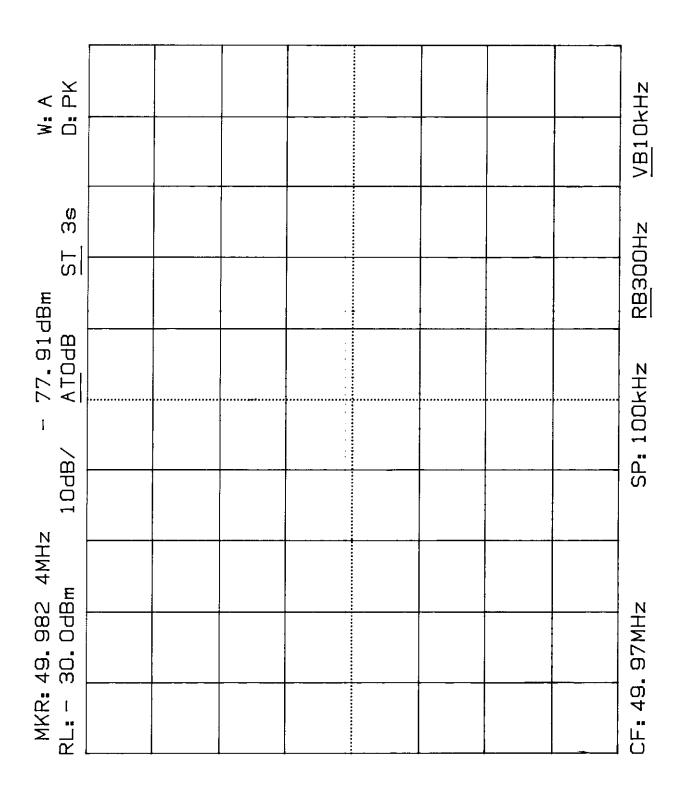
Thomson/2-9776(XXXX) FCC ID: G9H2-9776 Marstech Report No. 98141D

