Report No.: 08-05-MAS-174-03 FCC ID: G9H2-8358AH

ANNEX C: DIPOLE CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

ETC (Auden)

Certificate No: D1900V2-5d054_Oct06

Calibration procedure(s)	QA CAL-05.v6		
		dure for dipole validation kits	
Calibration date:	October 17, 2006		
Condition of the calibrated item	In Tolerance		
Callbration Equipment used (M&	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	03-Oct-06 (METAS, No. 217-00608)	Oct-07
Power sensor HP 8481A	US37292783	03-Oct-06 (METAS, No. 217-00608)	Oct-07 Aug-07
teference 20 dB Attenuator	SN: 5086 (20g)	10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591)	Aug-07
Reference 10 dB Attenuator	SN: 5047.2 (10r)	28-Oct-05 (SPEAG, No. ET3-1507_Oct05)	Oct-06
Reference Probe ET3DV6 Reference Probe ES3DV3	SN: 1507 SN: 3025	28-Oct-05 (SPEAG, No. ES3-3025_Oct05)	Oct-06
AE4	SN: 601	15-Dec-05 (SPEAG, No. DAE4-601_Dec05)	Dec-06
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (SPEAG, in house check Oct-05)	In house check: Oct-07
RF generator Agilent E4421B	MY41000675	11-May-05 (SPEAG, In house check Nov-05)	In house check: Nov-07 In house check: Nov-06
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (SPEAG, in house check Nov-05)	In noose check. Nov-00
	Name	Function	Signature
	Mike Meili	Laboratory Technician	M. Deili
Calibrated by:			

Page 1 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d054_Oct06

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

he following parameters and calculations were	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature during test	(20.5 ± 0.2) °C	,,,,,,,	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	9.56 mW / g
SAR normalized	normalized to 1W	38.2 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	37.6 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.07 mW / g
SAR normalized	normalized to 1W	20.3 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	20.1 mW / g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

ne following parameters and calculations were	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.4 ± 6 %	1.54 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C	2000	(<u></u>

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.60 mW / g
SAR normalized	normalized to 1W	38.4 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	37.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.08 mW / g
SAR normalized	normalized to 1W	20.3 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	20.1 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Report No.: 08-05-MAS-174-03 Page 47 of 60 FCC ID: G9H2-8358AH

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	56.9 Ω + 3.5 jΩ	
Return Loss	- 22.8 dB	
Tetam coss		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$51.8 \Omega + 5.1 j\Omega$	
Return Loss	- 25.5 dB	

General Antenna Parameters and Design

1.198 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 19, 2004

DASY4 Validation Report for Head TSL

Date/Time: 11.10.2006 15:17:05

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d054

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 1900 MHz; σ = 1.42 mho/m; ϵ_r = 39.3; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1507 (HF); ConvF(4.74, 4.74, 4.74); Calibrated: 28.10.2005

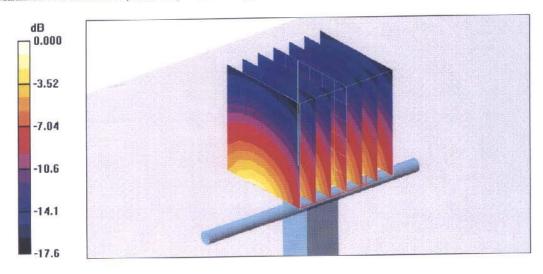
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 15.12.2005

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

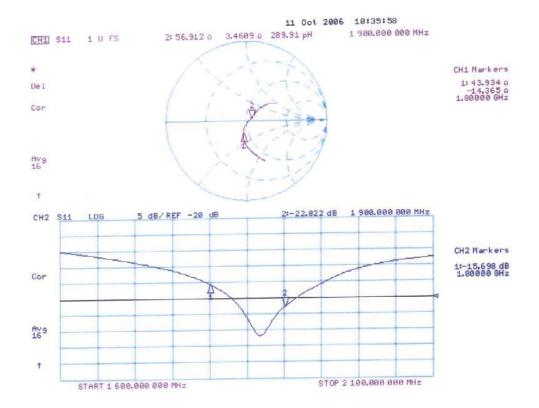
Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.1 V/m; Power Drift = 0.042 dB

Peak SAR (extrapolated) = 16.3 W/kg

SAR(1 g) = 9.56 mW/g; SAR(10 g) = 5.07 mW/g


Maximum value of SAR (measured) = 10.7 mW/g

0 dB = 10.7 mW/g

Page 6 of 9

Impedance Measurement Plot for Head TSL

DASY4 Validation Report for Body TSL

Date/Time: 17.10.2006 15:56:11

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d054

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10;

Medium parameters used: f = 1900 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52.4$; $\rho = 1000$ kg/m³

