Report No.: 07-03-MAS-077-03 FCC ID: G9H2-7907AH

ANNEX D: DIPOLE CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

ETC (Auden)

Certificate No: D1900V2-5d054_Oct06

CALIBRATION CERTIFICATE D1900V2 - SN: 5d054 Object QA CAL-05.v6 Calibration procedure(s) Calibration procedure for dipole validation kits October 17, 2006 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cal Date (Calibrated by, Certificate No.) ID# Primary Standards Oct-07 03-Oct-06 (METAS, No. 217-00608) GB37480704 Power meter EPM-442A 03-Oct-06 (METAS, No. 217-00608) Oct-07 US37292783 Power sensor HP 8481A Aug-07 10-Aug-06 (METAS, No 217-00591) SN: 5086 (20g) Reference 20 dB Attenuator 10-Aug-06 (METAS, No 217-00591) Aug-07 SN: 5047.2 (10r) Reference 10 dB Attenuator 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) Oct-06 SN: 1507 Reference Probe ET3DV6 Oct-06 28-Oct-05 (SPEAG, No. ES3-3025_Oct05) SN: 3025 Reference Probe ES3DV3 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Dec-06 SN: 601 DAE4 Scheduled Check Check Date (in house) ID# Secondary Standards 18-Oct-02 (SPEAG, in house check Oct-05) In house check: Oct-07 Power sensor HP 8481A MY41092317 In house check: Nov-07 11-May-05 (SPEAG, In house check Nov-05) MY41000675 RF generator Agilent E4421B In house check: Nov-06 18-Oct-01 (SPEAG, in house check Nov-05) Network Analyzer HP 8753E US37390585 S4206 Signature Function Name Laboratory Technician Mike Melli M. Derli Calibrated by: Technical Manager Katja Pokovic Approved by: Issued: October 18, 2006 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSI

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3

GHz), July 2001

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Report No.: 07-03-MAS-077-03 Page 53 of 68 FCC ID: G9H2-7907AH

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

ne following parameters and calculations were	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature during test	(20.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	9.56 mW / g
SAR normalized	normalized to 1W	38.2 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	37.6 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.07 mW / g
SAR normalized	normalized to 1W	20.3 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	20.1 mW / g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Report No.: 07-03-MAS-077-03 Page 54 of 68 FCC ID: G9H2-7907AH

Body TSL parameters

The following parameters and calculations were applied.

ne following parameters and calculations were	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.4 ± 6 %	1.54 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C	2000	(<u></u>

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.60 mW / g
SAR normalized	normalized to 1W	38.4 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	37.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.08 mW / g
SAR normalized	normalized to 1W	20.3 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	20.1 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Report No.: 07-03-MAS-077-03 Page 55 of 68

FCC ID: G9H2-7907AH

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$56.9 \Omega + 3.5 j\Omega$	
	- 22.8 dB	
Return Loss	tor (Action of the Control of the Co	

Antenna Parameters with Body TSL

mpedance, transformed to feed point	51.8 Ω + 5.1 jΩ	
Return Loss	- 25.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.198 ns
Electrical Delay (one direction)	1000 4100 0000

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 19, 2004

Report No.: 07-03-MAS-077-03 Page 56 of 68 FCC ID: G9H2-7907AH

DASY4 Validation Report for Head TSL

Date/Time: 11.10.2006 15:17:05

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d054

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 1900 MHz; σ = 1.42 mho/m; ϵ_r = 39.3; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1507 (HF); ConvF(4.74, 4.74, 4.74); Calibrated: 28.10.2005

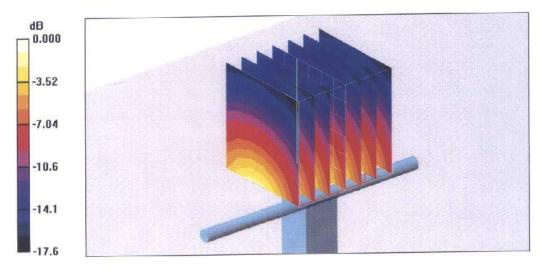
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 15.12.2005

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA

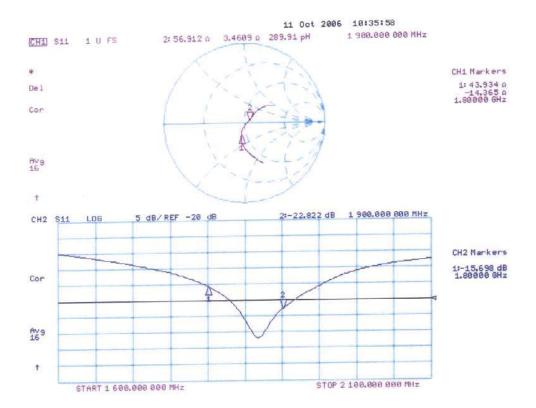
Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.1 V/m; Power Drift = 0.042 dB