HANDSET; UNMODULATED CARRIER LEVEL MODEL 2-9776(XXXX); 48 MHz

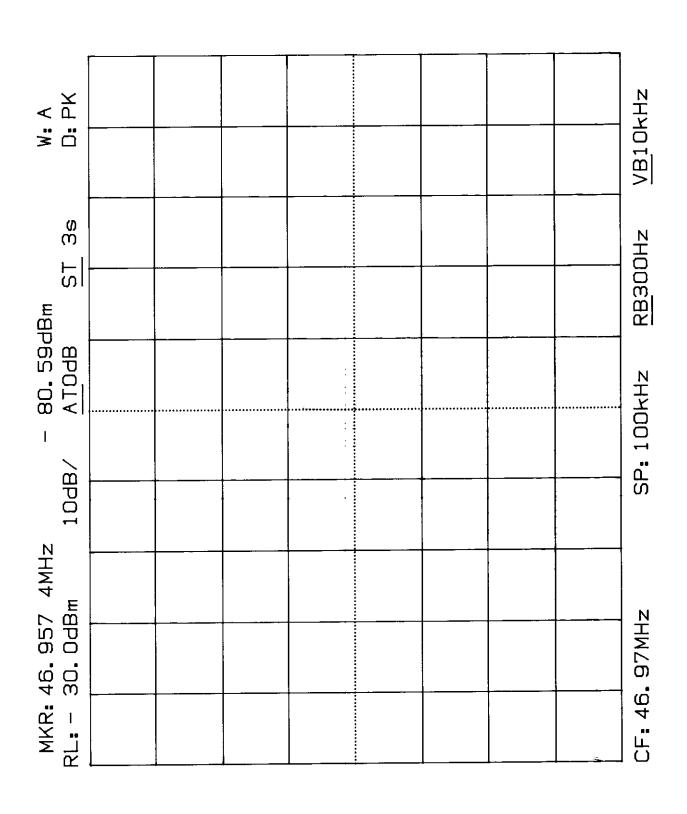
HANDSET; UNMODULATED CARRIER LEVEL MODEL 2-9776(XXXX); 49 MHz

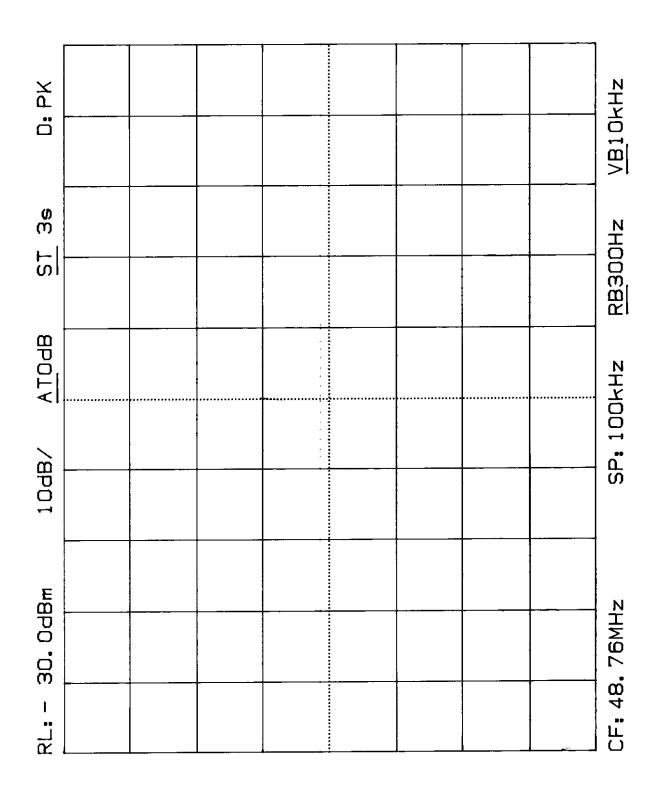


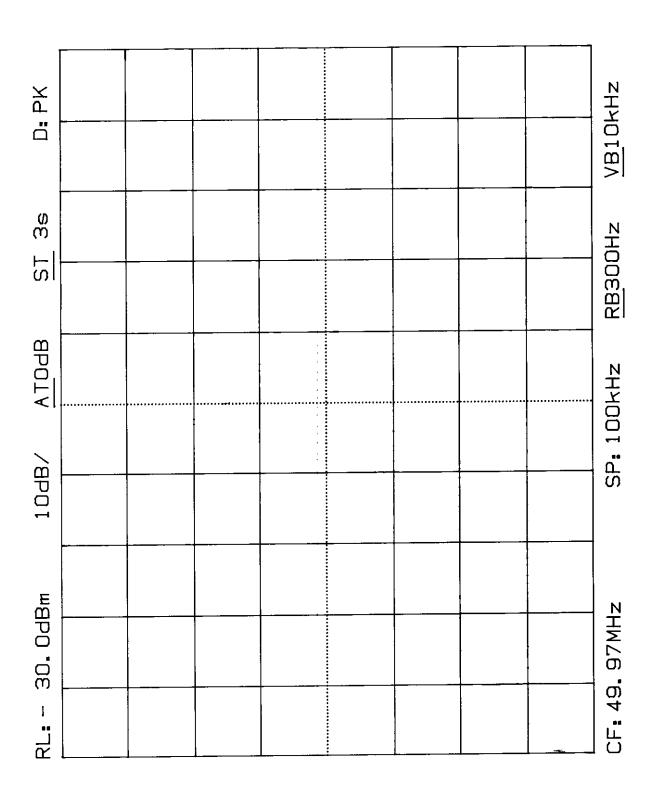

BASE STATION; UNMODULATED CARRIER LEVEL MODEL 2-9776(XXXX); 43/44 MHz

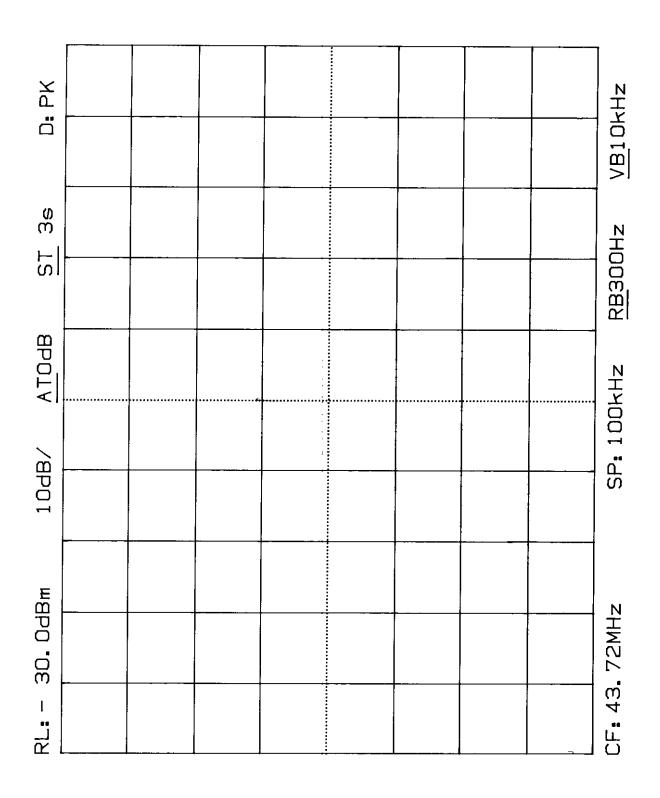


FCC ID: G9H2-9776 EXHIBIT D(3)-6 Marstech Report No. 98141D

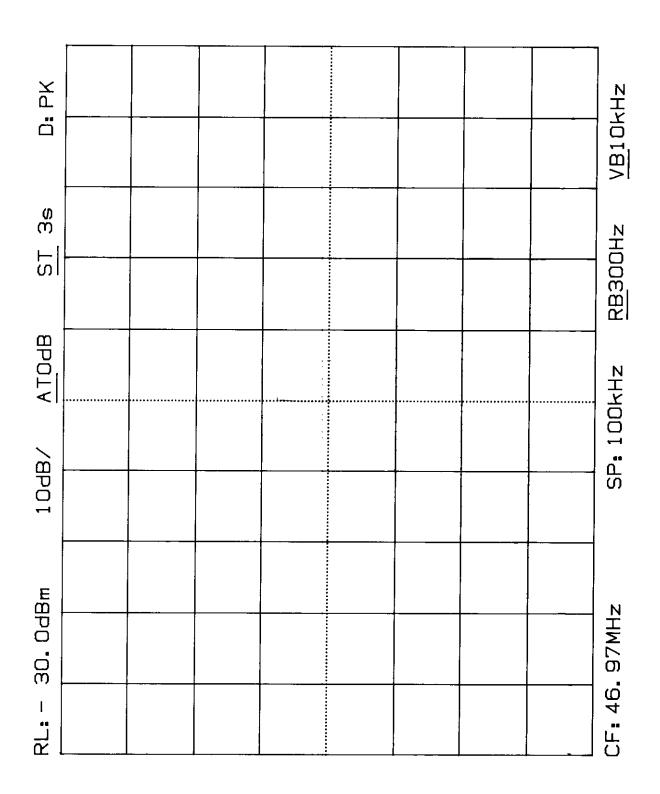

BASE STATION; UNMODULATED CARRIER LEVEL MODEL 2-9776(XXXX); 46 MHz







			·		-		1
 							VB10kHz
ST 38							RB300Hz
							RB3
76.94dBm ATOdB							고 고 고
1	; ;						SP: 100kHz
10dB/		,					S
6MHz							
3. 707 5. 0dBi			_				72MHz
MKR: 43.707 6MHz RL: - 30.0dBm							CF: 43. 72MHz
œ	 <u> </u>	 <u> </u>	<u>:</u>	1	1	<u> </u>	



MAXIMUM FREQUENCY DEVIATION; 46 MHz BASE STATION; 4.00 VOLTS MODEL 2-9776(XXXX)

SPURIOUS RADIATED EMISSIONS

RESULTS

The maximum field strength of any spurious emission, with respect to the applicable limit, to 1,000 MHz, while transmitting or receiving was:

Handset:

Maximum field strength of: NONE FOUND at 000.00 MHz; Channel 01

Maximum field strength of: NONE FOUND at 000.00 MHz; Channel 25

Base Station:

Maximum field strength of: NONE FOUND at 000.00 MHz; Channel 01 Maximum field strength of: NONE FOUND at 000.00 MHz; Channel 25 Maximum field strength of 92.6 μ V/M: at 39.00 MHz; RECEIVE

TEST CONDITIONS

Equipment Positioning:

Handset:

laying on its side and vertical or upright

Base Station:

standing on its back with the antenna extended in the vertical plane.

Antenna Polarization:

Handset:

vertical and horizontal

Base Station: Receive

vertical and horizontal vertical

Measurement Bandwidth:

100 KHz/120 KHz Q.P. (IF)

Supply Voltages:

Handset:

3.6 VDC from an internal battery.

Base Station:

120 VAC/60 Hz to 15 VDC (adapter)

METHODS OF MEASUREMENT

The cordless phone components were placed in turn on a one metre high, non-metallic turntable. Measurements were made in a minimum of 3 positions for the handset and 2 for the base station. If adjustable, the whip antennas were fully extended.

For each of the above conditions the turntable was rotated through 360 degrees while the receiving antenna, at three (3) metres from the EUT, was varied in height from 1 to 4 metres and set in both planes of polarization to find the maximum signal strength. The level was measured using a spectrum analyzer and a substitution signal from an RF generator. The measured level was converted to a field strength using the antenna correction factors and cable losses.