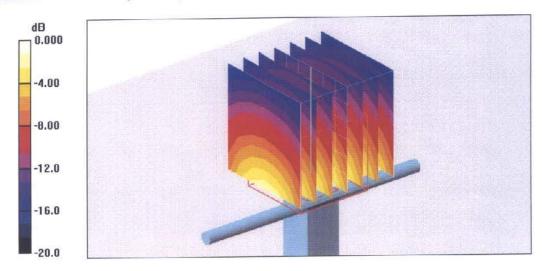
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1507 (HF); ConvF(4.3, 4.3, 4.3); Calibrated: 28.10.2005

Sensor-Surface: 4mm (Mechanical Surface Detection)

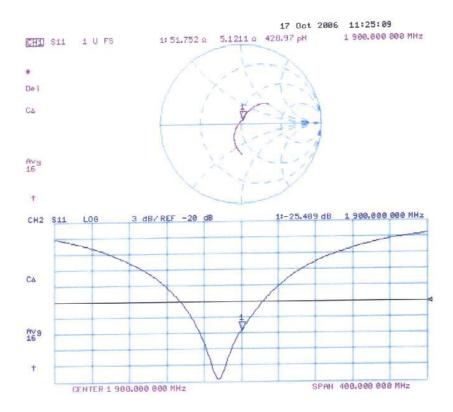

- Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.4 V/m; Power Drift = -0.027 dB

Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 9.6 mW/g; SAR(10 g) = 5.08 mW/gMaximum value of SAR (measured) = 10.9 mW/g



0 dB = 10.9 mW/g

Certificate No: D1900V2-5d054_Oct06

Page 8 of 9

Impedance Measurement Plot for Body TSL

Report No.: 08-05-MAS-174-03 FCC ID: G9H2-8358AH

ANNEX D: PROBE CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

С

Client

TC (Auden)

Certificate No: EX3-3555_Sep07

lient ETC (Auden)		Certificate No: E	Certificate No: EX3-3555_Sep01		
CALIBRATION O	CERTIFICAT	E			
Object	EX3DV4 - SN:3	555			
Calibration procedure(s)	QA CAL-01.v6 Calibration procedure for dosimetric E-field probes				
Calibration date:	September 26,	2007			
Condition of the calibrated item	In Tolerance				
	cted in the closed laborat	probability are given on the following pages and ar ory facility: environment temperature (22 ± 3) °C an			
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration		
Power meter E4419B	GB41293874	29-Mar-07 (METAS, No. 217-00670)	Mar-08		
Power sensor E4412A	MY41495277	29-Mar-07 (METAS, No. 217-00670)	Mar-08		
Power sensor E4412A	MY41498087	29-Mar-07 (METAS, No. 217-00670)	Mar-08		
Reference 3 dB Attenuator	SN: S5054 (3c)	8-Aug-07 (METAS, No. 217-00719)	Aug-08		
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-07 (METAS, No. 217-00671)	Mar-08		
Reference 30 dB Attenuator	SN: S5129 (30b)	8-Aug-07 (METAS, No. 217-00720)	Aug-08		
Reference Probe ES3DV2	SN: 3013	4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	Jan-08		
DAE4	SN: 654	20-Apr-07 (SPEAG, No. DAE4-654_Apr07)	Apr-08		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check		
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07		
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-06)	In house check: Oct-07		
	Name	Function	Signature		
Calibrated by:	Katja Pokovic	Technical Manager	My My		
Approved by:	Niels Kuster	Quality Manager	1.165		

Certificate No: EX3-3555_Sep07

Page 1 of 9

Report No.: 08-05-MAS-174-03

FCC ID: G9H2-8358AH

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

NORMx,y,z

sensitivity in free space sensitivity in TSL / NORMx,y,z

ConF

diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3555_Sep07

Page 2 of 9

EX3DV4 SN:3555

September 26, 2007

Probe EX3DV4

SN:3555

Manufactured: July 13, 2004 Last calibrated: November 5, 2004 Recalibrated: September 26, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3555_Sep07

Page 3 of 9

Report No.: 08-05-MAS-174-03 FCC ID: G9H2-8358AH

EX3DV4 SN:3555

September 26, 2007

DASY - Parameters of Probe: EX3DV4 SN:3555

Sensitivity in Fre	Diode (Compression ^B		
NormX	0.420 ± 10.1%	$\mu V/(V/m)^2$	DCP X	92 mV
NormY	0.390 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	100 mV
NormZ	0.420 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	92 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL	900 MHz	Typical SAR gradient: 5 % per mm	

Sensor Cente	er to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	1.3	0.2
SAR _{be} [%]	With Correction Algorithm	0.5	0.0

TSL 1750 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	er to Phantom Surface Distance	2.0 mm	3.0 mm	
SAR _{be} [%]	Without Correction Algorithm	1.8	0.2	
SAR _{be} [%]	With Correction Algorithm	0.1		

Sensor Offset

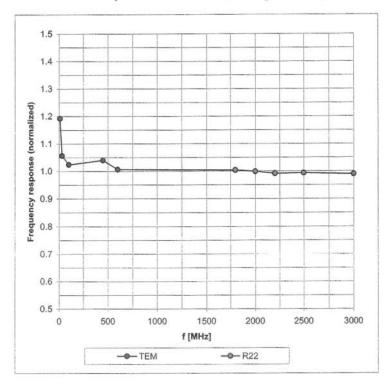
Probe Tip to Sensor Center 1.0 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3555_Sep07

Page 4 of 9

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).