Peak SAR (extrapolated) = 16.3 W/kg


SAR(1 g) = 9.56 mW/g; SAR(10 g) = 5.07 mW/g

Maximum value of SAR (measured) = 10.7 mW/g

0 dB = 10.7 mW/g

Impedance Measurement Plot for Head TSL

DASY4 Validation Report for Body TSL

Date/Time: 17.10.2006 15:56:11

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d054

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10;

Medium parameters used: f = 1900 MHz; σ = 1.54 mho/m; ϵ_r = 52.4; ρ = 1000 kg/m³

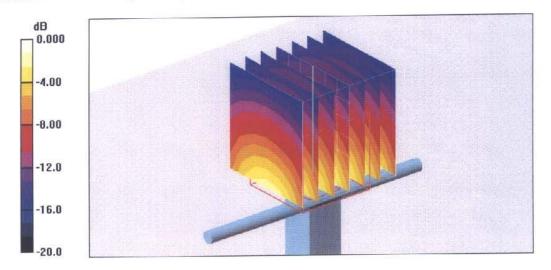
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

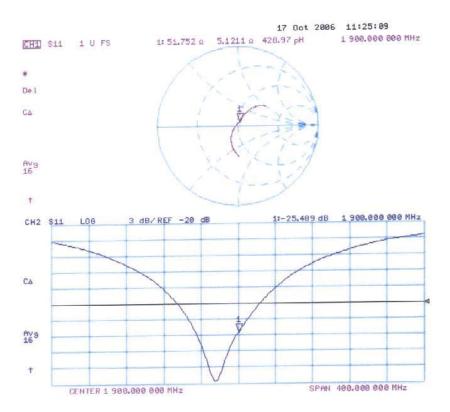
Probe: ET3DV6 - SN1507 (HF); ConvF(4.3, 4.3, 4.3); Calibrated: 28.10.2005

Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.4 V/m; Power Drift = -0.027 dB


Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 9.6 mW/g; SAR(10 g) = 5.08 mW/gMaximum value of SAR (measured) = 10.9 mW/g

0 dB = 10.9 mW/g

Impedance Measurement Plot for Body TSL

Report No.: 07-03-MAS-077-03 FCC ID: G9H2-7907AH

ANNEX E: PROBE CERTIFICATE

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Accreditation No.: SCS 108

S

C

S

Certificate No: ET3-1791_Sep06 ETC (Auden) CALIBRATION CERTIFICATE ET3DV6 - SN:1791 Object Calibration procedure(s) QA CAL-01.v5 Calibration procedure for dosimetric E-field probes Calibration date: September 19, 2006 In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Scheduled Calibration Cal Date (Calibrated by, Certificate No.) GB41293874 5-Apr-06 (METAS, No. 251-00557) Apr-07 Power meter E4419B 5-Apr-06 (METAS, No. 251-00557) Apr-07 MY41495277 Power sensor E4412A 5-Apr-06 (METAS, No. 251-00557) Apr-07 Power sensor E4412A MY41498087 10-Aug-06 (METAS, No. 217-00592) SN: S5054 (3c) Aug-07 Reference 3 dB Attenuator 4-Apr-06 (METAS, No. 251-00558) Apr-07 Reference 20 dB Attenuator SN: S5086 (20b) Reference 30 dB Attenuator SN: S5129 (30b) 10-Aug-06 (METAS, No. 217-00593) Aug-07 Reference Probe ES3DV2 SN: 3013 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) Jan-07 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Jun-07 DAE4 SN: 654 Scheduled Check Check Date (in house) Secondary Standards ID# In house check: Nov-07 4-Aug-99 (SPEAG, in house check Nov-05) RF generator HP 8648C US3642U01700 Network Analyzer HP 8753E US37390585 18-Oct-01 (SPEAG, in house check Nov-05) In house check: Nov 06 Signature Function Name Technical Manager Calibrated by: Katja Pokovic Quality Manager Niels Kuster Approved by: Issued: September 19, 2006 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: ET3-1791 Sep06

Page 1 of 9

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConF DCP

sensitivity in TSL / NORMx,y,z diode compression point

Polarization @

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx, v, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x, y, z = NORMx, y, z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Page 2 of 9

Report No.: 07-03-MAS-077-03 Page 62 of 68 FCC ID: G9H2-7907AH

ET3DV6 SN:1791

September 19, 2006

Probe ET3DV6

SN:1791

Manufactured:

May 28, 2003

Last calibrated: Recalibrated: November 26, 2004

September 19, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6 SN:1791 September 19, 2006

DASY - Parameters of Probe: ET3DV6 SN:1791

Sensitivity in Free Space ^A		Diode Compression		
NormX	1.72 ± 10.1%	$\mu V/(V/m)^2$	DCP X	96 mV
NormY	1.67 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	96 mV
NormZ	1.78 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	94 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL	900 MHz	Typical SAR gradient: 5 % per mm
-----	---------	----------------------------------