All base station measurements were made with the equipment under test connected to an artificial telephone line network, with 48 VDC applied.

Thomson/2-9776(XXXX)

FCC ID: G9H2-9776

Marstech Report No. 98141D

RADIATED EMISSION RESULTS

BW: 100/120 KHz Span: 5 to 50 MHz

BASE STATION

TEST # MODE	FREQ MHz BAND	$\begin{array}{c} \mathbf{LEVEL} \\ \mu \mathbf{V} \end{array}$	ANT. TYPE (PZ)	ANT. FACT.	F.S. μ V/M	LIMIT μV/M	DIFF. TO LIMIT; dB
01 RX	36.95	10.0	B/C V	3.7	37.0	100	-8.64
02 RX	39.00	77.2	RT.1 V	1.2	92.6	100	-0.66
03 RX	78.00	08.5	B/C V	4.0	34.0	100	-9.37
04 RX	252.18	06.6	В/С Н	12.4	81.8	200	-7.76
05 RX	324.60	06.9	L/P H	15.6	107.6	200	-5.38
06 RX	360.40	06.0	L/P H	9.1	54.6	200	-11.28
CARRIER	43.720	3,100.0	RT.1 V	1.31	4061.0	10,000	-7.83
CARRIER	46.970	1,880.0	RT.1 V	1.36	2556.8	10,000	-11.85

HANDSET

TEST # MODE	FREQ MHz BAND	LEVEL $\mu {f V}$	ANT. TYPE (PZ)	ANT. FACT.	F.S. μV/ M	LIMIT μV/M	DIFF. TO LIMIT; dB
CARRIER	48.760	3,850.0	RT.1 V	1.43	5505.5	10,000	-5.18
CARRIER	49.970	3,000.0	RT.1 V	1.47	4410.0	10,000	-7.11

Thomson/2-9776(XXXX) FCC ID: G9H2-9776 Marstech Report No. 98141D

POWER LINE CONDUCTED EMISSIONS

RESULTS

The largest RF voltages on the AC power lines, over the frequency range of 450 KHz to 30 MHz, was 7.61 μ V (17.63 dB μ V) at 7.20 MHz from the base station while transmitting and/or receiving. (B side of the line in the telephone mode) Refer to the attached results.

TEST CONDITIONS

Measurement Bandwidth:

9 KHz Q.P. (IF)

AC Test Voltage:

120 VAC (filtered and stabilized)

Mode of Operation:

Telephone

METHODS OF MEASUREMENT

The base station portion of the cordless phone was placed on a wooden table directly above a 50 ohm line impedance stabilization network.(LISN) If adjustable, the whip antenna was fully extended vertically and the AC power attachment cord went directly down to the LISN. The LISN is grounded directly to the floor of the test facility. Excess AC cord was coiled in a figure eight pattern before connecting directly to the 50 micro-henry LISN.

The base station was connected to a simulated 9,000 foot phone line and 48 VDC was applied. The 9,000 foot phone line network was grounded to the nearest AC outlet with a test lead.

A length of low loss RF foam cable was used to couple the RF voltages from the LISN to the spectrum analyzer. The base station transmitter was keyed on by the handset transmitting nearby. All of the RF voltages were recorded and are attached.

The base station was tested in all modes of operation which were applicable to the specific equipment under test. This included operating modes such as "calling/paging", quiescent or receive mode and standard telephone/transmit operation in both the 43/44 MHz and the 46 MHz bands.

If the cordless phone contained an intercom mode of operation, then this test was repeated in that mode. The attached results represent the **worst case results** in each test condition and frequency band.

POWER LINE CONDUCTED EMISSIONS MODEL: 2-9776(XXXX) - SIDE: A

	•	f		•	1	,	[•	ı	•	l	-
	j -						!			·		· H — .
) .)						. 1					
							. 1					KBOKT - T
13, 59dB W))						† 					-
			→				! - + !			- - · -	<u></u>	1 30MHz
N G G))						·					- G
	•						• [-
NNH2 DNAV							!					-
MKR: 24. 12MHz)				·		.]				·	L SF: 300太工
X X X X		,		1		l	. 1	İ	i	ļ	i	コ (Q 正

POWER LINE CONDUCTED EMISSIONS MODEL: 2-9776(XXXX) - SIDE: B

		-	1		1	,	-		,	ı		ı		
₹ . • .		-						 - -					v 100	VB-OFF-
((D)	-					•	!					-	>ı
l U							·							KBOKHZ.
17.63dBHV						· -							_	
: 													_	SP. 30MHz
		-					- [·		
MKR. 7. 20MHz	<u>.</u>												_	7.T.7.
(K. 7.		_					. !					÷		SF. 300KHZ
ž ā		L		i		i	. 1		ì		i	i		S T

