4.5 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor, High Pass Filter Loss (if used) and Cable Loss, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

where Corrected Factor

= Antenna FACTOR + Cable Loss + High Pass Filter Loss - Amplifier Gain

Photos of Radiation Measuring Setup

(Base on Line)

5.4 Result Data Calculation

The result data is calculated by adding the LISN Factor to the measured reading. The basic equation with a sample calculation is as follows:

$$RESULT = READING + LISN FACTOR$$

Assume a receiver reading of 22.5 dB μ V is obtained, and LISN Factor is 0.1 dB, then the total of disturbance voltage is 22.6 dB μ V.

RESULT =
$$22.5 + 0.1 = 22.6$$
 dB μ V
 Level in μ V = Common Antilogarithm[(22.6 dB μ V)/20]
 = 13.48 μ V

5.5 Conducted Measurement Equipment

The following test equipment are used during the conducted test.

Equipment	Manufacturer	Model No.	Next Cal. Due
EMI Test Receiver	Rohde and Schwarz	ESCI	11/28/2006
Line Impedance Stabilization network	EMCO	3825/2	04/26/2007
Line Impedance Stabilization network	Rohde & Schwarz	ESH2-Z5	09/11/2006
Monitor	IBM	E54	N.C.R.
Printer	HP	LaserJet 1000	N.C.R.
Shielded Room	Riken		N.C.R.
Computer	Acer	Veriton	N.C.R.

Photos of Conduction Measuring Setup

(Base on Line)