Sensor Cente	er to Phantom Surface Distance	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	8.3	4.4	
SAR _{be} [%]	With Correction Algorithm	0.1	0.2	

TSL 1750 MHz Typical SAR gradient: 10 % per mm

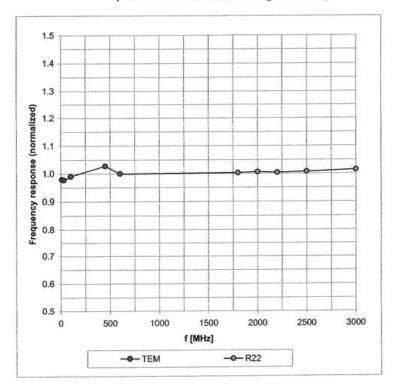
Sensor Cente	er to Phantom Surface Distance	antom Surface Distance 3.7 mm 4.7 mm		
SAR _{be} [%]	Without Correction Algorithm	11.5	6.5	
SAR _{be} [%]	With Correction Algorithm	0.2	0.3	

Sensor Offset

Probe Tip to Sensor Center 2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

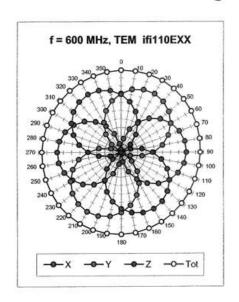

^B Numerical linearization parameter: uncertainty not required.

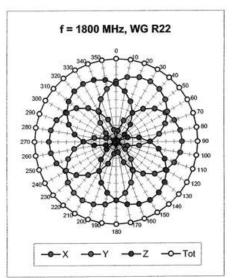
ET3DV6 SN:1791

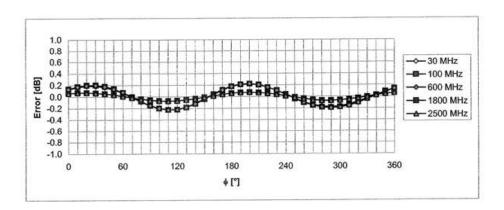
September 19, 2006

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

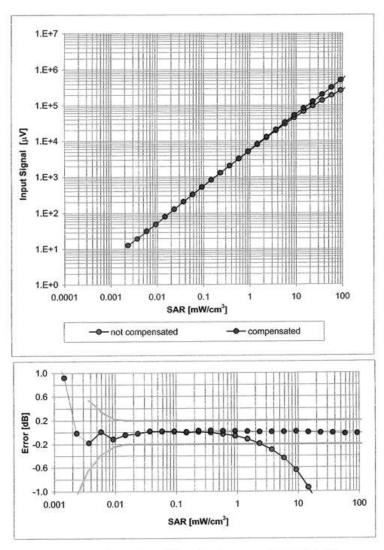



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


ET3DV6 SN:1791

September 19, 2006

Receiving Pattern (ϕ), $9 = 0^{\circ}$

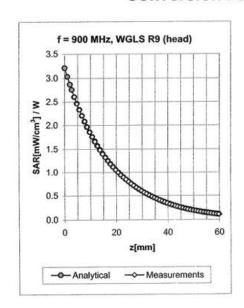

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

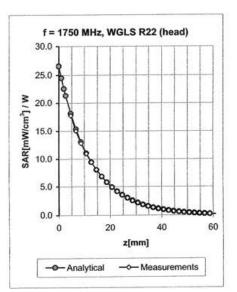
ET3DV6 SN:1791

September 19, 2006

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)



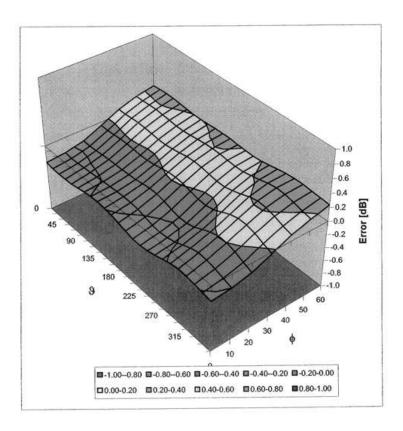

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

ET3DV6 SN:1791

September 19, 2006

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.55	1.87	6.60 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.52	2.54	5.29 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.50	2.89	5.00 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.69	1.96	4.62 ± 11.8% (k=2)
900	±50/±100	Body	55.0 ± 5%	1.05 ± 5%	0.47	2.15	6.30 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.59	2.89	4.76 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.65	2.73	4.50 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.60	1.69	4.16 ± 11.8% (k=2)


^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

ET3DV6 SN:1791

September 19, 2006

Deviation from Isotropy in HSL

Error (\$\phi\$, \$9), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)