TRANSMITTER ENVIRONMENTAL TESTS

FREQUENCY TOLERANCE OF CARRIER

MINIMUM PERFORMANCE STANDARD: The stability of the carrier frequency shall be maintained within +0.01 percent over a range of:

- a) Temperature from -20 to +50 degrees Celsius at normal supply voltage;
- b) Voltages that vary from 85 percent to 115 percent of the rated supply voltage at a temperature of +20 degrees Celsius.

TEST RESULTS:

Channel 1:

<u>Handset:</u> The largest deviation from the authorized carrier frequency of 48,760,000 Hz was +965 Hz ± 10 Hz at -20 degrees Celsius and 3.6 VDC. The test limit is ± 4876 Hz.

<u>Base Station</u>: The largest deviation from the authorized carrier frequency of 43,720,000 Hz was +541 Hz ± 10 Hz at -20 degrees Celsius and 120 VAC. This was within the ± 4372 Hz limit.

Channel 25:

<u>Handset:</u> The largest deviation from the authorized carrier frequency of 49,970,000 Hz was ± 1011 Hz ± 10 Hz at ± 20 degress Celsius and 3.6 VDC. The test limit is ± 4997 Hz.

<u>Base Station</u>: The largest deviation from the authorized carrier frequency of 46,970,000 Hz was +598 Hz ± 10 Hz at -20 degrees Celsius and 120 VAC. This was within the ± 4697 Hz limit.

TEST CONDITIONS:

Supply Voltages:

85%, 100% and 115% of 120VAC, ±2%

Stabilization Time:

60 minutes

Temperature:

-20, -10, 0, +10, +20, +30, +40 and $+50, \pm 3$ degrees Celsius

Modulation:

Both transmitters were unmodulated.

METHOD OF MEASUREMENT:

Both the base and handset components were placed individually in a thermal chamber. The frequency was monitored by a spectrum analyzer and recorded at 1 minute intervals.

Thomson/2-9776(XXXX) FCC ID: G9H2-9776 Marstech Report No. 98141D The base station was powered from a variable AC transformer. The handset battery was disconnected to enable external DC power operation. The antennae of both transmitters were replaced with short lengths of miniature 50Ω cable fitted with BNC connectors, for shielded connections to the frequency counter.

At +20 degrees Celsius, after the chamber had stabilized for at least 60 minutes and the samples had been turned off for 15 minutes, the transmitters were operated continuously for 5 minutes at each voltage condition. At the temperature extremes, each transmitter was operated for 5 minutes following stabilization. The frequencies were recorded at 1 minute intervals. The temperature was monitored by a thermocouple on the enclosure.

ENVIRONMENTAL TEST RESULTS FCC 15

CHANNEL 1

		BASE			HANDSET	
+50°C		<u>120V</u>			<u>3.6V</u>	
		43719677 43719648 43719621			48759361 48759292 48759267	
		43719616 43719593			48759236 48759223	
+40°C		<u>120V</u>			3.6V	
		43719808 43719778			48759570 48759545	
		43719774 43719752 43719736			48759499 48759479 48759438	
+30°C		120V			<u>3.6V</u>	
		43719892 43719875 43719850			48759774 48759714 48759695	
		43719834 43719811			48759645 48759624	
+20°C <u>102</u>	<u>2V</u>	<u>120V</u>	<u>138V</u>	3.06V	<u>3.6V</u>	4.14V
437 437	719988 719990 719984	43719984 43719985 43719985	43719986 43719986 43719987	48759887 48759892 48759898	48759944 48759943 48759947	48760011 48760006 48760007
	'19987 '19989	43719988 43719988	43719990 43719987	48759902 48759905	48759945 48759948	48760007 48760007
+10°C		<u>120V</u>			3.6V	
		43720180 43720193 43720197			48760314 48760320 48760350	
10.055(3)	-	43720227 43720252			48760385 48760466	evindir Do

Thomson/2-9776(XXXX) FCC ID: G9H2-9776 Marstech Report No. 98141D

MARSTECH LIMITED

0°C	120V	3.6V
	43720341 43720347 43720374 43720382 43720405	48760627 48760665 48760700 48760739 48760772
-10°C	<u>120V</u>	<u>3.6V</u>
	43720441 43720446 43720458 43720465 43720477	48760887 48760902 48760926 48760941 48760927
-20°C	120V 43720536 43720536 43720538 43720538 43720541	3.6V 48760937 48760944 48760951 48760952 48760965
MODEL NO.		40700703
MODEL NO.:	2-9776(XXXX)	