^B Numerical linearization parameter: uncertainty not required.

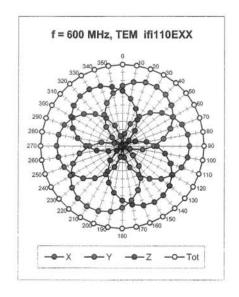
EX3DV4 SN:3555

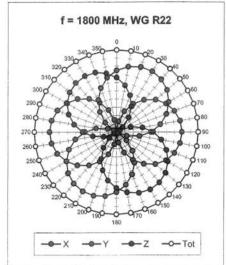
September 26, 2007

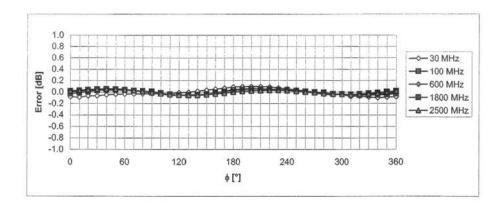
Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: EX3-3555_Sep07


Page 5 of 9

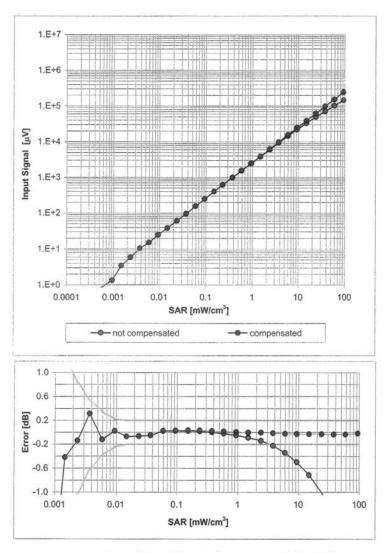

EX3DV4 SN:3555

September 26, 2007

Receiving Pattern (ϕ), ϑ = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3555_Sep07


Page 6 of 9

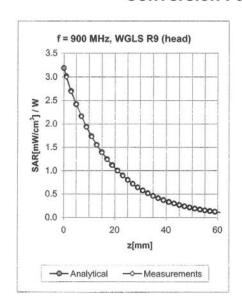
EX3DV4 SN:3555

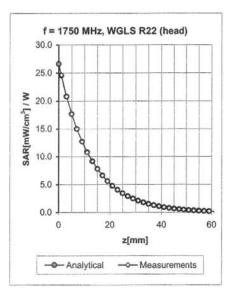
September 26, 2007

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: EX3-3555_Sep07


Page 7 of 9

EX3DV4 SN:3555

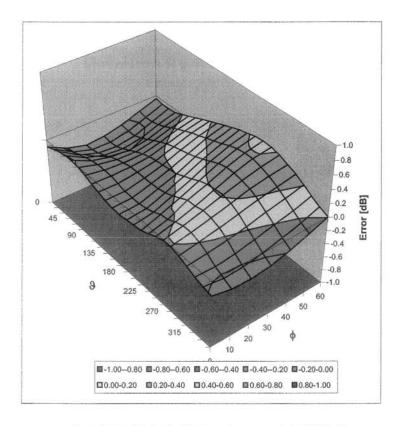
September 26, 2007

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.50	0.90	8.10	± 11.0% (k=2)
1750	$\pm 50 / \pm 100$	Head	40.1 ± 5%	1.37 ± 5%	0.39	0.75	6.86	± 11.0% (k=2)
1950	± 50 / ± 100	Head	$40.0 \pm 5\%$	1.40 ± 5%	0.44	0.70	6.61	± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.68	0.62	6.30	± 11.8% (k=2)
900	± 50 / ± 100	Body	$55.0 \pm 5\%$	$1.05 \pm 5\%$	0.48	0.90	7.91	± 11.0% (k=2)
1750	$\pm 50 / \pm 100$	Body	$53.4 \pm 5\%$	$1.49 \pm 5\%$	0.40	0.73	6.86	± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.22	1.03	6.50	± 11.0% (k=2)
2450	± 50 / ± 100	Body	$52.7 \pm 5\%$	1.95 ± 5%	0.64	0.69	6.17	± 11.8% (k=2)

Certificate No: EX3-3555_Sep07

Page 8 of 9


^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

EX3DV4 SN:3555

September 26, 2007

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3555_Sep07

Page 9 of 9