April 15, 1998

43,720,000 Hz

48,760,000 Hz

Thomson/2-9776(XXXX) FCC ID: G9H2-9776 Marstech Report No. 98141D

DATE:

BASE FREQ:

HANDSET FREQ:

ENVIRONMENTAL TEST RESULTS FCC 15

CHANNEL 25

		<u>BASE</u>			HANDSET	
+50°C		<u>120V</u>			<u>3.6V</u>	
		46969659			49969228	
		46969633			49969201	
		46969630			49969187	
		46969618			49969177	
		46969597			49969155	
+40°C		<u>120V</u>			<u>3.6V</u>	
		46969889			49969628	
		46969878			49969595	
		46969849			49969560	
		46969837			49969514	
		46969810			49969493	
+30°C		<u>120V</u>			<u>3.6V</u>	
		46969977			49969791	
		46969950			49969761	
		46969938			49969715	
		46969917			49969688	
		46969908			49969645	
+20°C	<u>102V</u>	<u>120V</u>	<u>138V</u>	3.06V	<u>3.6V</u>	<u>4.14V</u>
	46970011	46970011	46970011	49969931	49969983	49970058
	46970012	46970011	46970013	49969940	49969978	49970052
	46970010	46970021	46970013	49969945	49969978	49970053
	46970009	46970014	46970014	49969949	49969984	49970054
	46970011	46970015	46970015	49969956	49969987	49970053
+10°C		<u>120V</u>			<u>3.6V</u>	
		46970071			49970041	
		46970126			49970172	
		46970153			49970206	
		46970175			49970274	
		46970200			49970298	
on/2-97	76(XXXX)					EXHIBIT D(3)-25

Thomson/2-9776(XXXX) FCC ID: G9H2-9776

Marstech Report No. 98141D

MARSTECH LIMITED

0°C	<u>120V</u>	<u>3.6V</u>
	46970221	49970364
	46970255	49970394
	46970266	49970462
	46970297	49970501
	46970347	49970636
-10°C	<u>120V</u>	<u>3.6V</u>
	46050410	400=0===
	46970412	49970757
	46970418	49970811
	46970429 46970436	49970833 49970868
	46970440	49970890
-20°C	120V	3.6V
-20 C	1204	<u>5.0 v</u>
	46970586	49970998
	46970588	49971002
	46970593	49971003
	46970592	49971007
	46970598	49971011
MODEL NO.:	2-9776(XXXX)	
DATE:	April 16, 1998	
BASE FREQ:	46,970,000 Hz	

HANDSET FREQ:

49,970,000 Hz

CLEAR CHANNEL DETECTION

Test Procedure

Setup the equipment as per figure 1.

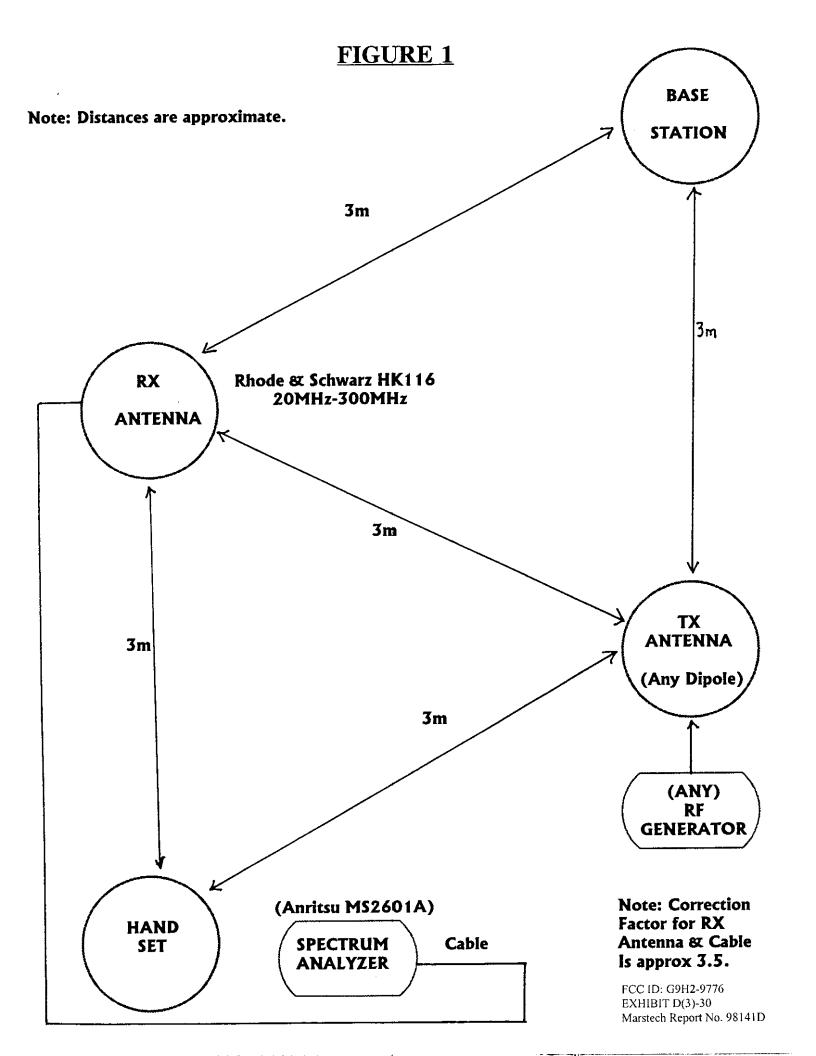
Verification of Base Unit Detector

- 1. Connect the base unit to an AC source and place the handset in the off hook mode and select channel 3.
- Using the spectrum analyzer verify the base and handset frequencies are on channel 3 using the RX antenna.
- 3. Put the handset on hook.
- 4. Set the signal generator to channel 3 modulated at 1KHz dev., approx. 20KHz, to produce approximately -30dBM to -40dBM on the analyzer from the RX antenna when feeding this signal to the TX antenna several seconds.
- 5. Turn the handset on and go off hook.
- 6. Re-measure the base and handset frequencies. They must be other than the initial ones.
- 7. Busy the resulting frequency and repeat the above steps.

Verification of Handset Unit Detector

- 1. Connect the base unit to an AC source and place the handset in the off hook mode and select channel 1.
- 2. Using the spectrum analyzer verify the base and handset frequencies are on channel 1 using the RX antenna.
- 3. Put the handset on hook.
- 4. Set the signal generator to channel 1 modulated at 1KHz dev., approx. 20KHz, to produce approximately -30dBM to -40dBM on the analyzer from the RX antenna when feeding this signal to the TX antenna for several seconds.
- 5. Place the handset off hook.
- 6. Re-measure the base and handset frequencies. They must be other than the initial ones.
- 7. Busy the resulting frequency and repeat the above steps.

Thomson/2-9776(XXXX) FCC ID: G9H2-9776


TESTS RESULTS

Model: <u>2-9776(XXXX)</u>	Date: <u>April 9, 1998</u>
Base Unit Detector	
Step 2 - Check initial channel	
43,820,079 Hz Base	Channel 3
Step 6 - Recheck channel frequencies	
44,120,074Hz Base	Channel7
Step 7 - Recheck channel frequencies	
44,320,068 Hz Base	Channel <u>11</u>
Step 7 - Recheck channel frequencies	
44,480,063 Hz Base	Channel 15
Step 7 - Recheck channel frequencies	
<u>46,710,067</u> Hz Base	Channel 19
Step 7 - Recheck channel frequencies	
46,870,065 Hz Base	Channel23

Thomson/2-9776(XXXX) FCC ID: G9H2-9776

Marstech Report No. 98141D

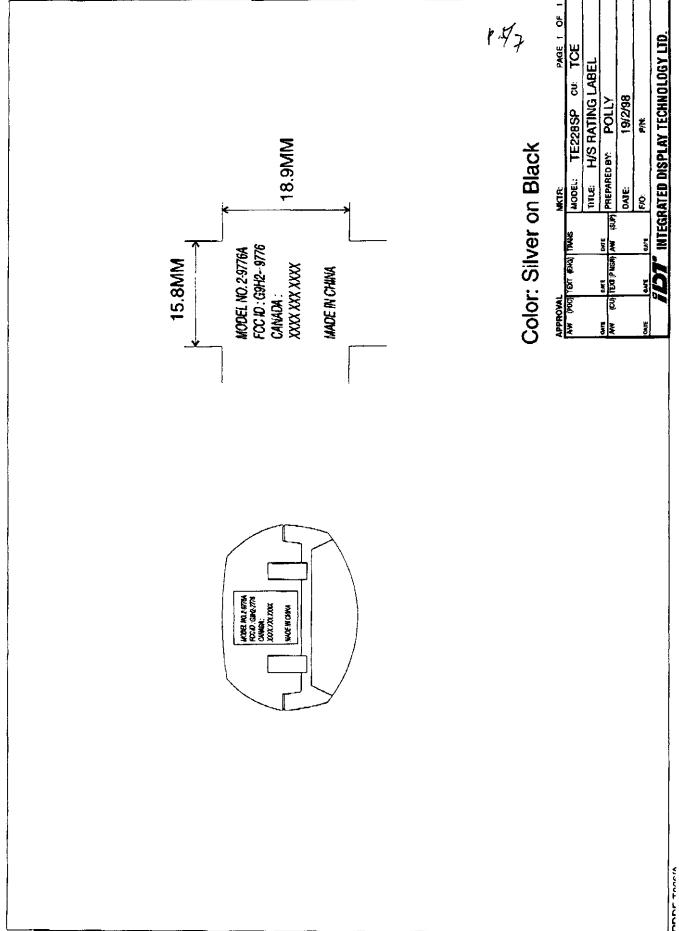
Handset Unit Detector			
Step 2 - Check initial channel			
<u>48,760,003</u> Hz Handset	Channel1		
Step 6 - Recheck channel frequencies			
<u>49,019,997</u> Hz Handset	Channel 5		
Step 7 - Recheck channel frequencies			
49,199,992 Hz Handset	Channel 9		
Step 7 - Recheck channel frequencies			
49,399,985 Hz Handset	Channel 13		
Step 7 - Recheck channel frequencies			
<u>49,844,975</u> Hz Handset	Channel17		
Results: <u>Satisfactory</u>			
Technician: <u>Hiran De Silva</u>			

VI. Verify According to the 15.233(b)(2)(i) Requirements

According to 15.233(b)(2)(i), an automatic channel selection mechanism that will prevent establishment of a link on any occupied frequency on channels one through fifteen must be incorcorated. The following test method is used to confirm this function:


- 1. Turn on the EUT and record the frequency of base from the spectrum analyzer.
- 2.Turn off the EUT.
- 3.Set the signal generator (HP3325B) to the frequency recorded in step 1.
- 4. Turn on the EUT again and read the frequency from the spectrum analyzer. If the reading is not same as the frequency recorded in step 1, this means the EUT complies with the requirements.
- 5. Press the channel select button 25 times and read the frequency every time the button is pressed. If the frequency reading is not same as the frequency recorded in step 1, this means the EUT complies with the requirements.
- 6. Repeat steps 1-5 for the handset.
- 7. Repeat steps 1-6 for another frequency pairs.
- P/S: The level of the radiated signal generated by signal generator is set to 10dB below, 10dB above and equal to the EUT's radiated leval respectively for testing.
- RESULT: After three pairs of frequency (channel 1, 8, 15) was verified with the steps mentioned above, no frequency reading is recorded same as the pre-set frequency of signal generator.

EXHIBIT E


(FCC Ref. 2.1033(b)(7))

"Photographs"

Thomson/2-9776(XXXX)
FCC ID: G9H2-9776
Marstech Report No. 98141D
c:\fcc-p15\98141.25c

FCC ID: G9H2-9776 EXHIBIT E(1)-1 Marstech Report No. 98141D

EXHIBIT B

(FCC Ref. 2.1033(b)(4))

"Description of Circuit Functions"

Thomson/2-9776(XXXX) FCC ID: G9H2-9776

Marstech Report No. 98141D

وعودات ودوب وحاري

-352 2365 0501

3. EIRCUIT SCHEMATIC AND DESCRIPTION

Prof 2 PU-1

The interface schematic diagram for the telephone attached as Figure 2. The terminal categories of Section 68.304, categories (1) through (8), are indicated for each point of connection.

A description of all electrical circuitry which affects compliance with Part 68 is given below:

The electrical circuitry is that of a standard telephone instrument. It is composed of a high-impedance ringer in series with a capacitor, a network, a switch hook assembly and a receiver and transmitter.

The device is powered solely from the telephone loop to which it is connected, drawing the normal and permissive off-hook current from the serving central office or private branch exchange, when used with a PBX.

Ringing current is received from the central office to cause the internal ringing to signal that a call is to be received. The device produces only human sensory sounds, and if provided with Dual-Tone, Hulti-Frequency (DTMF) means of network address signalings such tone below the maximum permissible signal levels.

A typical industry standard drawing is attached showing all active and passive circuit elements. None can cause noncompliance with subpart D of Part 68.

The instrument consists of a baseplate on which elements are mounted and a cover housing, photographs are attached. showing exterior and interior details.